tlb_uv.c 19.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
/*
 *	SGI UltraViolet TLB flush routines.
 *
 *	(c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
 *
 *	This code is released under the GNU General Public License version 2 or
 *	later.
 */
#include <linux/mc146818rtc.h>
#include <linux/proc_fs.h>
#include <linux/kernel.h>

#include <asm/mach-bigsmp/mach_apic.h>
#include <asm/mmu_context.h>
#include <asm/idle.h>
#include <asm/genapic.h>
#include <asm/uv/uv_hub.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/uv/uv_bau.h>

struct bau_control **uv_bau_table_bases;
static int uv_bau_retry_limit;
static int uv_nshift;		/* position of pnode (which is nasid>>1) */
static unsigned long uv_mmask;

char *status_table[] = {
	"IDLE",
	"ACTIVE",
	"DESTINATION TIMEOUT",
	"SOURCE TIMEOUT"
};

DEFINE_PER_CPU(struct ptc_stats, ptcstats);
DEFINE_PER_CPU(struct bau_control, bau_control);

/*
 * Free a software acknowledge hardware resource by clearing its Pending
 * bit. This will return a reply to the sender.
 * If the message has timed out, a reply has already been sent by the
 * hardware but the resource has not been released. In that case our
 * clear of the Timeout bit (as well) will free the resource. No reply will
 * be sent (the hardware will only do one reply per message).
 */
static void
uv_reply_to_message(int resource,
		    struct bau_payload_queue_entry *msg,
		    struct bau_msg_status *msp)
{
	int fw;

	fw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
	msg->replied_to = 1;
	msg->sw_ack_vector = 0;
	if (msp)
		msp->seen_by.bits = 0;
	uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, fw);
	return;
}

/*
 * Do all the things a cpu should do for a TLB shootdown message.
 * Other cpu's may come here at the same time for this message.
 */
static void
uv_bau_process_message(struct bau_payload_queue_entry *msg,
		       int msg_slot, int sw_ack_slot)
{
	int cpu;
	unsigned long this_cpu_mask;
	struct bau_msg_status *msp;

	msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
	cpu = uv_blade_processor_id();
	msg->number_of_cpus =
	    uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
	this_cpu_mask = (unsigned long)1 << cpu;
	if (msp->seen_by.bits & this_cpu_mask)
		return;
	atomic_or_long(&msp->seen_by.bits, this_cpu_mask);

	if (msg->replied_to == 1)
		return;

	if (msg->address == TLB_FLUSH_ALL) {
		local_flush_tlb();
		__get_cpu_var(ptcstats).alltlb++;
	} else {
		__flush_tlb_one(msg->address);
		__get_cpu_var(ptcstats).onetlb++;
	}

	__get_cpu_var(ptcstats).requestee++;

	atomic_inc_short(&msg->acknowledge_count);
	if (msg->number_of_cpus == msg->acknowledge_count)
		uv_reply_to_message(sw_ack_slot, msg, msp);
	return;
}

/*
 * Examine the payload queue on all the distribution nodes to see
 * which messages have not been seen, and which cpu(s) have not seen them.
 *
 * Returns the number of cpu's that have not responded.
 */
static int
uv_examine_destinations(struct bau_target_nodemask *distribution)
{
	int sender;
	int i;
	int j;
	int k;
	int count = 0;
	struct bau_control *bau_tablesp;
	struct bau_payload_queue_entry *msg;
	struct bau_msg_status *msp;

	sender = smp_processor_id();
	for (i = 0; i < (sizeof(struct bau_target_nodemask) * BITSPERBYTE);
	     i++) {
		if (bau_node_isset(i, distribution)) {
			bau_tablesp = uv_bau_table_bases[i];
			for (msg = bau_tablesp->va_queue_first, j = 0;
			     j < DESTINATION_PAYLOAD_QUEUE_SIZE; msg++, j++) {
				if ((msg->sending_cpu == sender) &&
				    (!msg->replied_to)) {
					msp = bau_tablesp->msg_statuses + j;
					printk(KERN_DEBUG
				"blade %d: address:%#lx %d of %d, not cpu(s): ",
					       i, msg->address,
					       msg->acknowledge_count,
					       msg->number_of_cpus);
					for (k = 0; k < msg->number_of_cpus;
					     k++) {
						if (!((long)1 << k & msp->
						      seen_by.bits)) {
							count++;
							printk("%d ", k);
						}
					}
					printk("\n");
				}
			}
		}
	}
	return count;
}

