send.c 131.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright (C) 2012 Alexander Block.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/bsearch.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/sort.h>
#include <linux/mount.h>
#include <linux/xattr.h>
#include <linux/posix_acl_xattr.h>
#include <linux/radix-tree.h>
27
#include <linux/vmalloc.h>
A
Andy Shevchenko 已提交
28
#include <linux/string.h>
29 30 31

#include "send.h"
#include "backref.h"
32
#include "hash.h"
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#include "locking.h"
#include "disk-io.h"
#include "btrfs_inode.h"
#include "transaction.h"

static int g_verbose = 0;

#define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)

/*
 * A fs_path is a helper to dynamically build path names with unknown size.
 * It reallocates the internal buffer on demand.
 * It allows fast adding of path elements on the right side (normal path) and
 * fast adding to the left side (reversed path). A reversed path can also be
 * unreversed if needed.
 */
struct fs_path {
	union {
		struct {
			char *start;
			char *end;

			char *buf;
56 57
			unsigned short buf_len:15;
			unsigned short reversed:1;
58 59
			char inline_buf[];
		};
60 61 62 63 64 65
		/*
		 * Average path length does not exceed 200 bytes, we'll have
		 * better packing in the slab and higher chance to satisfy
		 * a allocation later during send.
		 */
		char pad[256];
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
	};
};
#define FS_PATH_INLINE_SIZE \
	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))


/* reused for each extent */
struct clone_root {
	struct btrfs_root *root;
	u64 ino;
	u64 offset;

	u64 found_refs;
};

#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)

struct send_ctx {
	struct file *send_filp;
	loff_t send_off;
	char *send_buf;
	u32 send_size;
	u32 send_max_size;
	u64 total_send_size;
	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92
	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

	struct btrfs_root *send_root;
	struct btrfs_root *parent_root;
	struct clone_root *clone_roots;
	int clone_roots_cnt;

	/* current state of the compare_tree call */
	struct btrfs_path *left_path;
	struct btrfs_path *right_path;
	struct btrfs_key *cmp_key;

	/*
	 * infos of the currently processed inode. In case of deleted inodes,
	 * these are the values from the deleted inode.
	 */
	u64 cur_ino;
	u64 cur_inode_gen;
	int cur_inode_new;
	int cur_inode_new_gen;
	int cur_inode_deleted;
	u64 cur_inode_size;
	u64 cur_inode_mode;
115
	u64 cur_inode_last_extent;
116 117 118 119 120 121 122 123 124 125 126

	u64 send_progress;

	struct list_head new_refs;
	struct list_head deleted_refs;

	struct radix_tree_root name_cache;
	struct list_head name_cache_list;
	int name_cache_size;

	char *read_buf;
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

	/*
	 * We process inodes by their increasing order, so if before an
	 * incremental send we reverse the parent/child relationship of
	 * directories such that a directory with a lower inode number was
	 * the parent of a directory with a higher inode number, and the one
	 * becoming the new parent got renamed too, we can't rename/move the
	 * directory with lower inode number when we finish processing it - we
	 * must process the directory with higher inode number first, then
	 * rename/move it and then rename/move the directory with lower inode
	 * number. Example follows.
	 *
	 * Tree state when the first send was performed:
	 *
	 * .
	 * |-- a                   (ino 257)
	 *     |-- b               (ino 258)
	 *         |
	 *         |
	 *         |-- c           (ino 259)
	 *         |   |-- d       (ino 260)
	 *         |
	 *         |-- c2          (ino 261)
	 *
	 * Tree state when the second (incremental) send is performed:
	 *
	 * .
	 * |-- a                   (ino 257)
	 *     |-- b               (ino 258)
	 *         |-- c2          (ino 261)
	 *             |-- d2      (ino 260)
	 *                 |-- cc  (ino 259)
	 *
	 * The sequence of steps that lead to the second state was:
	 *
	 * mv /a/b/c/d /a/b/c2/d2
	 * mv /a/b/c /a/b/c2/d2/cc
	 *
	 * "c" has lower inode number, but we can't move it (2nd mv operation)
	 * before we move "d", which has higher inode number.
	 *
	 * So we just memorize which move/rename operations must be performed
	 * later when their respective parent is processed and moved/renamed.
	 */

	/* Indexed by parent directory inode number. */
	struct rb_root pending_dir_moves;

	/*
	 * Reverse index, indexed by the inode number of a directory that
	 * is waiting for the move/rename of its immediate parent before its
	 * own move/rename can be performed.
	 */
	struct rb_root waiting_dir_moves;
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

	/*
	 * A directory that is going to be rm'ed might have a child directory
	 * which is in the pending directory moves index above. In this case,
	 * the directory can only be removed after the move/rename of its child
	 * is performed. Example:
	 *
	 * Parent snapshot:
	 *
	 * .                        (ino 256)
	 * |-- a/                   (ino 257)
	 *     |-- b/               (ino 258)
	 *         |-- c/           (ino 259)
	 *         |   |-- x/       (ino 260)
	 *         |
	 *         |-- y/           (ino 261)
	 *
	 * Send snapshot:
	 *
	 * .                        (ino 256)
	 * |-- a/                   (ino 257)
	 *     |-- b/               (ino 258)
	 *         |-- YY/          (ino 261)
	 *              |-- x/      (ino 260)
	 *
	 * Sequence of steps that lead to the send snapshot:
	 * rm -f /a/b/c/foo.txt
	 * mv /a/b/y /a/b/YY
	 * mv /a/b/c/x /a/b/YY
	 * rmdir /a/b/c
	 *
	 * When the child is processed, its move/rename is delayed until its
	 * parent is processed (as explained above), but all other operations
	 * like update utimes, chown, chgrp, etc, are performed and the paths
	 * that it uses for those operations must use the orphanized name of
	 * its parent (the directory we're going to rm later), so we need to
	 * memorize that name.
	 *
	 * Indexed by the inode number of the directory to be deleted.
	 */
	struct rb_root orphan_dirs;
222 223 224 225 226 227 228 229 230 231 232 233 234 235
};

struct pending_dir_move {
	struct rb_node node;
	struct list_head list;
	u64 parent_ino;
	u64 ino;
	u64 gen;
	struct list_head update_refs;
};

struct waiting_dir_move {
	struct rb_node node;
	u64 ino;
236 237 238 239 240 241 242 243 244 245 246 247
	/*
	 * There might be some directory that could not be removed because it
	 * was waiting for this directory inode to be moved first. Therefore
	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
	 */
	u64 rmdir_ino;
};

struct orphan_dir_info {
	struct rb_node node;
	u64 ino;
	u64 gen;
248 249 250 251
};

struct name_cache_entry {
	struct list_head list;
252 253 254 255 256 257 258 259 260
	/*
	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
	 * more then one inum would fall into the same entry, we use radix_list
	 * to store the additional entries. radix_list is also used to store
	 * entries where two entries have the same inum but different
	 * generations.
	 */
	struct list_head radix_list;
261 262 263 264 265 266 267 268 269 270
	u64 ino;
	u64 gen;
	u64 parent_ino;
	u64 parent_gen;
	int ret;
	int need_later_update;
	int name_len;
	char name[];
};

271 272
static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);

273 274 275 276 277
static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx *sctx, u64 ino);

static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);

278 279 280 281 282 283 284
static int need_send_hole(struct send_ctx *sctx)
{
	return (sctx->parent_root && !sctx->cur_inode_new &&
		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
		S_ISREG(sctx->cur_inode_mode));
}

285 286 287 288 289 290 291 292 293 294 295 296 297
static void fs_path_reset(struct fs_path *p)
{
	if (p->reversed) {
		p->start = p->buf + p->buf_len - 1;
		p->end = p->start;
		*p->start = 0;
	} else {
		p->start = p->buf;
		p->end = p->start;
		*p->start = 0;
	}
}

298
static struct fs_path *fs_path_alloc(void)
299 300 301 302 303 304 305 306 307 308 309 310 311
{
	struct fs_path *p;

	p = kmalloc(sizeof(*p), GFP_NOFS);
	if (!p)
		return NULL;
	p->reversed = 0;
	p->buf = p->inline_buf;
	p->buf_len = FS_PATH_INLINE_SIZE;
	fs_path_reset(p);
	return p;
}

312
static struct fs_path *fs_path_alloc_reversed(void)
313 314 315
{
	struct fs_path *p;

316
	p = fs_path_alloc();
317 318 319 320 321 322 323
	if (!p)
		return NULL;
	p->reversed = 1;
	fs_path_reset(p);
	return p;
}

324
static void fs_path_free(struct fs_path *p)
325 326 327
{
	if (!p)
		return;
328 329
	if (p->buf != p->inline_buf)
		kfree(p->buf);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
	kfree(p);
}

static int fs_path_len(struct fs_path *p)
{
	return p->end - p->start;
}

static int fs_path_ensure_buf(struct fs_path *p, int len)
{
	char *tmp_buf;
	int path_len;
	int old_buf_len;

	len++;

	if (p->buf_len >= len)
		return 0;

349 350 351
	/*
	 * First time the inline_buf does not suffice
	 */
352
	if (p->buf == p->inline_buf) {
353 354 355 356 357 358 359 360
		p->buf = kmalloc(len, GFP_NOFS);
		if (!p->buf)
			return -ENOMEM;
		/*
		 * The real size of the buffer is bigger, this will let the
		 * fast path happen most of the time
		 */
		p->buf_len = ksize(p->buf);
361
	} else {
362 363 364 365 366 367 368
		char *tmp;

		tmp = krealloc(p->buf, len, GFP_NOFS);
		if (!tmp)
			return -ENOMEM;
		p->buf = tmp;
		p->buf_len = ksize(p->buf);
369
	}
370 371 372 373

	path_len = p->end - p->start;
	old_buf_len = p->buf_len;

374 375 376 377 378 379 380 381 382 383 384 385
	if (p->reversed) {
		tmp_buf = p->buf + old_buf_len - path_len - 1;
		p->end = p->buf + p->buf_len - 1;
		p->start = p->end - path_len;
		memmove(p->start, tmp_buf, path_len + 1);
	} else {
		p->start = p->buf;
		p->end = p->start + path_len;
	}
	return 0;
}

386 387
static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
				   char **prepared)
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
{
	int ret;
	int new_len;

	new_len = p->end - p->start + name_len;
	if (p->start != p->end)
		new_len++;
	ret = fs_path_ensure_buf(p, new_len);
	if (ret < 0)
		goto out;

	if (p->reversed) {
		if (p->start != p->end)
			*--p->start = '/';
		p->start -= name_len;
403
		*prepared = p->start;
404 405 406
	} else {
		if (p->start != p->end)
			*p->end++ = '/';
407
		*prepared = p->end;
408 409 410 411 412 413 414 415 416 417 418
		p->end += name_len;
		*p->end = 0;
	}

out:
	return ret;
}

static int fs_path_add(struct fs_path *p, const char *name, int name_len)
{
	int ret;
419
	char *prepared;
420

421
	ret = fs_path_prepare_for_add(p, name_len, &prepared);
422 423
	if (ret < 0)
		goto out;
424
	memcpy(prepared, name, name_len);
425 426 427 428 429 430 431 432

out:
	return ret;
}

static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
{
	int ret;
433
	char *prepared;
434

435
	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
436 437
	if (ret < 0)
		goto out;
438
	memcpy(prepared, p2->start, p2->end - p2->start);
439 440 441 442 443 444 445 446 447 448

out:
	return ret;
}

static int fs_path_add_from_extent_buffer(struct fs_path *p,
					  struct extent_buffer *eb,
					  unsigned long off, int len)
{
	int ret;
449
	char *prepared;
450

451
	ret = fs_path_prepare_for_add(p, len, &prepared);
452 453 454
	if (ret < 0)
		goto out;

455
	read_extent_buffer(eb, prepared, off, len);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501

out:
	return ret;
}

static int fs_path_copy(struct fs_path *p, struct fs_path *from)
{
	int ret;

	p->reversed = from->reversed;
	fs_path_reset(p);

	ret = fs_path_add_path(p, from);

	return ret;
}


static void fs_path_unreverse(struct fs_path *p)
{
	char *tmp;
	int len;

	if (!p->reversed)
		return;

	tmp = p->start;
	len = p->end - p->start;
	p->start = p->buf;
	p->end = p->start + len;
	memmove(p->start, tmp, len + 1);
	p->reversed = 0;
}

static struct btrfs_path *alloc_path_for_send(void)
{
	struct btrfs_path *path;

	path = btrfs_alloc_path();
	if (!path)
		return NULL;
	path->search_commit_root = 1;
	path->skip_locking = 1;
	return path;
}

502
static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
503 504 505 506 507 508 509 510 511
{
	int ret;
	mm_segment_t old_fs;
	u32 pos = 0;

	old_fs = get_fs();
	set_fs(KERNEL_DS);

	while (pos < len) {
512
		ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
		/* TODO handle that correctly */
		/*if (ret == -ERESTARTSYS) {
			continue;
		}*/
		if (ret < 0)
			goto out;
		if (ret == 0) {
			ret = -EIO;
			goto out;
		}
		pos += ret;
	}

	ret = 0;

out:
	set_fs(old_fs);
	return ret;
}

static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
{
	struct btrfs_tlv_header *hdr;
	int total_len = sizeof(*hdr) + len;
	int left = sctx->send_max_size - sctx->send_size;

	if (unlikely(left < total_len))
		return -EOVERFLOW;

