file.c 43.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31 32 33 34

#include <asm/io.h>
#include <asm/semaphore.h>
#include <asm/spu.h>
35
#include <asm/spu_info.h>
36 37 38 39
#include <asm/uaccess.h>

#include "spufs.h"

40 41
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

42 43 44 45
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
46 47 48
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	ctx->local_store = inode->i_mapping;
49
	smp_wmb();
50 51 52
	return 0;
}

53 54 55 56 57 58 59 60 61
static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	char *local_store = ctx->ops->get_ls(ctx);
	return simple_read_from_buffer(buffer, size, pos, local_store,
					LS_SIZE);
}

62 63 64 65 66
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
	int ret;
67
	struct spu_context *ctx = file->private_data;
68

69
	spu_acquire(ctx);
70
	ret = __spufs_mem_read(ctx, buffer, size, pos);
71
	spu_release(ctx);
72 73 74 75 76 77 78 79
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
					size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
80 81
	char *local_store;
	int ret;
82 83 84 85 86

	size = min_t(ssize_t, LS_SIZE - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;
87 88 89 90 91 92 93 94 95

	spu_acquire(ctx);

	local_store = ctx->ops->get_ls(ctx);
	ret = copy_from_user(local_store + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
96 97
}

98 99
static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
100 101
{
	struct spu_context *ctx = vma->vm_file->private_data;
102 103
	unsigned long pfn, offset = address - vma->vm_start;

104 105 106 107
	offset += vma->vm_pgoff << PAGE_SHIFT;

	spu_acquire(ctx);

108 109
	if (ctx->state == SPU_STATE_SAVED) {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
110
							& ~_PAGE_NO_CACHE);
111
		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
112 113
	} else {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
114 115
					     | _PAGE_NO_CACHE);
		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
116
	}
117
	vm_insert_pfn(vma, address, pfn);
118

119
	spu_release(ctx);
120

121
	return NOPFN_REFAULT;
122 123
}

124

125
static struct vm_operations_struct spufs_mem_mmap_vmops = {
126
	.nopfn = spufs_mem_mmap_nopfn,
127 128
};

129 130 131
static int
spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
{
132 133
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
134

135
	vma->vm_flags |= VM_IO | VM_PFNMAP;
136 137 138 139
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE);

	vma->vm_ops = &spufs_mem_mmap_vmops;
140 141 142
	return 0;
}

143
static const struct file_operations spufs_mem_fops = {
144 145 146
	.open	 = spufs_mem_open,
	.read    = spufs_mem_read,
	.write   = spufs_mem_write,
147
	.llseek  = generic_file_llseek,
148
	.mmap    = spufs_mem_mmap,
149 150
};

151
static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
152
				    unsigned long address,
153
				    unsigned long ps_offs,
154
				    unsigned long ps_size)
155 156
{
	struct spu_context *ctx = vma->vm_file->private_data;
157
	unsigned long area, offset = address - vma->vm_start;
158 159 160
	int ret;

	offset += vma->vm_pgoff << PAGE_SHIFT;
161
	if (offset >= ps_size)
162
		return NOPFN_SIGBUS;
163

164 165 166
	/* error here usually means a signal.. we might want to test
	 * the error code more precisely though
	 */
167 168
	ret = spu_acquire_runnable(ctx);
	if (ret)
169
		return NOPFN_REFAULT;
170 171

	area = ctx->spu->problem_phys + ps_offs;
172
	vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
173 174
	spu_release(ctx);

175
	return NOPFN_REFAULT;
176 177
}

178
#if SPUFS_MMAP_4K
179 180
static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
					   unsigned long address)
181
{
182
	return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
183 184 185
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
186
	.nopfn = spufs_cntl_mmap_nopfn,
187 188 189 190 191 192 193 194 195 196
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

197
	vma->vm_flags |= VM_IO | VM_PFNMAP;
198
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
199
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
200 201 202 203

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
204 205 206
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
207

208
static u64 spufs_cntl_get(void *data)
209
{
210 211
	struct spu_context *ctx = data;
	u64 val;
212

213 214 215 216 217
	spu_acquire(ctx);
	val = ctx->ops->status_read(ctx);
	spu_release(ctx);

	return val;
218 219
}

220
static void spufs_cntl_set(void *data, u64 val)
221
{
222 223 224 225 226
	struct spu_context *ctx = data;

	spu_acquire(ctx);
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
227 228
}