/**
 * uv_flush_tlb_others - globally purge translation cache of a virtual
 * address or all TLB's
 * @cpumaskp: mask of all cpu's in which the address is to be removed
 * @mm: mm_struct containing virtual address range
 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
 *
 * This is the entry point for initiating any UV global TLB shootdown.
 *
 * Purges the translation caches of all specified processors of the given
 * virtual address, or purges all TLB's on specified processors.
 *
 * The caller has derived the cpumaskp from the mm_struct and has subtracted
 * the local cpu from the mask.  This function is called only if there
 * are bits set in the mask. (e.g. flush_tlb_page())
 *
 * The cpumaskp is converted into a nodemask of the nodes containing
 * the cpus.
 */
int
uv_flush_tlb_others(cpumask_t *cpumaskp, struct mm_struct *mm, unsigned long va)
{
	int i;
	int blade;
	int cpu;
	int bit;
	int right_shift;
	int this_blade;
	int exams = 0;
	int tries = 0;
	long source_timeouts = 0;
	long destination_timeouts = 0;
	unsigned long index;
	unsigned long mmr_offset;
	unsigned long descriptor_status;
	struct bau_activation_descriptor *bau_desc;
	ktime_t time1, time2;

	cpu = uv_blade_processor_id();
	this_blade = uv_numa_blade_id();
	bau_desc = __get_cpu_var(bau_control).descriptor_base;
	bau_desc += (UV_ITEMS_PER_DESCRIPTOR * cpu);

	bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);

	i = 0;
	for_each_cpu_mask(bit, *cpumaskp) {
		blade = uv_cpu_to_blade_id(bit);
		if (blade > (UV_DISTRIBUTION_SIZE - 1))
			BUG();
		if (blade == this_blade)
			continue;
		bau_node_set(blade, &bau_desc->distribution);
		/* leave the bits for the remote cpu's in the mask until
		   success; on failure we fall back to the IPI method */
		i++;
	}
	if (i == 0)
		goto none_to_flush;
	__get_cpu_var(ptcstats).requestor++;
	__get_cpu_var(ptcstats).ntargeted += i;

	bau_desc->payload.address = va;
	bau_desc->payload.sending_cpu = smp_processor_id();

	if (cpu < UV_CPUS_PER_ACT_STATUS) {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
		right_shift = cpu * UV_ACT_STATUS_SIZE;
	} else {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
		right_shift =
		    ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
	}
	time1 = ktime_get();

retry:
	tries++;
	index = ((unsigned long)
		 1 << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | cpu;
	uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);

	while ((descriptor_status = (((unsigned long)
				      uv_read_local_mmr(mmr_offset) >>
				      right_shift) & UV_ACT_STATUS_MASK)) !=
	       DESC_STATUS_IDLE) {
		if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
			source_timeouts++;
			if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
				source_timeouts = 0;
			__get_cpu_var(ptcstats).s_retry++;
			goto retry;
		}
		/* spin here looking for progress at the destinations */
		if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
			destination_timeouts++;
			if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
				/* returns # of cpus not responding */
				if (uv_examine_destinations
				    (&bau_desc->distribution) == 0) {
					__get_cpu_var(ptcstats).d_retry++;
					goto retry;
				}
				exams++;
				if (exams >= uv_bau_retry_limit) {
					printk(KERN_DEBUG
					       "uv_flush_tlb_others");
					printk("giving up on cpu %d\n",
					       smp_processor_id());
					goto unsuccessful;
				}
				/* delays can hang up the simulator
				   udelay(1000);
				 */
				destination_timeouts = 0;
			}
		}
	}
	if (tries > 1)
		__get_cpu_var(ptcstats).retriesok++;
	/* on success, clear the remote cpu's from the mask so we don't
	   use the IPI method of shootdown on them */
	for_each_cpu_mask(bit, *cpumaskp) {
		blade = uv_cpu_to_blade_id(bit);
		if (blade == this_blade)
			continue;
		cpu_clear(bit, *cpumaskp);
	}

unsuccessful:
	time2 = ktime_get();
	__get_cpu_var(ptcstats).sflush_ns += (time2.tv64 - time1.tv64);

none_to_flush:
	if (cpus_empty(*cpumaskp))
		return 1;

	/* Cause the caller to do an IPI-style TLB shootdown on
	   the cpu's still in the mask */
	__get_cpu_var(ptcstats).ptc_i++;
	return 0;
}