	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
	hdr->tlv_type = cpu_to_le16(attr);
	hdr->tlv_len = cpu_to_le16(len);
	memcpy(hdr + 1, data, len);
	sctx->send_size += total_len;

	return 0;
}

D
David Sterba 已提交
551 552 553 554 555 556 557
#define TLV_PUT_DEFINE_INT(bits) \
	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
			u##bits attr, u##bits value)			\
	{								\
		__le##bits __tmp = cpu_to_le##bits(value);		\
		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
	}
558

D
David Sterba 已提交
559
TLV_PUT_DEFINE_INT(64)
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

static int tlv_put_string(struct send_ctx *sctx, u16 attr,
			  const char *str, int len)
{
	if (len == -1)
		len = strlen(str);
	return tlv_put(sctx, attr, str, len);
}

static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
			const u8 *uuid)
{
	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
}

static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
				  struct extent_buffer *eb,
				  struct btrfs_timespec *ts)
{
	struct btrfs_timespec bts;
	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
	return tlv_put(sctx, attr, &bts, sizeof(bts));
}


#define TLV_PUT(sctx, attrtype, attrlen, data) \
	do { \
		ret = tlv_put(sctx, attrtype, attrlen, data); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)

#define TLV_PUT_INT(sctx, attrtype, bits, value) \
	do { \
		ret = tlv_put_u##bits(sctx, attrtype, value); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)

#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
#define TLV_PUT_STRING(sctx, attrtype, str, len) \
	do { \
		ret = tlv_put_string(sctx, attrtype, str, len); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)
#define TLV_PUT_PATH(sctx, attrtype, p) \
	do { \
		ret = tlv_put_string(sctx, attrtype, p->start, \
			p->end - p->start); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while(0)
#define TLV_PUT_UUID(sctx, attrtype, uuid) \
	do { \
		ret = tlv_put_uuid(sctx, attrtype, uuid); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)
#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
	do { \
		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
		if (ret < 0) \
			goto tlv_put_failure; \
	} while (0)

static int send_header(struct send_ctx *sctx)
{
	struct btrfs_stream_header hdr;

	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);

636 637
	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
					&sctx->send_off);
638 639 640 641 642 643 644 645 646
}

/*
 * For each command/item we want to send to userspace, we call this function.
 */
static int begin_cmd(struct send_ctx *sctx, int cmd)
{
	struct btrfs_cmd_header *hdr;

647
	if (WARN_ON(!sctx->send_buf))
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
		return -EINVAL;

	BUG_ON(sctx->send_size);

	sctx->send_size += sizeof(*hdr);
	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
	hdr->cmd = cpu_to_le16(cmd);

	return 0;
}

static int send_cmd(struct send_ctx *sctx)
{
	int ret;
	struct btrfs_cmd_header *hdr;
	u32 crc;

	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
	hdr->crc = 0;

669
	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
670 671
	hdr->crc = cpu_to_le32(crc);

672 673
	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
					&sctx->send_off);
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778

	sctx->total_send_size += sctx->send_size;
	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
	sctx->send_size = 0;

	return ret;
}

/*
 * Sends a move instruction to user space
 */
static int send_rename(struct send_ctx *sctx,
		     struct fs_path *from, struct fs_path *to)
{
	int ret;

verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);

	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

/*
 * Sends a link instruction to user space
 */
static int send_link(struct send_ctx *sctx,
		     struct fs_path *path, struct fs_path *lnk)
{
	int ret;

verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);

	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

/*
 * Sends an unlink instruction to user space
 */
static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
{
	int ret;

verbose_printk("btrfs: send_unlink %s\n", path->start);

	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

/*
 * Sends a rmdir instruction to user space
 */
static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
{
	int ret;

verbose_printk("btrfs: send_rmdir %s\n", path->start);

	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

/*
 * Helper function to retrieve some fields from an inode item.
 */
static int get_inode_info(struct btrfs_root *root,
			  u64 ino, u64 *size, u64 *gen,
779 780
			  u64 *mode, u64 *uid, u64 *gid,
			  u64 *rdev)
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
{
	int ret;
	struct btrfs_inode_item *ii;
	struct btrfs_key key;
	struct btrfs_path *path;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = ino;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	if (ret) {
		ret = -ENOENT;
		goto out;
	}

	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
			struct btrfs_inode_item);
	if (size)
		*size = btrfs_inode_size(path->nodes[0], ii);
	if (gen)
		*gen = btrfs_inode_generation(path->nodes[0], ii);
	if (mode)
		*mode = btrfs_inode_mode(path->nodes[0], ii);
	if (uid)
		*uid = btrfs_inode_uid(path->nodes[0], ii);
	if (gid)
		*gid = btrfs_inode_gid(path->nodes[0], ii);
814 815
	if (rdev)
		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
816 817 818 819 820 821 822 823 824 825 826

out:
	btrfs_free_path(path);
	return ret;
}

typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
				   struct fs_path *p,
				   void *ctx);

/*
827 828
 * Helper function to iterate the entries in ONE btrfs_inode_ref or
 * btrfs_inode_extref.
829 830 831
 * The iterate callback may return a non zero value to stop iteration. This can
 * be a negative value for error codes or 1 to simply stop it.
 *
832
 * path must point to the INODE_REF or INODE_EXTREF when called.
833
 */
834
static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
835 836 837
			     struct btrfs_key *found_key, int resolve,
			     iterate_inode_ref_t iterate, void *ctx)
{
838
	struct extent_buffer *eb = path->nodes[0];
839 840
	struct btrfs_item *item;
	struct btrfs_inode_ref *iref;
841
	struct btrfs_inode_extref *extref;
842 843
	struct btrfs_path *tmp_path;
	struct fs_path *p;
844
	u32 cur = 0;
845
	u32 total;
846
	int slot = path->slots[0];
847 848 849
	u32 name_len;
	char *start;
	int ret = 0;
850
	int num = 0;
851
	int index;
852 853 854 855
	u64 dir;
	unsigned long name_off;
	unsigned long elem_size;
	unsigned long ptr;
856

857
	p = fs_path_alloc_reversed();
858 859 860 861 862
	if (!p)
		return -ENOMEM;

	tmp_path = alloc_path_for_send();
	if (!tmp_path) {
863
		fs_path_free(p);
864 865 866 867
		return -ENOMEM;
	}


868 869 870
	if (found_key->type == BTRFS_INODE_REF_KEY) {
		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
						    struct btrfs_inode_ref);
871
		item = btrfs_item_nr(slot);
872 873 874 875 876 877 878 879
		total = btrfs_item_size(eb, item);
		elem_size = sizeof(*iref);
	} else {
		ptr = btrfs_item_ptr_offset(eb, slot);
		total = btrfs_item_size_nr(eb, slot);
		elem_size = sizeof(*extref);
	}

880 881 882
	while (cur < total) {
		fs_path_reset(p);

883 884 885 886 887 888 889 890 891 892 893 894 895 896
		if (found_key->type == BTRFS_INODE_REF_KEY) {
			iref = (struct btrfs_inode_ref *)(ptr + cur);
			name_len = btrfs_inode_ref_name_len(eb, iref);
			name_off = (unsigned long)(iref + 1);
			index = btrfs_inode_ref_index(eb, iref);
			dir = found_key->offset;
		} else {
			extref = (struct btrfs_inode_extref *)(ptr + cur);
			name_len = btrfs_inode_extref_name_len(eb, extref);
			name_off = (unsigned long)&extref->name;
			index = btrfs_inode_extref_index(eb, extref);
			dir = btrfs_inode_extref_parent(eb, extref);
		}

897
		if (resolve) {
898 899 900
			start = btrfs_ref_to_path(root, tmp_path, name_len,
						  name_off, eb, dir,
						  p->buf, p->buf_len);
901 902 903 904 905 906 907 908 909 910
			if (IS_ERR(start)) {
				ret = PTR_ERR(start);
				goto out;
			}
			if (start < p->buf) {
				/* overflow , try again with larger buffer */
				ret = fs_path_ensure_buf(p,
						p->buf_len + p->buf - start);
				if (ret < 0)
					goto out;
911 912 913 914
				start = btrfs_ref_to_path(root, tmp_path,
							  name_len, name_off,
							  eb, dir,
							  p->buf, p->buf_len);
915 916 917 918 919 920 921 922
				if (IS_ERR(start)) {
					ret = PTR_ERR(start);
					goto out;
				}
				BUG_ON(start < p->buf);
			}
			p->start = start;
		} else {
923 924
			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
							     name_len);
925 926 927 928
			if (ret < 0)
				goto out;
		}

929 930
		cur += elem_size + name_len;
		ret = iterate(num, dir, index, p, ctx);
931 932 933 934 935 936 937
		if (ret)
			goto out;
		num++;
	}

out:
	btrfs_free_path(tmp_path);
938
	fs_path_free(p);
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
	return ret;
}

typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
				  const char *name, int name_len,
				  const char *data, int data_len,
				  u8 type, void *ctx);

/*
 * Helper function to iterate the entries in ONE btrfs_dir_item.
 * The iterate callback may return a non zero value to stop iteration. This can
 * be a negative value for error codes or 1 to simply stop it.
 *
 * path must point to the dir item when called.
 */
954
static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
955 956 957 958 959 960 961 962 963
			    struct btrfs_key *found_key,
			    iterate_dir_item_t iterate, void *ctx)
{
	int ret = 0;
	struct extent_buffer *eb;
	struct btrfs_item *item;
	struct btrfs_dir_item *di;
	struct btrfs_key di_key;
	char *buf = NULL;
964
	const int buf_len = PATH_MAX;
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	u32 name_len;
	u32 data_len;
	u32 cur;
	u32 len;
	u32 total;
	int slot;
	int num;
	u8 type;

	buf = kmalloc(buf_len, GFP_NOFS);
	if (!buf) {
		ret = -ENOMEM;
		goto out;
	}

	eb = path->nodes[0];
	slot = path->slots[0];
982
	item = btrfs_item_nr(slot);
983 984 985 986 987 988 989 990 991 992 993 994
	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
	cur = 0;
	len = 0;
	total = btrfs_item_size(eb, item);

	num = 0;
	while (cur < total) {
		name_len = btrfs_dir_name_len(eb, di);
		data_len = btrfs_dir_data_len(eb, di);
		type = btrfs_dir_type(eb, di);
		btrfs_dir_item_key_to_cpu(eb, di, &di_key);

995 996 997
		/*
		 * Path too long
		 */
998
		if (name_len + data_len > buf_len) {
999 1000
			ret = -ENAMETOOLONG;
			goto out;
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
		}

		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
				name_len + data_len);

		len = sizeof(*di) + name_len + data_len;
		di = (struct btrfs_dir_item *)((char *)di + len);
		cur += len;

		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
				data_len, type, ctx);
		if (ret < 0)
			goto out;
		if (ret) {
			ret = 0;
			goto out;
		}

		num++;
	}

out:
1023
	kfree(buf);
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	return ret;
}

static int __copy_first_ref(int num, u64 dir, int index,
			    struct fs_path *p, void *ctx)
{
	int ret;
	struct fs_path *pt = ctx;

	ret = fs_path_copy(pt, p);
	if (ret < 0)
		return ret;

	/* we want the first only */
	return 1;
}

/*
 * Retrieve the first path of an inode. If an inode has more then one
 * ref/hardlink, this is ignored.
 */
1045
static int get_inode_path(struct btrfs_root *root,
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
			  u64 ino, struct fs_path *path)
{
	int ret;
	struct btrfs_key key, found_key;
	struct btrfs_path *p;

	p = alloc_path_for_send();
	if (!p)
		return -ENOMEM;

	fs_path_reset(path);

	key.objectid = ino;
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = 0;

	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
	if (ret < 0)
		goto out;
	if (ret) {
		ret = 1;
		goto out;
	}
	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
	if (found_key.objectid != ino ||
1071 1072
	    (found_key.type != BTRFS_INODE_REF_KEY &&
	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1073 1074 1075 1076
		ret = -ENOENT;
		goto out;
	}

1077 1078
	ret = iterate_inode_ref(root, p, &found_key, 1,
				__copy_first_ref, path);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	if (ret < 0)
		goto out;
	ret = 0;

out:
	btrfs_free_path(p);
	return ret;
}

struct backref_ctx {
	struct send_ctx *sctx;

	/* number of total found references */
	u64 found;

	/*
	 * used for clones found in send_root. clones found behind cur_objectid
	 * and cur_offset are not considered as allowed clones.
	 */
	u64 cur_objectid;
	u64 cur_offset;

	/* may be truncated in case it's the last extent in a file */
	u64 extent_len;

	/* Just to check for bugs in backref resolving */
1105
	int found_itself;
1106 1107 1108 1109
};

static int __clone_root_cmp_bsearch(const void *key, const void *elt)
{
1110
	u64 root = (u64)(uintptr_t)key;
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	struct clone_root *cr = (struct clone_root *)elt;

	if (root < cr->root->objectid)
		return -1;
	if (root > cr->root->objectid)
		return 1;
	return 0;
}

static int __clone_root_cmp_sort(const void *e1, const void *e2)
{
	struct clone_root *cr1 = (struct clone_root *)e1;
	struct clone_root *cr2 = (struct clone_root *)e2;

	if (cr1->root->objectid < cr2->root->objectid)
		return -1;
	if (cr1->root->objectid > cr2->root->objectid)
		return 1;
	return 0;
}