229
static int spufs_cntl_open(struct inode *inode, struct file *file)
230
{
231 232 233 234 235
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	file->private_data = ctx;
	ctx->cntl = inode->i_mapping;
236
	smp_wmb();
237 238
	return simple_attr_open(inode, file, spufs_cntl_get,
					spufs_cntl_set, "0x%08lx");
239 240
}

241
static const struct file_operations spufs_cntl_fops = {
242
	.open = spufs_cntl_open,
243
	.release = simple_attr_close,
244 245
	.read = simple_attr_read,
	.write = simple_attr_write,
246 247 248
	.mmap = spufs_cntl_mmap,
};

249 250 251 252 253 254 255 256
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

257 258 259 260 261 262 263 264 265
static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);
}

266 267 268 269 270
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	int ret;
271
	struct spu_context *ctx = file->private_data;
272 273

	spu_acquire_saved(ctx);
274
	ret = __spufs_regs_read(ctx, buffer, size, pos);
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
	spu_release(ctx);
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
}

301
static const struct file_operations spufs_regs_fops = {
302 303 304
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
305 306 307
	.llseek  = generic_file_llseek,
};

308 309 310 311 312 313 314 315 316
static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
			size_t size, loff_t * pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));
}

317 318 319 320 321
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	int ret;
322
	struct spu_context *ctx = file->private_data;
323 324

	spu_acquire_saved(ctx);
325
	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
	spu_release(ctx);
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
}

352
static const struct file_operations spufs_fpcr_fops = {
353 354 355 356 357 358
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

359 360 361 362 363 364 365 366 367
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

368 369 370 371 372 373 374 375
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
376 377 378
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
379
	struct spu_context *ctx = file->private_data;
380 381
	u32 mbox_data, __user *udata;
	ssize_t count;
382 383 384 385

	if (len < 4)
		return -EINVAL;

386 387 388 389 390
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

391
	spu_acquire(ctx);
392
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
410
	spu_release(ctx);
411

412 413
	if (!count)
		count = -EAGAIN;
414

415
	return count;
416 417
}

418
static const struct file_operations spufs_mbox_fops = {
419 420 421 422 423 424 425
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
426
	struct spu_context *ctx = file->private_data;
427 428 429 430 431
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

432 433 434 435 436
	spu_acquire(ctx);

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
437 438 439 440 441 442 443

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

444
static const struct file_operations spufs_mbox_stat_fops = {
445 446 447 448 449
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
450
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
451
{
452 453
	return ctx->ops->ibox_read(ctx, data);
}
454

455 456 457
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
458

459
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
460 461
}

462 463
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
464
{
465 466 467 468
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
469 470
}

471 472 473 474 475 476 477 478 479 480 481 482
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
483 484 485
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
486
	struct spu_context *ctx = file->private_data;
487 488
	u32 ibox_data, __user *udata;
	ssize_t count;
489 490 491 492

	if (len < 4)
		return -EINVAL;

493 494 495 496 497
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

498
	spu_acquire(ctx);
499

500 501
	/* wait only for the first element */
	count = 0;
502
	if (file->f_flags & O_NONBLOCK) {
503
		if (!spu_ibox_read(ctx, &ibox_data))
504
			count = -EAGAIN;
505
	} else {
506
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
507
	}
508 509
	if (count)
		goto out;
510

511 512 513 514
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
		goto out;
515

516 517 518 519 520 521 522 523 524 525 526 527 528 529
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
530

531 532
out:
	spu_release(ctx);
533

534
	return count;
535 536 537 538
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
539
	struct spu_context *ctx = file->private_data;
540 541
	unsigned int mask;

542
	poll_wait(file, &ctx->ibox_wq, wait);
543

544 545 546
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
547 548 549 550

	return mask;
}

551
static const struct file_operations spufs_ibox_fops = {
552 553 554 555 556 557 558 559 560
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
561
	struct spu_context *ctx = file->private_data;
562 563 564 565 566
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

567 568 569
	spu_acquire(ctx);
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
570 571 572 573 574 575 576

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

577
static const struct file_operations spufs_ibox_stat_fops = {
578 579 580 581 582
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
583
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
584
{
585 586
	return ctx->ops->wbox_write(ctx, data);
}
587

588 589 590 591
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
592

593
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
594 595 596 597

	return ret;
}

598 599
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
600
{
601 602 603 604
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
605 606
}