/*
 * The BAU message interrupt comes here. (registered by set_intr_gate)
 * See entry_64.S
 *
 * We received a broadcast assist message.
 *
 * Interrupts may have been disabled; this interrupt could represent
 * the receipt of several messages.
 *
 * All cores/threads on this node get this interrupt.
 * The last one to see it does the s/w ack.
 * (the resource will not be freed until noninterruptable cpus see this
 *  interrupt; hardware will timeout the s/w ack and reply ERROR)
 */
void
uv_bau_message_interrupt(struct pt_regs *regs)
{
	struct bau_payload_queue_entry *pqp;
	struct bau_payload_queue_entry *msg;
	struct pt_regs *old_regs = set_irq_regs(regs);
	ktime_t time1, time2;
	int msg_slot;
	int sw_ack_slot;
	int fw;
	int count = 0;
	unsigned long local_pnode;

	ack_APIC_irq();
	exit_idle();
	irq_enter();

	time1 = ktime_get();

	local_pnode = uv_blade_to_pnode(uv_numa_blade_id());

	pqp = __get_cpu_var(bau_control).va_queue_first;
	msg = __get_cpu_var(bau_control).bau_msg_head;
	while (msg->sw_ack_vector) {
		count++;
		fw = msg->sw_ack_vector;
		msg_slot = msg - pqp;
		sw_ack_slot = ffs(fw) - 1;

		uv_bau_process_message(msg, msg_slot, sw_ack_slot);

		msg++;
		if (msg > __get_cpu_var(bau_control).va_queue_last)
			msg = __get_cpu_var(bau_control).va_queue_first;
		__get_cpu_var(bau_control).bau_msg_head = msg;
	}
	if (!count)
		__get_cpu_var(ptcstats).nomsg++;
	else if (count > 1)
		__get_cpu_var(ptcstats).multmsg++;

	time2 = ktime_get();
	__get_cpu_var(ptcstats).dflush_ns += (time2.tv64 - time1.tv64);

	irq_exit();
	set_irq_regs(old_regs);
	return;
}

static void
uv_enable_timeouts(void)
{
	int i;
	int blade;
	int last_blade;
	int pnode;
	int cur_cpu = 0;
	unsigned long apicid;

	/* better if we had each_online_blade */
	last_blade = -1;
	for_each_online_node(i) {
		blade = uv_node_to_blade_id(i);
		if (blade == last_blade)
			continue;
		last_blade = blade;
		apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
		pnode = uv_blade_to_pnode(blade);
		cur_cpu += uv_blade_nr_possible_cpus(i);
	}
	return;
}

static void *
uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
{
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

static void *
uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
{
	(*offset)++;
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

static void
uv_ptc_seq_stop(struct seq_file *file, void *data)
{
}

/*
 * Display the statistics thru /proc
 * data points to the cpu number
 */
static int
uv_ptc_seq_show(struct seq_file *file, void *data)
{
	struct ptc_stats *stat;
	int cpu;

	cpu = *(loff_t *)data;

	if (!cpu) {
		seq_printf(file,
		"# cpu requestor requestee one all sretry dretry ptc_i ");
		seq_printf(file,
		"sw_ack sflush_us dflush_us sok dnomsg dmult starget\n");
	}
	if (cpu < num_possible_cpus() && cpu_online(cpu)) {
		stat = &per_cpu(ptcstats, cpu);
		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
			   cpu, stat->requestor,
			   stat->requestee, stat->onetlb, stat->alltlb,
			   stat->s_retry, stat->d_retry, stat->ptc_i);
		seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
			   uv_read_global_mmr64(uv_blade_to_pnode
					(uv_cpu_to_blade_id(cpu)),
					UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
			   stat->sflush_ns / 1000, stat->dflush_ns / 1000,
			   stat->retriesok, stat->nomsg,
			   stat->multmsg, stat->ntargeted);
	}

	return 0;
}

/*
 *  0: display meaning of the statistics
 * >0: retry limit
 */
static ssize_t
uv_ptc_proc_write(struct file *file, const char __user *user,
		  size_t count, loff_t *data)
{
	long newmode;
	char optstr[64];

	if (copy_from_user(optstr, user, count))
		return -EFAULT;
	optstr[count - 1] = '\0';
	if (strict_strtoul(optstr, 10, &newmode) < 0) {
		printk(KERN_DEBUG "%s is invalid\n", optstr);
		return -EINVAL;
	}