/*
 * Called for every backref that is found for the current extent.
1134
 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1135 1136 1137 1138 1139 1140 1141 1142 1143
 */
static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
{
	struct backref_ctx *bctx = ctx_;
	struct clone_root *found;
	int ret;
	u64 i_size;

	/* First check if the root is in the list of accepted clone sources */
1144
	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1145 1146 1147 1148 1149 1150 1151 1152 1153
			bctx->sctx->clone_roots_cnt,
			sizeof(struct clone_root),
			__clone_root_cmp_bsearch);
	if (!found)
		return 0;

	if (found->root == bctx->sctx->send_root &&
	    ino == bctx->cur_objectid &&
	    offset == bctx->cur_offset) {
1154
		bctx->found_itself = 1;
1155 1156 1157
	}

	/*
1158
	 * There are inodes that have extents that lie behind its i_size. Don't
1159 1160
	 * accept clones from these extents.
	 */
1161 1162
	ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL,
			NULL);
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	if (ret < 0)
		return ret;

	if (offset + bctx->extent_len > i_size)
		return 0;

	/*
	 * Make sure we don't consider clones from send_root that are
	 * behind the current inode/offset.
	 */
	if (found->root == bctx->sctx->send_root) {
		/*
		 * TODO for the moment we don't accept clones from the inode
		 * that is currently send. We may change this when
		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
		 * file.
		 */
		if (ino >= bctx->cur_objectid)
			return 0;
1182 1183 1184 1185
#if 0
		if (ino > bctx->cur_objectid)
			return 0;
		if (offset + bctx->extent_len > bctx->cur_offset)
1186
			return 0;
1187
#endif
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	}

	bctx->found++;
	found->found_refs++;
	if (ino < found->ino) {
		found->ino = ino;
		found->offset = offset;
	} else if (found->ino == ino) {
		/*
		 * same extent found more then once in the same file.
		 */
		if (found->offset > offset + bctx->extent_len)
			found->offset = offset;
	}

	return 0;
}

/*
1207 1208 1209 1210 1211 1212
 * Given an inode, offset and extent item, it finds a good clone for a clone
 * instruction. Returns -ENOENT when none could be found. The function makes
 * sure that the returned clone is usable at the point where sending is at the
 * moment. This means, that no clones are accepted which lie behind the current
 * inode+offset.
 *
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
 * path must point to the extent item when called.
 */
static int find_extent_clone(struct send_ctx *sctx,
			     struct btrfs_path *path,
			     u64 ino, u64 data_offset,
			     u64 ino_size,
			     struct clone_root **found)
{
	int ret;
	int extent_type;
	u64 logical;
1224
	u64 disk_byte;
1225 1226
	u64 num_bytes;
	u64 extent_item_pos;
1227
	u64 flags = 0;
1228 1229
	struct btrfs_file_extent_item *fi;
	struct extent_buffer *eb = path->nodes[0];
1230
	struct backref_ctx *backref_ctx = NULL;
1231 1232 1233
	struct clone_root *cur_clone_root;
	struct btrfs_key found_key;
	struct btrfs_path *tmp_path;
1234
	int compressed;
1235 1236 1237 1238 1239 1240
	u32 i;

	tmp_path = alloc_path_for_send();
	if (!tmp_path)
		return -ENOMEM;

1241 1242 1243 1244 1245 1246
	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
	if (!backref_ctx) {
		ret = -ENOMEM;
		goto out;
	}

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	if (data_offset >= ino_size) {
		/*
		 * There may be extents that lie behind the file's size.
		 * I at least had this in combination with snapshotting while
		 * writing large files.
		 */
		ret = 0;
		goto out;
	}

	fi = btrfs_item_ptr(eb, path->slots[0],
			struct btrfs_file_extent_item);
	extent_type = btrfs_file_extent_type(eb, fi);
	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
		ret = -ENOENT;
		goto out;
	}
1264
	compressed = btrfs_file_extent_compression(eb, fi);
1265 1266

	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1267 1268
	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
	if (disk_byte == 0) {
1269 1270 1271
		ret = -ENOENT;
		goto out;
	}
1272
	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1273

1274 1275
	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
				  &found_key, &flags);
1276 1277 1278 1279
	btrfs_release_path(tmp_path);

	if (ret < 0)
		goto out;
1280
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		ret = -EIO;
		goto out;
	}

	/*
	 * Setup the clone roots.
	 */
	for (i = 0; i < sctx->clone_roots_cnt; i++) {
		cur_clone_root = sctx->clone_roots + i;
		cur_clone_root->ino = (u64)-1;
		cur_clone_root->offset = 0;
		cur_clone_root->found_refs = 0;
	}

1295 1296 1297 1298 1299 1300
	backref_ctx->sctx = sctx;
	backref_ctx->found = 0;
	backref_ctx->cur_objectid = ino;
	backref_ctx->cur_offset = data_offset;
	backref_ctx->found_itself = 0;
	backref_ctx->extent_len = num_bytes;
1301 1302 1303 1304 1305 1306 1307

	/*
	 * The last extent of a file may be too large due to page alignment.
	 * We need to adjust extent_len in this case so that the checks in
	 * __iterate_backrefs work.
	 */
	if (data_offset + num_bytes >= ino_size)
1308
		backref_ctx->extent_len = ino_size - data_offset;
1309 1310 1311 1312

	/*
	 * Now collect all backrefs.
	 */
1313 1314 1315 1316
	if (compressed == BTRFS_COMPRESS_NONE)
		extent_item_pos = logical - found_key.objectid;
	else
		extent_item_pos = 0;
1317 1318
	ret = iterate_extent_inodes(sctx->send_root->fs_info,
					found_key.objectid, extent_item_pos, 1,
1319
					__iterate_backrefs, backref_ctx);
1320

1321 1322 1323
	if (ret < 0)
		goto out;

1324
	if (!backref_ctx->found_itself) {
1325 1326
		/* found a bug in backref code? */
		ret = -EIO;
1327
		btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1328
				"send_root. inode=%llu, offset=%llu, "
1329 1330
				"disk_byte=%llu found extent=%llu\n",
				ino, data_offset, disk_byte, found_key.objectid);
1331 1332 1333 1334 1335 1336 1337 1338
		goto out;
	}

verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
		"ino=%llu, "
		"num_bytes=%llu, logical=%llu\n",
		data_offset, ino, num_bytes, logical);

1339
	if (!backref_ctx->found)
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
		verbose_printk("btrfs:    no clones found\n");

	cur_clone_root = NULL;
	for (i = 0; i < sctx->clone_roots_cnt; i++) {
		if (sctx->clone_roots[i].found_refs) {
			if (!cur_clone_root)
				cur_clone_root = sctx->clone_roots + i;
			else if (sctx->clone_roots[i].root == sctx->send_root)
				/* prefer clones from send_root over others */
				cur_clone_root = sctx->clone_roots + i;
		}

	}

	if (cur_clone_root) {
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		if (compressed != BTRFS_COMPRESS_NONE) {
			/*
			 * Offsets given by iterate_extent_inodes() are relative
			 * to the start of the extent, we need to add logical
			 * offset from the file extent item.
			 * (See why at backref.c:check_extent_in_eb())
			 */
			cur_clone_root->offset += btrfs_file_extent_offset(eb,
									   fi);
		}
1365 1366 1367 1368 1369 1370 1371 1372
		*found = cur_clone_root;
		ret = 0;
	} else {
		ret = -ENOENT;
	}

out:
	btrfs_free_path(tmp_path);
1373
	kfree(backref_ctx);
1374 1375 1376
	return ret;
}

1377
static int read_symlink(struct btrfs_root *root,
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
			u64 ino,
			struct fs_path *dest)
{
	int ret;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_file_extent_item *ei;
	u8 type;
	u8 compression;
	unsigned long off;
	int len;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = 0;
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	BUG_ON(ret);

	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
			struct btrfs_file_extent_item);
	type = btrfs_file_extent_type(path->nodes[0], ei);
	compression = btrfs_file_extent_compression(path->nodes[0], ei);
	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
	BUG_ON(compression);

	off = btrfs_file_extent_inline_start(ei);
1410
	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);

out:
	btrfs_free_path(path);
	return ret;
}

/*
 * Helper function to generate a file name that is unique in the root of
 * send_root and parent_root. This is used to generate names for orphan inodes.
 */
static int gen_unique_name(struct send_ctx *sctx,
			   u64 ino, u64 gen,
			   struct fs_path *dest)
{
	int ret = 0;
	struct btrfs_path *path;
	struct btrfs_dir_item *di;
	char tmp[64];
	int len;
	u64 idx = 0;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	while (1) {
1439
		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1440
				ino, gen, idx);
1441
		ASSERT(len < sizeof(tmp));
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
				path, BTRFS_FIRST_FREE_OBJECTID,
				tmp, strlen(tmp), 0);
		btrfs_release_path(path);
		if (IS_ERR(di)) {
			ret = PTR_ERR(di);
			goto out;
		}
		if (di) {
			/* not unique, try again */
			idx++;
			continue;
		}

		if (!sctx->parent_root) {
			/* unique */
			ret = 0;
			break;
		}

		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
				path, BTRFS_FIRST_FREE_OBJECTID,
				tmp, strlen(tmp), 0);
		btrfs_release_path(path);
		if (IS_ERR(di)) {
			ret = PTR_ERR(di);
			goto out;
		}
		if (di) {
			/* not unique, try again */
			idx++;
			continue;
		}
		/* unique */
		break;
	}

	ret = fs_path_add(dest, tmp, strlen(tmp));

out:
	btrfs_free_path(path);
	return ret;
}

enum inode_state {
	inode_state_no_change,
	inode_state_will_create,
	inode_state_did_create,
	inode_state_will_delete,
	inode_state_did_delete,
};

static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
{
	int ret;
	int left_ret;
	int right_ret;
	u64 left_gen;
	u64 right_gen;

	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1504
			NULL, NULL);
1505 1506 1507 1508 1509 1510 1511 1512
	if (ret < 0 && ret != -ENOENT)
		goto out;
	left_ret = ret;

	if (!sctx->parent_root) {
		right_ret = -ENOENT;
	} else {
		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1513
				NULL, NULL, NULL, NULL);
1514 1515 1516 1517 1518 1519
		if (ret < 0 && ret != -ENOENT)
			goto out;
		right_ret = ret;
	}

	if (!left_ret && !right_ret) {
1520
		if (left_gen == gen && right_gen == gen) {
1521
			ret = inode_state_no_change;
1522
		} else if (left_gen == gen) {
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
			if (ino < sctx->send_progress)
				ret = inode_state_did_create;
			else
				ret = inode_state_will_create;
		} else if (right_gen == gen) {
			if (ino < sctx->send_progress)
				ret = inode_state_did_delete;
			else
				ret = inode_state_will_delete;
		} else  {
			ret = -ENOENT;
		}
	} else if (!left_ret) {
		if (left_gen == gen) {
			if (ino < sctx->send_progress)
				ret = inode_state_did_create;
			else
				ret = inode_state_will_create;
		} else {
			ret = -ENOENT;
		}
	} else if (!right_ret) {
		if (right_gen == gen) {
			if (ino < sctx->send_progress)
				ret = inode_state_did_delete;
			else
				ret = inode_state_will_delete;
		} else {
			ret = -ENOENT;
		}
	} else {
		ret = -ENOENT;
	}

out:
	return ret;
}

static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
{
	int ret;

	ret = get_cur_inode_state(sctx, ino, gen);
	if (ret < 0)
		goto out;

	if (ret == inode_state_no_change ||
	    ret == inode_state_did_create ||
	    ret == inode_state_will_delete)
		ret = 1;
	else
		ret = 0;

out:
	return ret;
}

/*
 * Helper function to lookup a dir item in a dir.
 */
static int lookup_dir_item_inode(struct btrfs_root *root,
				 u64 dir, const char *name, int name_len,
				 u64 *found_inode,
				 u8 *found_type)
{
	int ret = 0;
	struct btrfs_dir_item *di;
	struct btrfs_key key;
	struct btrfs_path *path;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	di = btrfs_lookup_dir_item(NULL, root, path,
			dir, name, name_len, 0);
	if (!di) {
		ret = -ENOENT;
		goto out;
	}
	if (IS_ERR(di)) {
		ret = PTR_ERR(di);
		goto out;
	}
	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
	*found_inode = key.objectid;
	*found_type = btrfs_dir_type(path->nodes[0], di);

out:
	btrfs_free_path(path);
	return ret;
}

1616 1617 1618 1619
/*
 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
 * generation of the parent dir and the name of the dir entry.
 */
1620
static int get_first_ref(struct btrfs_root *root, u64 ino,
1621 1622 1623 1624 1625 1626 1627
			 u64 *dir, u64 *dir_gen, struct fs_path *name)
{
	int ret;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_path *path;
	int len;
1628
	u64 parent_dir;
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = ino;
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = 0;

	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
	if (ret < 0)
		goto out;
	if (!ret)
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				path->slots[0]);
1644 1645 1646
	if (ret || found_key.objectid != ino ||
	    (found_key.type != BTRFS_INODE_REF_KEY &&
	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1647 1648 1649 1650
		ret = -ENOENT;
		goto out;
	}