607 608 609 610 611 612 613 614 615 616 617 618
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
619 620 621
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
622
	struct spu_context *ctx = file->private_data;
623 624
	u32 wbox_data, __user *udata;
	ssize_t count;
625 626 627 628

	if (len < 4)
		return -EINVAL;

629 630 631 632 633
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
634 635
		return -EFAULT;

636 637
	spu_acquire(ctx);

638 639 640 641 642
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
643
	if (file->f_flags & O_NONBLOCK) {
644
		if (!spu_wbox_write(ctx, wbox_data))
645
			count = -EAGAIN;
646
	} else {
647
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
648 649
	}

650 651
	if (count)
		goto out;
652

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
	/* write aѕ much as possible */
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

out:
	spu_release(ctx);
	return count;
668 669 670 671
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
672
	struct spu_context *ctx = file->private_data;
673 674
	unsigned int mask;

675
	poll_wait(file, &ctx->wbox_wq, wait);
676

677 678 679
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
680 681 682 683

	return mask;
}

684
static const struct file_operations spufs_wbox_fops = {
685 686 687 688 689 690 691 692 693
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
694
	struct spu_context *ctx = file->private_data;
695 696 697 698 699
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

700 701 702
	spu_acquire(ctx);
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
703 704 705 706 707 708 709

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

710
static const struct file_operations spufs_wbox_stat_fops = {
711 712 713 714
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

715 716 717 718 719 720
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	ctx->signal1 = inode->i_mapping;
721
	smp_wmb();
722 723 724
	return nonseekable_open(inode, file);
}

725
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
726 727
			size_t len, loff_t *pos)
{
728
	int ret = 0;
729 730 731 732 733
	u32 data;

	if (len < 4)
		return -EINVAL;

734 735 736 737
	if (ctx->csa.spu_chnlcnt_RW[3]) {
		data = ctx->csa.spu_chnldata_RW[3];
		ret = 4;
	}
738

739 740 741
	if (!ret)
		goto out;

742 743 744
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

745 746
out:
	return ret;
747 748
}

749 750 751 752 753 754 755 756 757 758 759 760 761
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	int ret;
	struct spu_context *ctx = file->private_data;

	spu_acquire_saved(ctx);
	ret = __spufs_signal1_read(ctx, buf, len, pos);
	spu_release(ctx);

	return ret;
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

776 777 778
	spu_acquire(ctx);
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
779 780 781 782

	return 4;
}

783 784
static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
785
{
786
#if PAGE_SIZE == 0x1000
787
	return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
788 789 790 791
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
792
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
793 794 795
#else
#error unsupported page size
#endif
796 797 798
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
799
	.nopfn = spufs_signal1_mmap_nopfn,
800 801 802 803 804 805 806
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

807
	vma->vm_flags |= VM_IO | VM_PFNMAP;
808
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
809
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
810 811 812 813 814

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

815
static const struct file_operations spufs_signal1_fops = {
816
	.open = spufs_signal1_open,
817 818
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
819
	.mmap = spufs_signal1_mmap,
820 821
};

822 823 824 825 826 827
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	ctx->signal2 = inode->i_mapping;
828
	smp_wmb();
829 830 831
	return nonseekable_open(inode, file);
}

832
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
833 834
			size_t len, loff_t *pos)
{
835
	int ret = 0;
836 837 838 839 840
	u32 data;

	if (len < 4)
		return -EINVAL;

841 842 843 844
	if (ctx->csa.spu_chnlcnt_RW[4]) {
		data =  ctx->csa.spu_chnldata_RW[4];
		ret = 4;
	}
845

846 847 848
	if (!ret)
		goto out;

849 850 851
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

852
out:
853 854 855 856 857 858 859 860 861 862 863 864 865 866
	return ret;
}

static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire_saved(ctx);
	ret = __spufs_signal2_read(ctx, buf, len, pos);
	spu_release(ctx);

	return ret;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

883 884 885
	spu_acquire(ctx);
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
886 887 888 889

	return 4;
}

890
#if SPUFS_MMAP_4K
891 892
static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
893
{
894
#if PAGE_SIZE == 0x1000
895
	return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
896 897 898 899
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
900
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
901 902 903
#else
#error unsupported page size
#endif
904 905 906
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
907
	.nopfn = spufs_signal2_mmap_nopfn,
908 909 910 911 912 913 914
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

915
	vma->vm_flags |= VM_IO | VM_PFNMAP;
916
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
917
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
918 919 920 921

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
922 923 924
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
925