	if (newmode == 0) {
		printk(KERN_DEBUG "# cpu:      cpu number\n");
		printk(KERN_DEBUG
		"requestor:  times this cpu was the flush requestor\n");
		printk(KERN_DEBUG
		"requestee:  times this cpu was requested to flush its TLBs\n");
		printk(KERN_DEBUG
		"one:        times requested to flush a single address\n");
		printk(KERN_DEBUG
		"all:        times requested to flush all TLB's\n");
		printk(KERN_DEBUG
		"sretry:     number of retries of source-side timeouts\n");
		printk(KERN_DEBUG
		"dretry:     number of retries of destination-side timeouts\n");
		printk(KERN_DEBUG
		"ptc_i:      times UV fell through to IPI-style flushes\n");
		printk(KERN_DEBUG
		"sw_ack:     image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
		printk(KERN_DEBUG
		"sflush_us:  microseconds spent in uv_flush_tlb_others()\n");
		printk(KERN_DEBUG
		"dflush_us:  microseconds spent in handling flush requests\n");
		printk(KERN_DEBUG "sok:        successes on retry\n");
		printk(KERN_DEBUG "dnomsg:     interrupts with no message\n");
		printk(KERN_DEBUG
		"dmult:      interrupts with multiple messages\n");
		printk(KERN_DEBUG "starget:    nodes targeted\n");
	} else {
		uv_bau_retry_limit = newmode;
		printk(KERN_DEBUG "timeout retry limit:%d\n",
		       uv_bau_retry_limit);
	}

	return count;
}

static const struct seq_operations uv_ptc_seq_ops = {
	.start = uv_ptc_seq_start,
	.next = uv_ptc_seq_next,
	.stop = uv_ptc_seq_stop,
	.show = uv_ptc_seq_show
};

static int
uv_ptc_proc_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &uv_ptc_seq_ops);
}

static const struct file_operations proc_uv_ptc_operations = {
	.open = uv_ptc_proc_open,
	.read = seq_read,
	.write = uv_ptc_proc_write,
	.llseek = seq_lseek,
	.release = seq_release,
};

static struct proc_dir_entry *proc_uv_ptc;

static int __init
uv_ptc_init(void)
{
	static struct proc_dir_entry *sgi_proc_dir;

	sgi_proc_dir = NULL;

	if (!is_uv_system())
		return 0;

	sgi_proc_dir = proc_mkdir("sgi_uv", NULL);
	if (!sgi_proc_dir)
		return -EINVAL;

	proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
	if (!proc_uv_ptc) {
		printk(KERN_ERR "unable to create %s proc entry\n",
		       UV_PTC_BASENAME);
		return -EINVAL;
	}
	proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
	return 0;
}

static void __exit
uv_ptc_exit(void)
{
	remove_proc_entry(UV_PTC_BASENAME, NULL);
}

module_init(uv_ptc_init);
module_exit(uv_ptc_exit);

/*
 * Initialization of BAU-related structures
 */
int __init
uv_bau_init(void)
{
	int i;
	int j;
	int blade;
	int nblades;
	int *ip;
	int pnode;
	int last_blade;
	int cur_cpu = 0;
	unsigned long pa;
	unsigned long n;
	unsigned long m;
	unsigned long mmr_image;
	unsigned long apicid;
	char *cp;
	struct bau_control *bau_tablesp;
	struct bau_activation_descriptor *adp, *ad2;
	struct bau_payload_queue_entry *pqp;
	struct bau_msg_status *msp;
	struct bau_control *bcp;

	if (!is_uv_system())
		return 0;

	uv_bau_retry_limit = 1;

	if ((sizeof(struct bau_local_cpumask) * BITSPERBYTE) <
	    MAX_CPUS_PER_NODE) {
		printk(KERN_ERR
			"uv_bau_init: bau_local_cpumask.bits too small\n");
		BUG();
	}

	uv_nshift = uv_hub_info->n_val;
	uv_mmask = ((unsigned long)1 << uv_hub_info->n_val) - 1;
	nblades = 0;
	last_blade = -1;
	for_each_online_node(i) {
		blade = uv_node_to_blade_id(i);
		if (blade == last_blade)
			continue;
		last_blade = blade;
		nblades++;
	}

	uv_bau_table_bases = (struct bau_control **)
	    kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
	if (!uv_bau_table_bases)
		BUG();