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	if (key.type == BTRFS_INODE_REF_KEY) {
		struct btrfs_inode_ref *iref;
		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
				      struct btrfs_inode_ref);
		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
						     (unsigned long)(iref + 1),
						     len);
		parent_dir = found_key.offset;
	} else {
		struct btrfs_inode_extref *extref;
		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
					struct btrfs_inode_extref);
		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
					(unsigned long)&extref->name, len);
		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
	}
1669 1670 1671 1672
	if (ret < 0)
		goto out;
	btrfs_release_path(path);

1673
	ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL,
1674
			NULL, NULL);
1675 1676 1677
	if (ret < 0)
		goto out;

1678
	*dir = parent_dir;
1679 1680 1681 1682 1683 1684

out:
	btrfs_free_path(path);
	return ret;
}

1685
static int is_first_ref(struct btrfs_root *root,
1686 1687 1688 1689 1690 1691 1692 1693
			u64 ino, u64 dir,
			const char *name, int name_len)
{
	int ret;
	struct fs_path *tmp_name;
	u64 tmp_dir;
	u64 tmp_dir_gen;

1694
	tmp_name = fs_path_alloc();
1695 1696 1697
	if (!tmp_name)
		return -ENOMEM;

1698
	ret = get_first_ref(root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
1699 1700 1701
	if (ret < 0)
		goto out;

1702
	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1703 1704 1705 1706
		ret = 0;
		goto out;
	}

1707
	ret = !memcmp(tmp_name->start, name, name_len);
1708 1709

out:
1710
	fs_path_free(tmp_name);
1711 1712 1713
	return ret;
}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
/*
 * Used by process_recorded_refs to determine if a new ref would overwrite an
 * already existing ref. In case it detects an overwrite, it returns the
 * inode/gen in who_ino/who_gen.
 * When an overwrite is detected, process_recorded_refs does proper orphanizing
 * to make sure later references to the overwritten inode are possible.
 * Orphanizing is however only required for the first ref of an inode.
 * process_recorded_refs does an additional is_first_ref check to see if
 * orphanizing is really required.
 */
1724 1725 1726 1727 1728
static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
			      const char *name, int name_len,
			      u64 *who_ino, u64 *who_gen)
{
	int ret = 0;
1729
	u64 gen;
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	u64 other_inode = 0;
	u8 other_type = 0;

	if (!sctx->parent_root)
		goto out;

	ret = is_inode_existent(sctx, dir, dir_gen);
	if (ret <= 0)
		goto out;

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
	/*
	 * If we have a parent root we need to verify that the parent dir was
	 * not delted and then re-created, if it was then we have no overwrite
	 * and we can just unlink this entry.
	 */
	if (sctx->parent_root) {
		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
				     NULL, NULL, NULL);
		if (ret < 0 && ret != -ENOENT)
			goto out;
		if (ret) {
			ret = 0;
			goto out;
		}
		if (gen != dir_gen)
			goto out;
	}

1758 1759 1760 1761 1762 1763 1764 1765 1766
	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
			&other_inode, &other_type);
	if (ret < 0 && ret != -ENOENT)
		goto out;
	if (ret) {
		ret = 0;
		goto out;
	}

1767 1768 1769 1770 1771
	/*
	 * Check if the overwritten ref was already processed. If yes, the ref
	 * was already unlinked/moved, so we can safely assume that we will not
	 * overwrite anything at this point in time.
	 */
1772 1773
	if (other_inode > sctx->send_progress) {
		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1774
				who_gen, NULL, NULL, NULL, NULL);
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
		if (ret < 0)
			goto out;

		ret = 1;
		*who_ino = other_inode;
	} else {
		ret = 0;
	}

out:
	return ret;
}

1788 1789 1790 1791 1792 1793 1794
/*
 * Checks if the ref was overwritten by an already processed inode. This is
 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
 * thus the orphan name needs be used.
 * process_recorded_refs also uses it to avoid unlinking of refs that were
 * overwritten.
 */
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
static int did_overwrite_ref(struct send_ctx *sctx,
			    u64 dir, u64 dir_gen,
			    u64 ino, u64 ino_gen,
			    const char *name, int name_len)
{
	int ret = 0;
	u64 gen;
	u64 ow_inode;
	u8 other_type;

	if (!sctx->parent_root)
		goto out;

	ret = is_inode_existent(sctx, dir, dir_gen);
	if (ret <= 0)
		goto out;

	/* check if the ref was overwritten by another ref */
	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
			&ow_inode, &other_type);
	if (ret < 0 && ret != -ENOENT)
		goto out;
	if (ret) {
		/* was never and will never be overwritten */
		ret = 0;
		goto out;
	}

	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1824
			NULL, NULL);
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	if (ret < 0)
		goto out;

	if (ow_inode == ino && gen == ino_gen) {
		ret = 0;
		goto out;
	}

	/* we know that it is or will be overwritten. check this now */
	if (ow_inode < sctx->send_progress)
		ret = 1;
	else
		ret = 0;

out:
	return ret;
}

1843 1844 1845 1846 1847
/*
 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
 * that got overwritten. This is used by process_recorded_refs to determine
 * if it has to use the path as returned by get_cur_path or the orphan name.
 */
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
{
	int ret = 0;
	struct fs_path *name = NULL;
	u64 dir;
	u64 dir_gen;

	if (!sctx->parent_root)
		goto out;

1858
	name = fs_path_alloc();
1859 1860 1861
	if (!name)
		return -ENOMEM;

1862
	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1863 1864 1865 1866 1867 1868 1869
	if (ret < 0)
		goto out;

	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
			name->start, fs_path_len(name));

out:
1870
	fs_path_free(name);
1871 1872 1873
	return ret;
}

1874 1875 1876 1877
/*
 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
 * so we need to do some special handling in case we have clashes. This function
 * takes care of this with the help of name_cache_entry::radix_list.
1878
 * In case of error, nce is kfreed.
1879
 */
1880 1881 1882 1883
static int name_cache_insert(struct send_ctx *sctx,
			     struct name_cache_entry *nce)
{
	int ret = 0;
1884 1885 1886 1887 1888 1889
	struct list_head *nce_head;

	nce_head = radix_tree_lookup(&sctx->name_cache,
			(unsigned long)nce->ino);
	if (!nce_head) {
		nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1890 1891
		if (!nce_head) {
			kfree(nce);
1892
			return -ENOMEM;
1893
		}
1894
		INIT_LIST_HEAD(nce_head);
1895

1896
		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1897 1898 1899
		if (ret < 0) {
			kfree(nce_head);
			kfree(nce);
1900
			return ret;
1901
		}
1902
	}
1903
	list_add_tail(&nce->radix_list, nce_head);
1904 1905 1906 1907 1908 1909 1910 1911 1912
	list_add_tail(&nce->list, &sctx->name_cache_list);
	sctx->name_cache_size++;

	return ret;
}

static void name_cache_delete(struct send_ctx *sctx,
			      struct name_cache_entry *nce)
{
1913
	struct list_head *nce_head;
1914

1915 1916
	nce_head = radix_tree_lookup(&sctx->name_cache,
			(unsigned long)nce->ino);
1917 1918 1919 1920 1921
	if (!nce_head) {
		btrfs_err(sctx->send_root->fs_info,
	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
			nce->ino, sctx->name_cache_size);
	}
1922

1923
	list_del(&nce->radix_list);
1924 1925
	list_del(&nce->list);
	sctx->name_cache_size--;
1926

1927 1928 1929 1930
	/*
	 * We may not get to the final release of nce_head if the lookup fails
	 */
	if (nce_head && list_empty(nce_head)) {
1931 1932 1933
		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
		kfree(nce_head);
	}
1934 1935 1936 1937 1938
}

static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
						    u64 ino, u64 gen)
{
1939 1940
	struct list_head *nce_head;
	struct name_cache_entry *cur;
1941

1942 1943
	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
	if (!nce_head)
1944 1945
		return NULL;

1946 1947 1948 1949
	list_for_each_entry(cur, nce_head, radix_list) {
		if (cur->ino == ino && cur->gen == gen)
			return cur;
	}
1950 1951 1952
	return NULL;
}

1953 1954 1955 1956
/*
 * Removes the entry from the list and adds it back to the end. This marks the
 * entry as recently used so that name_cache_clean_unused does not remove it.
 */
1957 1958 1959 1960 1961 1962
static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
{
	list_del(&nce->list);
	list_add_tail(&nce->list, &sctx->name_cache_list);
}

1963 1964 1965
/*
 * Remove some entries from the beginning of name_cache_list.
 */
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
static void name_cache_clean_unused(struct send_ctx *sctx)
{
	struct name_cache_entry *nce;

	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
		return;

	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
		nce = list_entry(sctx->name_cache_list.next,
				struct name_cache_entry, list);
		name_cache_delete(sctx, nce);
		kfree(nce);
	}
}

static void name_cache_free(struct send_ctx *sctx)
{
	struct name_cache_entry *nce;

1985 1986 1987
	while (!list_empty(&sctx->name_cache_list)) {
		nce = list_entry(sctx->name_cache_list.next,
				struct name_cache_entry, list);
1988
		name_cache_delete(sctx, nce);
1989
		kfree(nce);
1990 1991 1992
	}
}

1993 1994 1995 1996 1997 1998 1999 2000
/*
 * Used by get_cur_path for each ref up to the root.
 * Returns 0 if it succeeded.
 * Returns 1 if the inode is not existent or got overwritten. In that case, the
 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
 * Returns <0 in case of error.
 */
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
static int __get_cur_name_and_parent(struct send_ctx *sctx,
				     u64 ino, u64 gen,
				     u64 *parent_ino,
				     u64 *parent_gen,
				     struct fs_path *dest)
{
	int ret;
	int nce_ret;
	struct btrfs_path *path = NULL;
	struct name_cache_entry *nce = NULL;

2012 2013 2014 2015 2016
	/*
	 * First check if we already did a call to this function with the same
	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
	 * return the cached result.
	 */
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
	nce = name_cache_search(sctx, ino, gen);
	if (nce) {
		if (ino < sctx->send_progress && nce->need_later_update) {
			name_cache_delete(sctx, nce);
			kfree(nce);
			nce = NULL;
		} else {
			name_cache_used(sctx, nce);
			*parent_ino = nce->parent_ino;
			*parent_gen = nce->parent_gen;
			ret = fs_path_add(dest, nce->name, nce->name_len);
			if (ret < 0)
				goto out;
			ret = nce->ret;
			goto out;
		}
	}

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

2039 2040 2041 2042 2043
	/*
	 * If the inode is not existent yet, add the orphan name and return 1.
	 * This should only happen for the parent dir that we determine in
	 * __record_new_ref
	 */
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	ret = is_inode_existent(sctx, ino, gen);
	if (ret < 0)
		goto out;

	if (!ret) {
		ret = gen_unique_name(sctx, ino, gen, dest);
		if (ret < 0)
			goto out;
		ret = 1;
		goto out_cache;
	}

2056 2057 2058 2059
	/*
	 * Depending on whether the inode was already processed or not, use
	 * send_root or parent_root for ref lookup.
	 */
2060
	if (ino < sctx->send_progress)
2061 2062
		ret = get_first_ref(sctx->send_root, ino,
				    parent_ino, parent_gen, dest);
2063
	else
2064 2065
		ret = get_first_ref(sctx->parent_root, ino,
				    parent_ino, parent_gen, dest);
2066 2067 2068
	if (ret < 0)
		goto out;

2069 2070 2071 2072
	/*
	 * Check if the ref was overwritten by an inode's ref that was processed
	 * earlier. If yes, treat as orphan and return 1.
	 */
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
			dest->start, dest->end - dest->start);
	if (ret < 0)
		goto out;
	if (ret) {
		fs_path_reset(dest);
		ret = gen_unique_name(sctx, ino, gen, dest);
		if (ret < 0)
			goto out;
		ret = 1;
	}

out_cache:
2086 2087 2088
	/*
	 * Store the result of the lookup in the name cache.
	 */
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
	if (!nce) {
		ret = -ENOMEM;
		goto out;
	}

	nce->ino = ino;
	nce->gen = gen;
	nce->parent_ino = *parent_ino;
	nce->parent_gen = *parent_gen;
	nce->name_len = fs_path_len(dest);
	nce->ret = ret;
	strcpy(nce->name, dest->start);

	if (ino < sctx->send_progress)
		nce->need_later_update = 0;
	else
		nce->need_later_update = 1;

	nce_ret = name_cache_insert(sctx, nce);
	if (nce_ret < 0)
		ret = nce_ret;
	name_cache_clean_unused(sctx);

out:
	btrfs_free_path(path);
	return ret;
}

/*
 * Magic happens here. This function returns the first ref to an inode as it
 * would look like while receiving the stream at this point in time.
 * We walk the path up to the root. For every inode in between, we check if it
 * was already processed/sent. If yes, we continue with the parent as found
 * in send_root. If not, we continue with the parent as found in parent_root.
 * If we encounter an inode that was deleted at this point in time, we use the
 * inodes "orphan" name instead of the real name and stop. Same with new inodes
 * that were not created yet and overwritten inodes/refs.
 *
 * When do we have have orphan inodes:
 * 1. When an inode is freshly created and thus no valid refs are available yet
 * 2. When a directory lost all it's refs (deleted) but still has dir items
 *    inside which were not processed yet (pending for move/delete). If anyone
 *    tried to get the path to the dir items, it would get a path inside that
 *    orphan directory.
 * 3. When an inode is moved around or gets new links, it may overwrite the ref
 *    of an unprocessed inode. If in that case the first ref would be
 *    overwritten, the overwritten inode gets "orphanized". Later when we
 *    process this overwritten inode, it is restored at a new place by moving
 *    the orphan inode.
 *
 * sctx->send_progress tells this function at which point in time receiving
 * would be.
 */
static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
			struct fs_path *dest)
{
	int ret = 0;
	struct fs_path *name = NULL;
	u64 parent_inode = 0;
	u64 parent_gen = 0;
	int stop = 0;