926
static const struct file_operations spufs_signal2_fops = {
927
	.open = spufs_signal2_open,
928 929
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
930
	.mmap = spufs_signal2_mmap,
931 932 933 934 935 936
};

static void spufs_signal1_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

937 938 939
	spu_acquire(ctx);
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
940 941
}

942 943 944 945 946 947
static u64 __spufs_signal1_type_get(void *data)
{
	struct spu_context *ctx = data;
	return ctx->ops->signal1_type_get(ctx);
}

948 949 950
static u64 spufs_signal1_type_get(void *data)
{
	struct spu_context *ctx = data;
951 952 953
	u64 ret;

	spu_acquire(ctx);
954
	ret = __spufs_signal1_type_get(data);
955 956 957
	spu_release(ctx);

	return ret;
958 959 960 961 962 963 964 965
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
					spufs_signal1_type_set, "%llu");

static void spufs_signal2_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

966 967 968
	spu_acquire(ctx);
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
969 970
}

971 972 973 974 975 976
static u64 __spufs_signal2_type_get(void *data)
{
	struct spu_context *ctx = data;
	return ctx->ops->signal2_type_get(ctx);
}

977 978 979
static u64 spufs_signal2_type_get(void *data)
{
	struct spu_context *ctx = data;
980 981 982
	u64 ret;

	spu_acquire(ctx);
983
	ret = __spufs_signal2_type_get(data);
984 985 986
	spu_release(ctx);

	return ret;
987 988 989 990
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
					spufs_signal2_type_set, "%llu");

991
#if SPUFS_MMAP_4K
992 993
static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
994
{
995
	return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
996 997 998
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
999
	.nopfn = spufs_mss_mmap_nopfn,
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1010
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1011
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1012
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1013 1014 1015 1016

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
1017 1018 1019
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1020 1021 1022 1023

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1024
	struct spu_context *ctx = i->i_ctx;
1025 1026

	file->private_data = i->i_ctx;
1027 1028
	ctx->mss = inode->i_mapping;
	smp_wmb();
1029 1030 1031
	return nonseekable_open(inode, file);
}

1032
static const struct file_operations spufs_mss_fops = {
1033 1034
	.open	 = spufs_mss_open,
	.mmap	 = spufs_mss_mmap,
1035 1036
};

1037 1038
static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
					    unsigned long address)
1039
{
1040
	return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1041 1042 1043
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1044
	.nopfn = spufs_psmap_mmap_nopfn,
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1055
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1066
	struct spu_context *ctx = i->i_ctx;
1067 1068

	file->private_data = i->i_ctx;
1069 1070
	ctx->psmap = inode->i_mapping;
	smp_wmb();
1071 1072 1073
	return nonseekable_open(inode, file);
}

1074
static const struct file_operations spufs_psmap_fops = {
1075 1076
	.open	 = spufs_psmap_open,
	.mmap	 = spufs_psmap_mmap,
1077 1078 1079
};


1080
#if SPUFS_MMAP_4K
1081 1082
static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1083
{
1084
	return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1085 1086 1087
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1088
	.nopfn = spufs_mfc_mmap_nopfn,
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1099
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1100
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1101
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1102 1103 1104 1105

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1106 1107 1108
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

	file->private_data = ctx;
1123 1124
	ctx->mfc = inode->i_mapping;
	smp_wmb();
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	return nonseekable_open(inode, file);
}

/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->mfc_wq);

	pr_debug("%s %s\n", __FUNCTION__, spu->name);
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

	spu_acquire(ctx);
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

	spu_acquire_runnable(ctx);
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
		if (status)
			ret = status;
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ctx->tagwait |= 1 << cmd.tag;
1325
	ret = size;
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356

out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

	spu_acquire(ctx);
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	poll_wait(file, &ctx->mfc_wq, wait);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1357
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire(ctx);
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
out:
#else
	ret = 0;
#endif
	spu_release(ctx);

	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1383
	return spufs_mfc_flush(file, NULL);
1384 1385 1386 1387 1388 1389 1390 1391 1392
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

1393
static const struct file_operations spufs_mfc_fops = {
1394 1395 1396 1397 1398 1399 1400
	.open	 = spufs_mfc_open,
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1401
	.mmap	 = spufs_mfc_mmap,
1402 1403
};