	/* better if we had each_online_blade */
	last_blade = -1;
	for_each_online_node(i) {
		blade = uv_node_to_blade_id(i);
		if (blade == last_blade)
			continue;
		last_blade = blade;

		bau_tablesp =
		    kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, i);
		if (!bau_tablesp)
			BUG();

		bau_tablesp->msg_statuses =
		    kmalloc_node(sizeof(struct bau_msg_status) *
				 DESTINATION_PAYLOAD_QUEUE_SIZE, GFP_KERNEL, i);
		if (!bau_tablesp->msg_statuses)
			BUG();
		for (j = 0, msp = bau_tablesp->msg_statuses;
		     j < DESTINATION_PAYLOAD_QUEUE_SIZE; j++, msp++) {
			bau_cpubits_clear(&msp->seen_by, (int)
					  uv_blade_nr_possible_cpus(blade));
		}

		bau_tablesp->watching =
		    kmalloc_node(sizeof(int) * DESTINATION_NUM_RESOURCES,
				 GFP_KERNEL, i);
		if (!bau_tablesp->watching)
			BUG();
		for (j = 0, ip = bau_tablesp->watching;
		     j < DESTINATION_PAYLOAD_QUEUE_SIZE; j++, ip++) {
			*ip = 0;
		}

		uv_bau_table_bases[i] = bau_tablesp;

		pnode = uv_blade_to_pnode(blade);

		if (sizeof(struct bau_activation_descriptor) != 64)
			BUG();

		adp = (struct bau_activation_descriptor *)
		    kmalloc_node(16384, GFP_KERNEL, i);
		if (!adp)
			BUG();
		if ((unsigned long)adp & 0xfff)
			BUG();
		pa = __pa((unsigned long)adp);
		n = pa >> uv_nshift;
		m = pa & uv_mmask;

		mmr_image = uv_read_global_mmr64(pnode,
						 UVH_LB_BAU_SB_DESCRIPTOR_BASE);
		if (mmr_image)
			uv_write_global_mmr64(pnode, (unsigned long)
					      UVH_LB_BAU_SB_DESCRIPTOR_BASE,
					      (n << UV_DESC_BASE_PNODE_SHIFT |
					       m));
		for (j = 0, ad2 = adp; j < UV_ACTIVATION_DESCRIPTOR_SIZE;
		     j++, ad2++) {
			memset(ad2, 0,
			       sizeof(struct bau_activation_descriptor));
			ad2->header.sw_ack_flag = 1;
			ad2->header.base_dest_nodeid =
			    uv_blade_to_pnode(uv_cpu_to_blade_id(0));
			ad2->header.command = UV_NET_ENDPOINT_INTD;
			ad2->header.int_both = 1;
			/* all others need to be set to zero:
			   fairness chaining multilevel count replied_to */
		}

		pqp = (struct bau_payload_queue_entry *)
		    kmalloc_node((DESTINATION_PAYLOAD_QUEUE_SIZE + 1) *
				 sizeof(struct bau_payload_queue_entry),
				 GFP_KERNEL, i);
		if (!pqp)
			BUG();
		if (sizeof(struct bau_payload_queue_entry) != 32)
			BUG();
		if ((unsigned long)(&((struct bau_payload_queue_entry *)0)->
				    sw_ack_vector) != 15)
			BUG();

		cp = (char *)pqp + 31;
		pqp = (struct bau_payload_queue_entry *)
		    (((unsigned long)cp >> 5) << 5);
		bau_tablesp->va_queue_first = pqp;
		uv_write_global_mmr64(pnode,
				      UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
				      ((unsigned long)pnode <<
				       UV_PAYLOADQ_PNODE_SHIFT) |
				      uv_physnodeaddr(pqp));
		uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
				      uv_physnodeaddr(pqp));
		bau_tablesp->va_queue_last =
		    pqp + (DESTINATION_PAYLOAD_QUEUE_SIZE - 1);
		uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
				      (unsigned long)
				      uv_physnodeaddr(bau_tablesp->
						      va_queue_last));
		memset(pqp, 0, sizeof(struct bau_payload_queue_entry) *
		       DESTINATION_PAYLOAD_QUEUE_SIZE);

		/* this initialization can't be in firmware because the
		   messaging IRQ will be determined by the OS */
		apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
		pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
		if ((pa & 0xff) != UV_BAU_MESSAGE) {
			uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
					      ((apicid << 32) |
					       UV_BAU_MESSAGE));
		}

		for (j = cur_cpu; j < (cur_cpu + uv_blade_nr_possible_cpus(i));
		     j++) {
			bcp = (struct bau_control *)&per_cpu(bau_control, j);
			bcp->bau_msg_head = bau_tablesp->va_queue_first;
			bcp->va_queue_first = bau_tablesp->va_queue_first;

			bcp->va_queue_last = bau_tablesp->va_queue_last;
			bcp->watching = bau_tablesp->watching;
			bcp->msg_statuses = bau_tablesp->msg_statuses;
			bcp->descriptor_base = adp;
		}
		cur_cpu += uv_blade_nr_possible_cpus(i);
	}

	set_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);

	uv_enable_timeouts();

	return 0;
}

__initcall(uv_bau_init);