2152
	name = fs_path_alloc();
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
	if (!name) {
		ret = -ENOMEM;
		goto out;
	}

	dest->reversed = 1;
	fs_path_reset(dest);

	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
		fs_path_reset(name);

2164 2165 2166 2167 2168 2169 2170 2171
		if (is_waiting_for_rm(sctx, ino)) {
			ret = gen_unique_name(sctx, ino, gen, name);
			if (ret < 0)
				goto out;
			ret = fs_path_add_path(dest, name);
			break;
		}

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
		if (is_waiting_for_move(sctx, ino)) {
			ret = get_first_ref(sctx->parent_root, ino,
					    &parent_inode, &parent_gen, name);
		} else {
			ret = __get_cur_name_and_parent(sctx, ino, gen,
							&parent_inode,
							&parent_gen, name);
			if (ret)
				stop = 1;
		}

2183 2184
		if (ret < 0)
			goto out;
2185

2186 2187 2188 2189 2190 2191 2192 2193 2194
		ret = fs_path_add_path(dest, name);
		if (ret < 0)
			goto out;

		ino = parent_inode;
		gen = parent_gen;
	}

out:
2195
	fs_path_free(name);
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
	if (!ret)
		fs_path_unreverse(dest);
	return ret;
}

/*
 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
 */
static int send_subvol_begin(struct send_ctx *sctx)
{
	int ret;
	struct btrfs_root *send_root = sctx->send_root;
	struct btrfs_root *parent_root = sctx->parent_root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_root_ref *ref;
	struct extent_buffer *leaf;
	char *name = NULL;
	int namelen;

2216
	path = btrfs_alloc_path();
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	if (!path)
		return -ENOMEM;

	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
	if (!name) {
		btrfs_free_path(path);
		return -ENOMEM;
	}

	key.objectid = send_root->objectid;
	key.type = BTRFS_ROOT_BACKREF_KEY;
	key.offset = 0;

	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
				&key, path, 1, 0);
	if (ret < 0)
		goto out;
	if (ret) {
		ret = -ENOENT;
		goto out;
	}

	leaf = path->nodes[0];
	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
	    key.objectid != send_root->objectid) {
		ret = -ENOENT;
		goto out;
	}
	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
	namelen = btrfs_root_ref_name_len(leaf, ref);
	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
	btrfs_release_path(path);

	if (parent_root) {
		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
		if (ret < 0)
			goto out;
	} else {
		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
		if (ret < 0)
			goto out;
	}

	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
	TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
			sctx->send_root->root_item.uuid);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2265
		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2266 2267 2268 2269
	if (parent_root) {
		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
				sctx->parent_root->root_item.uuid);
		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2270
			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
	}

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	btrfs_free_path(path);
	kfree(name);
	return ret;
}

static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
{
	int ret = 0;
	struct fs_path *p;

verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);

2289
	p = fs_path_alloc();
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, ino, gen, p);
	if (ret < 0)
		goto out;
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
2307
	fs_path_free(p);
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
	return ret;
}

static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
{
	int ret = 0;
	struct fs_path *p;

verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);

2318
	p = fs_path_alloc();
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, ino, gen, p);
	if (ret < 0)
		goto out;
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
2336
	fs_path_free(p);
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	return ret;
}

static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
{
	int ret = 0;
	struct fs_path *p;

verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);

2347
	p = fs_path_alloc();
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, ino, gen, p);
	if (ret < 0)
		goto out;
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
2366
	fs_path_free(p);
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
	return ret;
}

static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
{
	int ret = 0;
	struct fs_path *p = NULL;
	struct btrfs_inode_item *ii;
	struct btrfs_path *path = NULL;
	struct extent_buffer *eb;
	struct btrfs_key key;
	int slot;

verbose_printk("btrfs: send_utimes %llu\n", ino);

2382
	p = fs_path_alloc();
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
	if (!p)
		return -ENOMEM;

	path = alloc_path_for_send();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}

	key.objectid = ino;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;
	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

	eb = path->nodes[0];
	slot = path->slots[0];
	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);

	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, ino, gen, p);
	if (ret < 0)
		goto out;
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
			btrfs_inode_atime(ii));
	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
			btrfs_inode_mtime(ii));
	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
			btrfs_inode_ctime(ii));
2417
	/* TODO Add otime support when the otime patches get into upstream */
2418 2419 2420 2421 2422

	ret = send_cmd(sctx);

tlv_put_failure:
out:
2423
	fs_path_free(p);
2424 2425 2426 2427 2428 2429 2430 2431 2432
	btrfs_free_path(path);
	return ret;
}

/*
 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
 * a valid path yet because we did not process the refs yet. So, the inode
 * is created as orphan.
 */
2433
static int send_create_inode(struct send_ctx *sctx, u64 ino)
2434 2435 2436 2437
{
	int ret = 0;
	struct fs_path *p;
	int cmd;
2438
	u64 gen;
2439
	u64 mode;
2440
	u64 rdev;
2441

2442
verbose_printk("btrfs: send_create_inode %llu\n", ino);
2443

2444
	p = fs_path_alloc();
2445 2446 2447
	if (!p)
		return -ENOMEM;

2448 2449 2450 2451
	ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL,
			NULL, &rdev);
	if (ret < 0)
		goto out;
2452

2453
	if (S_ISREG(mode)) {
2454
		cmd = BTRFS_SEND_C_MKFILE;
2455
	} else if (S_ISDIR(mode)) {
2456
		cmd = BTRFS_SEND_C_MKDIR;
2457
	} else if (S_ISLNK(mode)) {
2458
		cmd = BTRFS_SEND_C_SYMLINK;
2459
	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2460
		cmd = BTRFS_SEND_C_MKNOD;
2461
	} else if (S_ISFIFO(mode)) {
2462
		cmd = BTRFS_SEND_C_MKFIFO;
2463
	} else if (S_ISSOCK(mode)) {
2464
		cmd = BTRFS_SEND_C_MKSOCK;
2465
	} else {
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
		printk(KERN_WARNING "btrfs: unexpected inode type %o",
				(int)(mode & S_IFMT));
		ret = -ENOTSUPP;
		goto out;
	}

	ret = begin_cmd(sctx, cmd);
	if (ret < 0)
		goto out;

2476
	ret = gen_unique_name(sctx, ino, gen, p);
2477 2478 2479 2480
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2481
	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2482 2483 2484

	if (S_ISLNK(mode)) {
		fs_path_reset(p);
2485
		ret = read_symlink(sctx->send_root, ino, p);
2486 2487 2488 2489 2490
		if (ret < 0)
			goto out;
		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2491 2492
		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2493 2494 2495 2496 2497 2498 2499 2500 2501
	}

	ret = send_cmd(sctx);
	if (ret < 0)
		goto out;


tlv_put_failure:
out:
2502
	fs_path_free(p);
2503 2504 2505
	return ret;
}

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
/*
 * We need some special handling for inodes that get processed before the parent
 * directory got created. See process_recorded_refs for details.
 * This function does the check if we already created the dir out of order.
 */
static int did_create_dir(struct send_ctx *sctx, u64 dir)
{
	int ret = 0;
	struct btrfs_path *path = NULL;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_key di_key;
	struct extent_buffer *eb;
	struct btrfs_dir_item *di;
	int slot;

	path = alloc_path_for_send();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}

	key.objectid = dir;
	key.type = BTRFS_DIR_INDEX_KEY;
	key.offset = 0;
2531 2532 2533 2534
	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;

2535
	while (1) {
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
		eb = path->nodes[0];
		slot = path->slots[0];
		if (slot >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(sctx->send_root, path);
			if (ret < 0) {
				goto out;
			} else if (ret > 0) {
				ret = 0;
				break;
			}
			continue;
2547
		}
2548 2549 2550

		btrfs_item_key_to_cpu(eb, &found_key, slot);
		if (found_key.objectid != key.objectid ||
2551 2552 2553 2554 2555 2556 2557 2558
		    found_key.type != key.type) {
			ret = 0;
			goto out;
		}

		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
		btrfs_dir_item_key_to_cpu(eb, di, &di_key);

2559 2560
		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
		    di_key.objectid < sctx->send_progress) {
2561 2562 2563 2564
			ret = 1;
			goto out;
		}

2565
		path->slots[0]++;
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
	}

out:
	btrfs_free_path(path);
	return ret;
}

/*
 * Only creates the inode if it is:
 * 1. Not a directory
 * 2. Or a directory which was not created already due to out of order
 *    directories. See did_create_dir and process_recorded_refs for details.
 */
static int send_create_inode_if_needed(struct send_ctx *sctx)
{
	int ret;

	if (S_ISDIR(sctx->cur_inode_mode)) {
		ret = did_create_dir(sctx, sctx->cur_ino);
		if (ret < 0)
			goto out;
		if (ret) {
			ret = 0;
			goto out;
		}
	}

	ret = send_create_inode(sctx, sctx->cur_ino);
	if (ret < 0)
		goto out;

out:
	return ret;
}

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
struct recorded_ref {
	struct list_head list;
	char *dir_path;
	char *name;
	struct fs_path *full_path;
	u64 dir;
	u64 dir_gen;
	int dir_path_len;
	int name_len;
};

/*
 * We need to process new refs before deleted refs, but compare_tree gives us
 * everything mixed. So we first record all refs and later process them.
 * This function is a helper to record one ref.
 */
static int record_ref(struct list_head *head, u64 dir,
		      u64 dir_gen, struct fs_path *path)
{
	struct recorded_ref *ref;

	ref = kmalloc(sizeof(*ref), GFP_NOFS);
	if (!ref)
		return -ENOMEM;

	ref->dir = dir;
	ref->dir_gen = dir_gen;
	ref->full_path = path;

A
Andy Shevchenko 已提交
2630 2631 2632 2633
	ref->name = (char *)kbasename(ref->full_path->start);
	ref->name_len = ref->full_path->end - ref->name;
	ref->dir_path = ref->full_path->start;
	if (ref->name == ref->full_path->start)
2634
		ref->dir_path_len = 0;
A
Andy Shevchenko 已提交
2635
	else
2636 2637 2638 2639 2640 2641 2642
		ref->dir_path_len = ref->full_path->end -
				ref->full_path->start - 1 - ref->name_len;

	list_add_tail(&ref->list, head);
	return 0;
}

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
static int dup_ref(struct recorded_ref *ref, struct list_head *list)
{
	struct recorded_ref *new;

	new = kmalloc(sizeof(*ref), GFP_NOFS);
	if (!new)
		return -ENOMEM;

	new->dir = ref->dir;
	new->dir_gen = ref->dir_gen;
	new->full_path = NULL;
	INIT_LIST_HEAD(&new->list);
	list_add_tail(&new->list, list);
	return 0;
}

2659
static void __free_recorded_refs(struct list_head *head)
2660 2661 2662
{
	struct recorded_ref *cur;

2663 2664
	while (!list_empty(head)) {
		cur = list_entry(head->next, struct recorded_ref, list);
2665
		fs_path_free(cur->full_path);
2666
		list_del(&cur->list);
2667 2668 2669 2670 2671 2672
		kfree(cur);
	}
}

static void free_recorded_refs(struct send_ctx *sctx)
{
2673 2674
	__free_recorded_refs(&sctx->new_refs);
	__free_recorded_refs(&sctx->deleted_refs);
2675 2676 2677
}

/*
2678
 * Renames/moves a file/dir to its orphan name. Used when the first
2679 2680 2681 2682 2683 2684 2685 2686 2687
 * ref of an unprocessed inode gets overwritten and for all non empty
 * directories.
 */
static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
			  struct fs_path *path)
{
	int ret;
	struct fs_path *orphan;

2688
	orphan = fs_path_alloc();
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
	if (!orphan)
		return -ENOMEM;

	ret = gen_unique_name(sctx, ino, gen, orphan);
	if (ret < 0)
		goto out;

	ret = send_rename(sctx, path, orphan);

out:
2699
	fs_path_free(orphan);
2700 2701 2702
	return ret;
}

2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
static struct orphan_dir_info *
add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
{
	struct rb_node **p = &sctx->orphan_dirs.rb_node;
	struct rb_node *parent = NULL;
	struct orphan_dir_info *entry, *odi;

	odi = kmalloc(sizeof(*odi), GFP_NOFS);
	if (!odi)
		return ERR_PTR(-ENOMEM);
	odi->ino = dir_ino;
	odi->gen = 0;