1404 1405 1406
static void spufs_npc_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
1407 1408 1409
	spu_acquire(ctx);
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1410 1411 1412 1413 1414 1415
}

static u64 spufs_npc_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret;
1416 1417 1418
	spu_acquire(ctx);
	ret = ctx->ops->npc_read(ctx);
	spu_release(ctx);
1419 1420
	return ret;
}
1421 1422
DEFINE_SIMPLE_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
			"0x%llx\n")
1423

1424 1425 1426 1427 1428 1429 1430 1431 1432
static void spufs_decr_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->decr.slot[0] = (u32) val;
	spu_release(ctx);
}

1433
static u64 __spufs_decr_get(void *data)
1434 1435 1436
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1437 1438 1439 1440 1441 1442
	return lscsa->decr.slot[0];
}

static u64 spufs_decr_get(void *data)
{
	struct spu_context *ctx = data;
1443 1444
	u64 ret;
	spu_acquire_saved(ctx);
1445
	ret = __spufs_decr_get(data);
1446 1447 1448 1449
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1450
			"0x%llx\n")
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

static void spufs_decr_status_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->decr_status.slot[0] = (u32) val;
	spu_release(ctx);
}

1461
static u64 __spufs_decr_status_get(void *data)
1462 1463 1464
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1465 1466 1467 1468 1469 1470
	return lscsa->decr_status.slot[0];
}

static u64 spufs_decr_status_get(void *data)
{
	struct spu_context *ctx = data;
1471 1472
	u64 ret;
	spu_acquire_saved(ctx);
1473
	ret = __spufs_decr_status_get(data);
1474 1475 1476 1477
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1478
			spufs_decr_status_set, "0x%llx\n")
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

static void spufs_event_mask_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->event_mask.slot[0] = (u32) val;
	spu_release(ctx);
}

1489
static u64 __spufs_event_mask_get(void *data)
1490 1491 1492
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1493 1494 1495 1496 1497 1498
	return lscsa->event_mask.slot[0];
}

static u64 spufs_event_mask_get(void *data)
{
	struct spu_context *ctx = data;
1499 1500
	u64 ret;
	spu_acquire_saved(ctx);
1501
	ret = __spufs_event_mask_get(data);
1502 1503 1504 1505
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1506
			spufs_event_mask_set, "0x%llx\n")
1507

1508
static u64 __spufs_event_status_get(void *data)
1509 1510 1511 1512 1513 1514
{
	struct spu_context *ctx = data;
	struct spu_state *state = &ctx->csa;
	u64 stat;
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
		return state->spu_chnldata_RW[0];
	return 0;
}

static u64 spufs_event_status_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret = 0;

	spu_acquire_saved(ctx);
	ret = __spufs_event_status_get(data);
1526 1527 1528 1529 1530 1531
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
			NULL, "0x%llx\n")

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
static void spufs_srr0_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->srr0.slot[0] = (u32) val;
	spu_release(ctx);
}

static u64 spufs_srr0_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	u64 ret;
	spu_acquire_saved(ctx);
	ret = lscsa->srr0.slot[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1552
			"0x%llx\n")
1553

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
static u64 spufs_id_get(void *data)
{
	struct spu_context *ctx = data;
	u64 num;

	spu_acquire(ctx);
	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;
	spu_release(ctx);

	return num;
}
A
Al Viro 已提交
1568
DEFINE_SIMPLE_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n")
1569

1570
static u64 __spufs_object_id_get(void *data)
1571 1572 1573 1574 1575
{
	struct spu_context *ctx = data;
	return ctx->object_id;
}

1576 1577 1578 1579 1580 1581
static u64 spufs_object_id_get(void *data)
{
	/* FIXME: Should there really be no locking here? */
	return __spufs_object_id_get(data);
}

1582 1583 1584 1585 1586 1587 1588 1589 1590
static void spufs_object_id_set(void *data, u64 id)
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
}

DEFINE_SIMPLE_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		spufs_object_id_set, "0x%llx\n");

1591 1592 1593 1594 1595 1596
static u64 __spufs_lslr_get(void *data)
{
	struct spu_context *ctx = data;
	return ctx->csa.priv2.spu_lslr_RW;
}

1597 1598 1599 1600 1601 1602
static u64 spufs_lslr_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret;

	spu_acquire_saved(ctx);
1603
	ret = __spufs_lslr_get(data);
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
	spu_release(ctx);

	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n")

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
{
	u32 mbox_stat;
	u32 data;

	mbox_stat = ctx->csa.prob.mb_stat_R;
	if (mbox_stat & 0x0000ff) {
		data = ctx->csa.prob.pu_mb_R;
	}