	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct orphan_dir_info, node);
		if (dir_ino < entry->ino) {
			p = &(*p)->rb_left;
		} else if (dir_ino > entry->ino) {
			p = &(*p)->rb_right;
		} else {
			kfree(odi);
			return entry;
		}
	}

	rb_link_node(&odi->node, parent, p);
	rb_insert_color(&odi->node, &sctx->orphan_dirs);
	return odi;
}

static struct orphan_dir_info *
get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
{
	struct rb_node *n = sctx->orphan_dirs.rb_node;
	struct orphan_dir_info *entry;

	while (n) {
		entry = rb_entry(n, struct orphan_dir_info, node);
		if (dir_ino < entry->ino)
			n = n->rb_left;
		else if (dir_ino > entry->ino)
			n = n->rb_right;
		else
			return entry;
	}
	return NULL;
}

static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
{
	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);

	return odi != NULL;
}

static void free_orphan_dir_info(struct send_ctx *sctx,
				 struct orphan_dir_info *odi)
{
	if (!odi)
		return;
	rb_erase(&odi->node, &sctx->orphan_dirs);
	kfree(odi);
}

2768 2769 2770 2771 2772
/*
 * Returns 1 if a directory can be removed at this point in time.
 * We check this by iterating all dir items and checking if the inode behind
 * the dir item was already processed.
 */
2773 2774
static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
		     u64 send_progress)
2775 2776 2777 2778 2779 2780 2781 2782 2783
{
	int ret = 0;
	struct btrfs_root *root = sctx->parent_root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_key loc;
	struct btrfs_dir_item *di;

2784 2785 2786 2787 2788 2789
	/*
	 * Don't try to rmdir the top/root subvolume dir.
	 */
	if (dir == BTRFS_FIRST_FREE_OBJECTID)
		return 0;

2790 2791 2792 2793 2794 2795 2796
	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = dir;
	key.type = BTRFS_DIR_INDEX_KEY;
	key.offset = 0;
2797 2798 2799
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
2800 2801

	while (1) {
2802 2803
		struct waiting_dir_move *dm;

2804 2805 2806 2807 2808 2809 2810
		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				goto out;
			else if (ret > 0)
				break;
			continue;
2811
		}
2812 2813 2814 2815
		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
				      path->slots[0]);
		if (found_key.objectid != key.objectid ||
		    found_key.type != key.type)
2816 2817 2818 2819 2820 2821
			break;

		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
				struct btrfs_dir_item);
		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);

2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
		dm = get_waiting_dir_move(sctx, loc.objectid);
		if (dm) {
			struct orphan_dir_info *odi;

			odi = add_orphan_dir_info(sctx, dir);
			if (IS_ERR(odi)) {
				ret = PTR_ERR(odi);
				goto out;
			}
			odi->gen = dir_gen;
			dm->rmdir_ino = dir;
			ret = 0;
			goto out;
		}

2837 2838 2839 2840 2841
		if (loc.objectid > send_progress) {
			ret = 0;
			goto out;
		}

2842
		path->slots[0]++;
2843 2844 2845 2846 2847 2848 2849 2850 2851
	}

	ret = 1;

out:
	btrfs_free_path(path);
	return ret;
}

2852 2853
static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
{
2854
	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2855

2856
	return entry != NULL;
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
}

static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino)
{
	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
	struct rb_node *parent = NULL;
	struct waiting_dir_move *entry, *dm;

	dm = kmalloc(sizeof(*dm), GFP_NOFS);
	if (!dm)
		return -ENOMEM;
	dm->ino = ino;
2869
	dm->rmdir_ino = 0;
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888

	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct waiting_dir_move, node);
		if (ino < entry->ino) {
			p = &(*p)->rb_left;
		} else if (ino > entry->ino) {
			p = &(*p)->rb_right;
		} else {
			kfree(dm);
			return -EEXIST;
		}
	}

	rb_link_node(&dm->node, parent, p);
	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
	return 0;
}

2889 2890
static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2891 2892 2893 2894 2895 2896
{
	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
	struct waiting_dir_move *entry;

	while (n) {
		entry = rb_entry(n, struct waiting_dir_move, node);
2897
		if (ino < entry->ino)
2898
			n = n->rb_left;
2899
		else if (ino > entry->ino)
2900
			n = n->rb_right;
2901 2902
		else
			return entry;
2903
	}
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
	return NULL;
}

static void free_waiting_dir_move(struct send_ctx *sctx,
				  struct waiting_dir_move *dm)
{
	if (!dm)
		return;
	rb_erase(&dm->node, &sctx->waiting_dir_moves);
	kfree(dm);
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
}

static int add_pending_dir_move(struct send_ctx *sctx, u64 parent_ino)
{
	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
	struct rb_node *parent = NULL;
	struct pending_dir_move *entry, *pm;
	struct recorded_ref *cur;
	int exists = 0;
	int ret;

	pm = kmalloc(sizeof(*pm), GFP_NOFS);
	if (!pm)
		return -ENOMEM;
	pm->parent_ino = parent_ino;
	pm->ino = sctx->cur_ino;
	pm->gen = sctx->cur_inode_gen;
	INIT_LIST_HEAD(&pm->list);
	INIT_LIST_HEAD(&pm->update_refs);
	RB_CLEAR_NODE(&pm->node);

	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct pending_dir_move, node);
		if (parent_ino < entry->parent_ino) {
			p = &(*p)->rb_left;
		} else if (parent_ino > entry->parent_ino) {
			p = &(*p)->rb_right;
		} else {
			exists = 1;
			break;
		}
	}

	list_for_each_entry(cur, &sctx->deleted_refs, list) {
		ret = dup_ref(cur, &pm->update_refs);
		if (ret < 0)
			goto out;
	}
	list_for_each_entry(cur, &sctx->new_refs, list) {
		ret = dup_ref(cur, &pm->update_refs);
		if (ret < 0)
			goto out;
	}

	ret = add_waiting_dir_move(sctx, pm->ino);
	if (ret)
		goto out;

	if (exists) {
		list_add_tail(&pm->list, &entry->list);
	} else {
		rb_link_node(&pm->node, parent, p);
		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
	}
	ret = 0;
out:
	if (ret) {
		__free_recorded_refs(&pm->update_refs);
		kfree(pm);
	}
	return ret;
}

static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
						      u64 parent_ino)
{
	struct rb_node *n = sctx->pending_dir_moves.rb_node;
	struct pending_dir_move *entry;

	while (n) {
		entry = rb_entry(n, struct pending_dir_move, node);
		if (parent_ino < entry->parent_ino)
			n = n->rb_left;
		else if (parent_ino > entry->parent_ino)
			n = n->rb_right;
		else
			return entry;
	}
	return NULL;
}

static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
{
	struct fs_path *from_path = NULL;
	struct fs_path *to_path = NULL;
3000
	struct fs_path *name = NULL;
3001 3002
	u64 orig_progress = sctx->send_progress;
	struct recorded_ref *cur;
3003
	u64 parent_ino, parent_gen;
3004 3005
	struct waiting_dir_move *dm = NULL;
	u64 rmdir_ino = 0;
3006 3007
	int ret;

3008
	name = fs_path_alloc();
3009
	from_path = fs_path_alloc();
3010 3011 3012 3013
	if (!name || !from_path) {
		ret = -ENOMEM;
		goto out;
	}
3014

3015 3016 3017 3018
	dm = get_waiting_dir_move(sctx, pm->ino);
	ASSERT(dm);
	rmdir_ino = dm->rmdir_ino;
	free_waiting_dir_move(sctx, dm);
3019 3020 3021

	ret = get_first_ref(sctx->parent_root, pm->ino,
			    &parent_ino, &parent_gen, name);
3022 3023 3024
	if (ret < 0)
		goto out;

3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
	if (parent_ino == sctx->cur_ino) {
		/* child only renamed, not moved */
		ASSERT(parent_gen == sctx->cur_inode_gen);
		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
				   from_path);
		if (ret < 0)
			goto out;
		ret = fs_path_add_path(from_path, name);
		if (ret < 0)
			goto out;
	} else {
		/* child moved and maybe renamed too */
		sctx->send_progress = pm->ino;
		ret = get_cur_path(sctx, pm->ino, pm->gen, from_path);
		if (ret < 0)
			goto out;
	}

	fs_path_free(name);
	name = NULL;

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
	to_path = fs_path_alloc();
	if (!to_path) {
		ret = -ENOMEM;
		goto out;
	}

	sctx->send_progress = sctx->cur_ino + 1;
	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
	if (ret < 0)
		goto out;

	ret = send_rename(sctx, from_path, to_path);
	if (ret < 0)
		goto out;

3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
	if (rmdir_ino) {
		struct orphan_dir_info *odi;

		odi = get_orphan_dir_info(sctx, rmdir_ino);
		if (!odi) {
			/* already deleted */
			goto finish;
		}
		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
		if (ret < 0)
			goto out;
		if (!ret)
			goto finish;

		name = fs_path_alloc();
		if (!name) {
			ret = -ENOMEM;
			goto out;
		}
		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
		if (ret < 0)
			goto out;
		ret = send_rmdir(sctx, name);
		if (ret < 0)
			goto out;
		free_orphan_dir_info(sctx, odi);
	}

finish:
3090 3091 3092 3093 3094 3095 3096 3097 3098
	ret = send_utimes(sctx, pm->ino, pm->gen);
	if (ret < 0)
		goto out;

	/*
	 * After rename/move, need to update the utimes of both new parent(s)
	 * and old parent(s).
	 */
	list_for_each_entry(cur, &pm->update_refs, list) {
3099 3100
		if (cur->dir == rmdir_ino)
			continue;
3101 3102 3103 3104 3105 3106
		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
		if (ret < 0)
			goto out;
	}

out:
3107
	fs_path_free(name);
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
	fs_path_free(from_path);
	fs_path_free(to_path);
	sctx->send_progress = orig_progress;

	return ret;
}

static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
{
	if (!list_empty(&m->list))
		list_del(&m->list);
	if (!RB_EMPTY_NODE(&m->node))
		rb_erase(&m->node, &sctx->pending_dir_moves);
	__free_recorded_refs(&m->update_refs);
	kfree(m);
}

static void tail_append_pending_moves(struct pending_dir_move *moves,
				      struct list_head *stack)
{
	if (list_empty(&moves->list)) {
		list_add_tail(&moves->list, stack);
	} else {
		LIST_HEAD(list);
		list_splice_init(&moves->list, &list);
		list_add_tail(&moves->list, stack);
		list_splice_tail(&list, stack);
	}
}

static int apply_children_dir_moves(struct send_ctx *sctx)
{
	struct pending_dir_move *pm;
	struct list_head stack;
	u64 parent_ino = sctx->cur_ino;
	int ret = 0;

	pm = get_pending_dir_moves(sctx, parent_ino);
	if (!pm)
		return 0;

	INIT_LIST_HEAD(&stack);
	tail_append_pending_moves(pm, &stack);

	while (!list_empty(&stack)) {
		pm = list_first_entry(&stack, struct pending_dir_move, list);
		parent_ino = pm->ino;
		ret = apply_dir_move(sctx, pm);
		free_pending_move(sctx, pm);
		if (ret)
			goto out;
		pm = get_pending_dir_moves(sctx, parent_ino);
		if (pm)
			tail_append_pending_moves(pm, &stack);
	}
	return 0;

out:
	while (!list_empty(&stack)) {
		pm = list_first_entry(&stack, struct pending_dir_move, list);
		free_pending_move(sctx, pm);
	}
	return ret;
}

static int wait_for_parent_move(struct send_ctx *sctx,
				struct recorded_ref *parent_ref)
{
	int ret;
	u64 ino = parent_ref->dir;
	u64 parent_ino_before, parent_ino_after;
	u64 new_gen, old_gen;
	struct fs_path *path_before = NULL;
	struct fs_path *path_after = NULL;
	int len1, len2;

	if (parent_ref->dir <= sctx->cur_ino)
		return 0;

	if (is_waiting_for_move(sctx, ino))
		return 1;

	ret = get_inode_info(sctx->parent_root, ino, NULL, &old_gen,
			     NULL, NULL, NULL, NULL);
	if (ret == -ENOENT)
		return 0;
	else if (ret < 0)
		return ret;

	ret = get_inode_info(sctx->send_root, ino, NULL, &new_gen,
			     NULL, NULL, NULL, NULL);
	if (ret < 0)
		return ret;

	if (new_gen != old_gen)
		return 0;

	path_before = fs_path_alloc();
	if (!path_before)
		return -ENOMEM;

	ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
			    NULL, path_before);
	if (ret == -ENOENT) {
		ret = 0;
		goto out;
	} else if (ret < 0) {
		goto out;
	}

	path_after = fs_path_alloc();
	if (!path_after) {
		ret = -ENOMEM;
		goto out;
	}

	ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
			    NULL, path_after);
	if (ret == -ENOENT) {
		ret = 0;
		goto out;
	} else if (ret < 0) {
		goto out;
	}

	len1 = fs_path_len(path_before);
	len2 = fs_path_len(path_after);
3235 3236
	if (parent_ino_before != parent_ino_after || len1 != len2 ||
	     memcmp(path_before->start, path_after->start, len1)) {
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
		ret = 1;
		goto out;
	}
	ret = 0;

out:
	fs_path_free(path_before);
	fs_path_free(path_after);

	return ret;
}

3249 3250 3251
/*
 * This does all the move/link/unlink/rmdir magic.
 */
3252
static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3253 3254 3255
{
	int ret = 0;
	struct recorded_ref *cur;
3256
	struct recorded_ref *cur2;
3257
	struct list_head check_dirs;
3258
	struct fs_path *valid_path = NULL;
3259
	u64 ow_inode = 0;
3260 3261 3262
	u64 ow_gen;
	int did_overwrite = 0;
	int is_orphan = 0;
3263
	u64 last_dir_ino_rm = 0;
3264 3265 3266

verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);

3267 3268 3269 3270 3271
	/*
	 * This should never happen as the root dir always has the same ref
	 * which is always '..'
	 */
	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3272
	INIT_LIST_HEAD(&check_dirs);
3273

3274
	valid_path = fs_path_alloc();
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
	if (!valid_path) {
		ret = -ENOMEM;
		goto out;
	}

	/*
	 * First, check if the first ref of the current inode was overwritten
	 * before. If yes, we know that the current inode was already orphanized
	 * and thus use the orphan name. If not, we can use get_cur_path to
	 * get the path of the first ref as it would like while receiving at
	 * this point in time.
	 * New inodes are always orphan at the beginning, so force to use the
	 * orphan name in this case.
	 * The first ref is stored in valid_path and will be updated if it
	 * gets moved around.
	 */
	if (!sctx->cur_inode_new) {
		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
				sctx->cur_inode_gen);
		if (ret < 0)
			goto out;
		if (ret)
			did_overwrite = 1;
	}
	if (sctx->cur_inode_new || did_overwrite) {
		ret = gen_unique_name(sctx, sctx->cur_ino,
				sctx->cur_inode_gen, valid_path);
		if (ret < 0)
			goto out;
		is_orphan = 1;
	} else {
		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
				valid_path);
		if (ret < 0)
			goto out;
	}

	list_for_each_entry(cur, &sctx->new_refs, list) {
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
		/*
		 * We may have refs where the parent directory does not exist
		 * yet. This happens if the parent directories inum is higher
		 * the the current inum. To handle this case, we create the
		 * parent directory out of order. But we need to check if this
		 * did already happen before due to other refs in the same dir.
		 */
		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
		if (ret < 0)
			goto out;
		if (ret == inode_state_will_create) {
			ret = 0;
			/*
			 * First check if any of the current inodes refs did
			 * already create the dir.
			 */
			list_for_each_entry(cur2, &sctx->new_refs, list) {
				if (cur == cur2)
					break;
				if (cur2->dir == cur->dir) {
					ret = 1;
					break;
				}
			}

			/*
			 * If that did not happen, check if a previous inode
			 * did already create the dir.
			 */
			if (!ret)
				ret = did_create_dir(sctx, cur->dir);
			if (ret < 0)
				goto out;
			if (!ret) {
				ret = send_create_inode(sctx, cur->dir);
				if (ret < 0)
					goto out;
			}
		}

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
		/*
		 * Check if this new ref would overwrite the first ref of
		 * another unprocessed inode. If yes, orphanize the
		 * overwritten inode. If we find an overwritten ref that is
		 * not the first ref, simply unlink it.
		 */
		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
				cur->name, cur->name_len,
				&ow_inode, &ow_gen);
		if (ret < 0)
			goto out;
		if (ret) {
3365 3366 3367
			ret = is_first_ref(sctx->parent_root,
					   ow_inode, cur->dir, cur->name,
					   cur->name_len);
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
			if (ret < 0)
				goto out;
			if (ret) {
				ret = orphanize_inode(sctx, ow_inode, ow_gen,
						cur->full_path);
				if (ret < 0)
					goto out;
			} else {
				ret = send_unlink(sctx, cur->full_path);
				if (ret < 0)
					goto out;
			}
		}

		/*
		 * link/move the ref to the new place. If we have an orphan
		 * inode, move it and update valid_path. If not, link or move
		 * it depending on the inode mode.
		 */
3387
		if (is_orphan) {
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
			ret = send_rename(sctx, valid_path, cur->full_path);
			if (ret < 0)
				goto out;
			is_orphan = 0;
			ret = fs_path_copy(valid_path, cur->full_path);
			if (ret < 0)
				goto out;
		} else {
			if (S_ISDIR(sctx->cur_inode_mode)) {
				/*
				 * Dirs can't be linked, so move it. For moved
				 * dirs, we always have one new and one deleted
				 * ref. The deleted ref is ignored later.
				 */
3402 3403 3404 3405
				ret = wait_for_parent_move(sctx, cur);
				if (ret < 0)
					goto out;
				if (ret) {
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
					ret = add_pending_dir_move(sctx,
								   cur->dir);
					*pending_move = 1;
				} else {
					ret = send_rename(sctx, valid_path,
							  cur->full_path);
					if (!ret)
						ret = fs_path_copy(valid_path,
							       cur->full_path);
				}
3416 3417 3418 3419 3420 3421 3422 3423 3424
				if (ret < 0)
					goto out;
			} else {
				ret = send_link(sctx, cur->full_path,
						valid_path);
				if (ret < 0)
					goto out;
			}
		}
3425
		ret = dup_ref(cur, &check_dirs);
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
		if (ret < 0)
			goto out;
	}

	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
		/*
		 * Check if we can already rmdir the directory. If not,
		 * orphanize it. For every dir item inside that gets deleted
		 * later, we do this check again and rmdir it then if possible.
		 * See the use of check_dirs for more details.
		 */
3437 3438
		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
				sctx->cur_ino);
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
		if (ret < 0)
			goto out;
		if (ret) {
			ret = send_rmdir(sctx, valid_path);
			if (ret < 0)
				goto out;
		} else if (!is_orphan) {
			ret = orphanize_inode(sctx, sctx->cur_ino,
					sctx->cur_inode_gen, valid_path);
			if (ret < 0)
				goto out;
			is_orphan = 1;
		}

		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3454
			ret = dup_ref(cur, &check_dirs);
3455 3456 3457
			if (ret < 0)
				goto out;
		}
3458 3459 3460 3461 3462 3463 3464
	} else if (S_ISDIR(sctx->cur_inode_mode) &&
		   !list_empty(&sctx->deleted_refs)) {
		/*
		 * We have a moved dir. Add the old parent to check_dirs
		 */
		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
				list);
3465
		ret = dup_ref(cur, &check_dirs);
3466 3467
		if (ret < 0)
			goto out;
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
		/*
		 * We have a non dir inode. Go through all deleted refs and
		 * unlink them if they were not already overwritten by other
		 * inodes.
		 */
		list_for_each_entry(cur, &sctx->deleted_refs, list) {
			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
					sctx->cur_ino, sctx->cur_inode_gen,
					cur->name, cur->name_len);
			if (ret < 0)
				goto out;
			if (!ret) {
3481 3482 3483
				ret = send_unlink(sctx, cur->full_path);
				if (ret < 0)
					goto out;
3484
			}
3485
			ret = dup_ref(cur, &check_dirs);
3486 3487 3488 3489 3490 3491 3492
			if (ret < 0)
				goto out;
		}
		/*
		 * If the inode is still orphan, unlink the orphan. This may
		 * happen when a previous inode did overwrite the first ref
		 * of this inode and no new refs were added for the current
3493 3494 3495
		 * inode. Unlinking does not mean that the inode is deleted in
		 * all cases. There may still be links to this inode in other
		 * places.
3496
		 */
3497
		if (is_orphan) {
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
			ret = send_unlink(sctx, valid_path);
			if (ret < 0)
				goto out;
		}
	}

	/*
	 * We did collect all parent dirs where cur_inode was once located. We
	 * now go through all these dirs and check if they are pending for
	 * deletion and if it's finally possible to perform the rmdir now.
	 * We also update the inode stats of the parent dirs here.
	 */
3510
	list_for_each_entry(cur, &check_dirs, list) {
3511 3512 3513 3514 3515
		/*
		 * In case we had refs into dirs that were not processed yet,
		 * we don't need to do the utime and rmdir logic for these dirs.
		 * The dir will be processed later.
		 */
3516
		if (cur->dir > sctx->cur_ino)
3517 3518
			continue;

3519
		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3520 3521 3522 3523 3524 3525
		if (ret < 0)
			goto out;

		if (ret == inode_state_did_create ||
		    ret == inode_state_no_change) {
			/* TODO delayed utimes */
3526
			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3527 3528
			if (ret < 0)
				goto out;
3529 3530
		} else if (ret == inode_state_did_delete &&
			   cur->dir != last_dir_ino_rm) {
3531 3532
			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
					sctx->cur_ino);
3533 3534 3535
			if (ret < 0)
				goto out;
			if (ret) {
3536 3537
				ret = get_cur_path(sctx, cur->dir,
						   cur->dir_gen, valid_path);
3538 3539 3540 3541 3542
				if (ret < 0)
					goto out;
				ret = send_rmdir(sctx, valid_path);
				if (ret < 0)
					goto out;
3543
				last_dir_ino_rm = cur->dir;
3544 3545 3546 3547 3548 3549 3550
			}
		}
	}

	ret = 0;

out:
3551
	__free_recorded_refs(&check_dirs);
3552
	free_recorded_refs(sctx);
3553
	fs_path_free(valid_path);
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
	return ret;
}

static int __record_new_ref(int num, u64 dir, int index,
			    struct fs_path *name,
			    void *ctx)
{
	int ret = 0;
	struct send_ctx *sctx = ctx;
	struct fs_path *p;
	u64 gen;

3566
	p = fs_path_alloc();
3567 3568 3569 3570
	if (!p)
		return -ENOMEM;

	ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL,
3571
			NULL, NULL);
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, dir, gen, p);
	if (ret < 0)
		goto out;
	ret = fs_path_add_path(p, name);
	if (ret < 0)
		goto out;

	ret = record_ref(&sctx->new_refs, dir, gen, p);

out:
	if (ret)
3586
		fs_path_free(p);
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
	return ret;
}

static int __record_deleted_ref(int num, u64 dir, int index,
				struct fs_path *name,
				void *ctx)
{
	int ret = 0;
	struct send_ctx *sctx = ctx;
	struct fs_path *p;
	u64 gen;

3599
	p = fs_path_alloc();
3600 3601 3602 3603
	if (!p)
		return -ENOMEM;

	ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL,
3604
			NULL, NULL);
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, dir, gen, p);
	if (ret < 0)
		goto out;
	ret = fs_path_add_path(p, name);
	if (ret < 0)
		goto out;

	ret = record_ref(&sctx->deleted_refs, dir, gen, p);

out:
	if (ret)
3619
		fs_path_free(p);
3620 3621 3622 3623 3624 3625 3626
	return ret;
}

static int record_new_ref(struct send_ctx *sctx)
{
	int ret;

3627 3628
	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
				sctx->cmp_key, 0, __record_new_ref, sctx);
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
	if (ret < 0)
		goto out;
	ret = 0;

out:
	return ret;
}

static int record_deleted_ref(struct send_ctx *sctx)
{
	int ret;

3641 3642
	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
				sctx->cmp_key, 0, __record_deleted_ref, sctx);
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
	if (ret < 0)
		goto out;
	ret = 0;

out:
	return ret;
}

struct find_ref_ctx {
	u64 dir;
3653 3654
	u64 dir_gen;
	struct btrfs_root *root;
3655 3656 3657 3658 3659 3660 3661 3662 3663
	struct fs_path *name;
	int found_idx;
};

static int __find_iref(int num, u64 dir, int index,
		       struct fs_path *name,
		       void *ctx_)
{
	struct find_ref_ctx *ctx = ctx_;
3664 3665
	u64 dir_gen;
	int ret;
3666 3667 3668

	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
		/*
		 * To avoid doing extra lookups we'll only do this if everything
		 * else matches.
		 */
		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
				     NULL, NULL, NULL);
		if (ret)
			return ret;
		if (dir_gen != ctx->dir_gen)
			return 0;
3679 3680 3681 3682 3683 3684
		ctx->found_idx = num;
		return 1;
	}
	return 0;
}

3685
static int find_iref(struct btrfs_root *root,
3686 3687
		     struct btrfs_path *path,
		     struct btrfs_key *key,
3688
		     u64 dir, u64 dir_gen, struct fs_path *name)
3689 3690 3691 3692 3693 3694
{
	int ret;
	struct find_ref_ctx ctx;

	ctx.dir = dir;
	ctx.name = name;
3695
	ctx.dir_gen = dir_gen;
3696
	ctx.found_idx = -1;
3697
	ctx.root = root;
3698

3699
	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
	if (ret < 0)
		return ret;

	if (ctx.found_idx == -1)
		return -ENOENT;

	return ctx.found_idx;
}

static int __record_changed_new_ref(int num, u64 dir, int index,
				    struct fs_path *name,
				    void *ctx)
{
3713
	u64 dir_gen;
3714 3715 3716
	int ret;
	struct send_ctx *sctx = ctx;

3717 3718 3719 3720 3721
	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
			     NULL, NULL, NULL);
	if (ret)
		return ret;

3722
	ret = find_iref(sctx->parent_root, sctx->right_path,
3723
			sctx->cmp_key, dir, dir_gen, name);
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
	if (ret == -ENOENT)
		ret = __record_new_ref(num, dir, index, name, sctx);
	else if (ret > 0)
		ret = 0;

	return ret;
}

static int __record_changed_deleted_ref(int num, u64 dir, int index,
					struct fs_path *name,
					void *ctx)
{
3736
	u64 dir_gen;
3737 3738 3739
	int ret;
	struct send_ctx *sctx = ctx;