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

1632 1633 1634
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
1635
	int ret;
1636 1637 1638 1639 1640 1641 1642
	struct spu_context *ctx = file->private_data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1643
	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
1644 1645 1646
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

1647
	return ret;
1648 1649
}

1650
static const struct file_operations spufs_mbox_info_fops = {
1651 1652 1653 1654 1655
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
				char __user *buf, size_t len, loff_t *pos)
{
	u32 ibox_stat;
	u32 data;

	ibox_stat = ctx->csa.prob.mb_stat_R;
	if (ibox_stat & 0xff0000) {
		data = ctx->csa.priv2.puint_mb_R;
	}

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

1670 1671 1672 1673
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
1674
	int ret;
1675 1676 1677 1678 1679 1680

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1681
	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
1682 1683 1684
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

1685
	return ret;
1686 1687
}

1688
static const struct file_operations spufs_ibox_info_fops = {
1689 1690 1691 1692 1693
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

1694 1695
static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1696 1697 1698 1699 1700
{
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

1717 1718 1719 1720 1721
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1722
	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
1723 1724 1725
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

1726
	return ret;
1727 1728
}

1729
static const struct file_operations spufs_wbox_info_fops = {
1730 1731 1732 1733 1734
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

1735 1736
static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
{
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_dma_info_read(ctx, buf, len, pos);
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	return ret;
}

1779
static const struct file_operations spufs_dma_info_fops = {
1780 1781 1782 1783
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

1784 1785
static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1786 1787 1788
{
	struct spu_proxydma_info info;
	struct mfc_cq_sr *qp, *puqp;
1789
	int ret = sizeof info;
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
1824 1825 1826 1827 1828 1829
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	return ret;
}

1830
static const struct file_operations spufs_proxydma_info_fops = {
1831 1832 1833 1834
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

1835 1836
struct tree_descr spufs_dir_contents[] = {
	{ "mem",  &spufs_mem_fops,  0666, },
1837
	{ "regs", &spufs_regs_fops,  0666, },
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
1848
	{ "cntl", &spufs_cntl_fops,  0666, },
1849
	{ "fpcr", &spufs_fpcr_fops, 0666, },
1850 1851 1852 1853 1854
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
1855 1856 1857
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
1858
	{ "event_status", &spufs_event_status_ops, 0444, },
1859
	{ "psmap", &spufs_psmap_fops, 0666, },
1860 1861
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
1862 1863 1864
	{ "mbox_info", &spufs_mbox_info_fops, 0444, },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, },
1865 1866
	{ "dma_info", &spufs_dma_info_fops, 0444, },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444, },
1867 1868
	{},
};
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890

struct tree_descr spufs_dir_nosched_contents[] = {
	{ "mem",  &spufs_mem_fops,  0666, },
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "psmap", &spufs_psmap_fops, 0666, },
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
	{},
};
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914

struct spufs_coredump_reader spufs_coredump_read[] = {
	{ "regs", __spufs_regs_read, NULL, 128 * 16 },
	{ "fpcr", __spufs_fpcr_read, NULL, 16 },
	{ "lslr", NULL, __spufs_lslr_get, 11 },
	{ "decr", NULL, __spufs_decr_get, 11 },
	{ "decr_status", NULL, __spufs_decr_status_get, 11 },
	{ "mem", __spufs_mem_read, NULL, 256 * 1024, },
	{ "signal1", __spufs_signal1_read, NULL, 4 },
	{ "signal1_type", NULL, __spufs_signal1_type_get, 2 },
	{ "signal2", __spufs_signal2_read, NULL, 4 },
	{ "signal2_type", NULL, __spufs_signal2_type_get, 2 },
	{ "event_mask", NULL, __spufs_event_mask_get, 8 },
	{ "event_status", NULL, __spufs_event_status_get, 8 },
	{ "mbox_info", __spufs_mbox_info_read, NULL, 4 },
	{ "ibox_info", __spufs_ibox_info_read, NULL, 4 },
	{ "wbox_info", __spufs_wbox_info_read, NULL, 16 },
	{ "dma_info", __spufs_dma_info_read, NULL, 69 * 8 },
	{ "proxydma_info", __spufs_proxydma_info_read, NULL, 35 * 8 },
	{ "object-id", NULL, __spufs_object_id_get, 19 },
	{ },
};
int spufs_coredump_num_notes = ARRAY_SIZE(spufs_coredump_read) - 1;