3740 3741 3742 3743 3744
	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
			     NULL, NULL, NULL);
	if (ret)
		return ret;

3745
	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
3746
			dir, dir_gen, name);
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
	if (ret == -ENOENT)
		ret = __record_deleted_ref(num, dir, index, name, sctx);
	else if (ret > 0)
		ret = 0;

	return ret;
}

static int record_changed_ref(struct send_ctx *sctx)
{
	int ret = 0;

3759
	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3760 3761 3762
			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
	if (ret < 0)
		goto out;
3763
	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
	if (ret < 0)
		goto out;
	ret = 0;

out:
	return ret;
}

/*
 * Record and process all refs at once. Needed when an inode changes the
 * generation number, which means that it was deleted and recreated.
 */
static int process_all_refs(struct send_ctx *sctx,
			    enum btrfs_compare_tree_result cmd)
{
	int ret;
	struct btrfs_root *root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	int slot;
	iterate_inode_ref_t cb;
3788
	int pending_move = 0;
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	if (cmd == BTRFS_COMPARE_TREE_NEW) {
		root = sctx->send_root;
		cb = __record_new_ref;
	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
		root = sctx->parent_root;
		cb = __record_deleted_ref;
	} else {
3801 3802 3803 3804
		btrfs_err(sctx->send_root->fs_info,
				"Wrong command %d in process_all_refs", cmd);
		ret = -EINVAL;
		goto out;
3805 3806 3807 3808 3809
	}

	key.objectid = sctx->cmp_key->objectid;
	key.type = BTRFS_INODE_REF_KEY;
	key.offset = 0;
3810 3811 3812
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
3813

3814
	while (1) {
3815 3816
		eb = path->nodes[0];
		slot = path->slots[0];
3817 3818 3819 3820 3821 3822 3823 3824 3825
		if (slot >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0)
				goto out;
			else if (ret > 0)
				break;
			continue;
		}

3826 3827 3828
		btrfs_item_key_to_cpu(eb, &found_key, slot);

		if (found_key.objectid != key.objectid ||
3829 3830
		    (found_key.type != BTRFS_INODE_REF_KEY &&
		     found_key.type != BTRFS_INODE_EXTREF_KEY))
3831 3832
			break;

3833
		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
3834 3835 3836
		if (ret < 0)
			goto out;

3837
		path->slots[0]++;
3838
	}
3839
	btrfs_release_path(path);
3840

3841 3842 3843
	ret = process_recorded_refs(sctx, &pending_move);
	/* Only applicable to an incremental send. */
	ASSERT(pending_move == 0);
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901

out:
	btrfs_free_path(path);
	return ret;
}

static int send_set_xattr(struct send_ctx *sctx,
			  struct fs_path *path,
			  const char *name, int name_len,
			  const char *data, int data_len)
{
	int ret = 0;

	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

static int send_remove_xattr(struct send_ctx *sctx,
			  struct fs_path *path,
			  const char *name, int name_len)
{
	int ret = 0;

	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
	return ret;
}

static int __process_new_xattr(int num, struct btrfs_key *di_key,
			       const char *name, int name_len,
			       const char *data, int data_len,
			       u8 type, void *ctx)
{
	int ret;
	struct send_ctx *sctx = ctx;
	struct fs_path *p;
	posix_acl_xattr_header dummy_acl;

3902
	p = fs_path_alloc();
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
	if (!p)
		return -ENOMEM;

	/*
	 * This hack is needed because empty acl's are stored as zero byte
	 * data in xattrs. Problem with that is, that receiving these zero byte
	 * acl's will fail later. To fix this, we send a dummy acl list that
	 * only contains the version number and no entries.
	 */
	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
		if (data_len == 0) {
			dummy_acl.a_version =
					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
			data = (char *)&dummy_acl;
			data_len = sizeof(dummy_acl);
		}
	}

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);

out:
3929
	fs_path_free(p);
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
	return ret;
}

static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
				   const char *name, int name_len,
				   const char *data, int data_len,
				   u8 type, void *ctx)
{
	int ret;
	struct send_ctx *sctx = ctx;
	struct fs_path *p;

3942
	p = fs_path_alloc();
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
	if (!p)
		return -ENOMEM;

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	ret = send_remove_xattr(sctx, p, name, name_len);

out:
3953
	fs_path_free(p);
3954 3955 3956 3957 3958 3959 3960
	return ret;
}

static int process_new_xattr(struct send_ctx *sctx)
{
	int ret = 0;

3961 3962
	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
			       sctx->cmp_key, __process_new_xattr, sctx);
3963 3964 3965 3966 3967 3968 3969 3970

	return ret;
}

static int process_deleted_xattr(struct send_ctx *sctx)
{
	int ret;

3971 3972
	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
			       sctx->cmp_key, __process_deleted_xattr, sctx);
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995

	return ret;
}

struct find_xattr_ctx {
	const char *name;
	int name_len;
	int found_idx;
	char *found_data;
	int found_data_len;
};

static int __find_xattr(int num, struct btrfs_key *di_key,
			const char *name, int name_len,
			const char *data, int data_len,
			u8 type, void *vctx)
{
	struct find_xattr_ctx *ctx = vctx;

	if (name_len == ctx->name_len &&
	    strncmp(name, ctx->name, name_len) == 0) {
		ctx->found_idx = num;
		ctx->found_data_len = data_len;
3996
		ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
3997 3998 3999 4000 4001 4002 4003
		if (!ctx->found_data)
			return -ENOMEM;
		return 1;
	}
	return 0;
}

4004
static int find_xattr(struct btrfs_root *root,
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
		      struct btrfs_path *path,
		      struct btrfs_key *key,
		      const char *name, int name_len,
		      char **data, int *data_len)
{
	int ret;
	struct find_xattr_ctx ctx;

	ctx.name = name;
	ctx.name_len = name_len;
	ctx.found_idx = -1;
	ctx.found_data = NULL;
	ctx.found_data_len = 0;

4019
	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
	if (ret < 0)
		return ret;

	if (ctx.found_idx == -1)
		return -ENOENT;
	if (data) {
		*data = ctx.found_data;
		*data_len = ctx.found_data_len;
	} else {
		kfree(ctx.found_data);
	}
	return ctx.found_idx;
}


static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
				       const char *name, int name_len,
				       const char *data, int data_len,
				       u8 type, void *ctx)
{
	int ret;
	struct send_ctx *sctx = ctx;
	char *found_data = NULL;
	int found_data_len  = 0;

4045 4046 4047
	ret = find_xattr(sctx->parent_root, sctx->right_path,
			 sctx->cmp_key, name, name_len, &found_data,
			 &found_data_len);
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
	if (ret == -ENOENT) {
		ret = __process_new_xattr(num, di_key, name, name_len, data,
				data_len, type, ctx);
	} else if (ret >= 0) {
		if (data_len != found_data_len ||
		    memcmp(data, found_data, data_len)) {
			ret = __process_new_xattr(num, di_key, name, name_len,
					data, data_len, type, ctx);
		} else {
			ret = 0;
		}
	}

	kfree(found_data);
	return ret;
}

static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
					   const char *name, int name_len,
					   const char *data, int data_len,
					   u8 type, void *ctx)
{
	int ret;
	struct send_ctx *sctx = ctx;

4073 4074
	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
			 name, name_len, NULL, NULL);
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
	if (ret == -ENOENT)
		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
				data_len, type, ctx);
	else if (ret >= 0)
		ret = 0;

	return ret;
}

static int process_changed_xattr(struct send_ctx *sctx)
{
	int ret = 0;

4088
	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4089 4090 4091
			sctx->cmp_key, __process_changed_new_xattr, sctx);
	if (ret < 0)
		goto out;
4092
	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
			sctx->cmp_key, __process_changed_deleted_xattr, sctx);

out:
	return ret;
}

static int process_all_new_xattrs(struct send_ctx *sctx)
{
	int ret;
	struct btrfs_root *root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	int slot;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	root = sctx->send_root;

	key.objectid = sctx->cmp_key->objectid;
	key.type = BTRFS_XATTR_ITEM_KEY;
	key.offset = 0;
4118 4119 4120
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
4121

4122
	while (1) {
4123 4124
		eb = path->nodes[0];
		slot = path->slots[0];
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
		if (slot >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0) {
				goto out;
			} else if (ret > 0) {
				ret = 0;
				break;
			}
			continue;
		}
4135

4136
		btrfs_item_key_to_cpu(eb, &found_key, slot);
4137 4138 4139 4140 4141 4142
		if (found_key.objectid != key.objectid ||
		    found_key.type != key.type) {
			ret = 0;
			goto out;
		}

4143 4144
		ret = iterate_dir_item(root, path, &found_key,
				       __process_new_xattr, sctx);
4145 4146 4147
		if (ret < 0)
			goto out;

4148
		path->slots[0]++;
4149 4150 4151 4152 4153 4154 4155
	}

out:
	btrfs_free_path(path);
	return ret;
}

J
Josef Bacik 已提交
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
{
	struct btrfs_root *root = sctx->send_root;
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct inode *inode;
	struct page *page;
	char *addr;
	struct btrfs_key key;
	pgoff_t index = offset >> PAGE_CACHE_SHIFT;
	pgoff_t last_index;
	unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
	ssize_t ret = 0;

	key.objectid = sctx->cur_ino;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	if (offset + len > i_size_read(inode)) {
		if (offset > i_size_read(inode))
			len = 0;
		else
			len = offset - i_size_read(inode);
	}
	if (len == 0)
		goto out;

	last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
	while (index <= last_index) {
		unsigned cur_len = min_t(unsigned, len,
					 PAGE_CACHE_SIZE - pg_offset);
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
			ret = -ENOMEM;
			break;
		}

		if (!PageUptodate(page)) {
			btrfs_readpage(NULL, page);
			lock_page(page);
			if (!PageUptodate(page)) {
				unlock_page(page);
				page_cache_release(page);
				ret = -EIO;
				break;
			}
		}

		addr = kmap(page);
		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
		kunmap(page);
		unlock_page(page);
		page_cache_release(page);
		index++;
		pg_offset = 0;
		len -= cur_len;
		ret += cur_len;
	}
out:
	iput(inode);
	return ret;
}

4222 4223 4224 4225 4226 4227 4228 4229
/*
 * Read some bytes from the current inode/file and send a write command to
 * user space.
 */
static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
{
	int ret = 0;
	struct fs_path *p;
J
Josef Bacik 已提交
4230
	ssize_t num_read = 0;
4231

4232
	p = fs_path_alloc();
4233 4234 4235 4236 4237
	if (!p)
		return -ENOMEM;

verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);

J
Josef Bacik 已提交
4238 4239 4240 4241
	num_read = fill_read_buf(sctx, offset, len);
	if (num_read <= 0) {
		if (num_read < 0)
			ret = num_read;
4242
		goto out;
J
Josef Bacik 已提交
4243
	}
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254

	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4255
	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4256 4257 4258 4259 4260

	ret = send_cmd(sctx);

tlv_put_failure:
out:
4261
	fs_path_free(p);
4262 4263
	if (ret < 0)
		return ret;
4264
	return num_read;
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
}

/*
 * Send a clone command to user space.
 */
static int send_clone(struct send_ctx *sctx,
		      u64 offset, u32 len,
		      struct clone_root *clone_root)
{
	int ret = 0;
	struct fs_path *p;
	u64 gen;

verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
		clone_root->root->objectid, clone_root->ino,
		clone_root->offset);

4283
	p = fs_path_alloc();
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);

4299
	if (clone_root->root == sctx->send_root) {
4300
		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4301
				&gen, NULL, NULL, NULL, NULL);
4302 4303 4304 4305
		if (ret < 0)
			goto out;
		ret = get_cur_path(sctx, clone_root->ino, gen, p);
	} else {
4306
		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4307 4308 4309 4310 4311
	}
	if (ret < 0)
		goto out;

	TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4312
			clone_root->root->root_item.uuid);
4313
	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4314
		    le64_to_cpu(clone_root->root->root_item.ctransid));
4315 4316 4317 4318 4319 4320 4321 4322
	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
			clone_root->offset);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
4323
	fs_path_free(p);
4324 4325 4326
	return ret;
}

4327 4328 4329 4330 4331 4332 4333 4334 4335
/*
 * Send an update extent command to user space.
 */
static int send_update_extent(struct send_ctx *sctx,
			      u64 offset, u32 len)
{
	int ret = 0;
	struct fs_path *p;

4336
	p = fs_path_alloc();
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
	if (!p)
		return -ENOMEM;

	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
	if (ret < 0)
		goto out;

	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
	if (ret < 0)
		goto out;

	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);

	ret = send_cmd(sctx);

tlv_put_failure:
out:
4356
	fs_path_free(p);
4357 4358 4359
	return ret;
}

4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
static int send_hole(struct send_ctx *sctx, u64 end)
{
	struct fs_path *p = NULL;
	u64 offset = sctx->cur_inode_last_extent;
	u64 len;
	int ret = 0;

	p = fs_path_alloc();
	if (!p)
		return -ENOMEM;
	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
	while (offset < end) {
		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);

		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
		if (ret < 0)
			break;
		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
		if (ret < 0)
			break;
		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
		ret = send_cmd(sctx);
		if (ret < 0)
			break;
		offset += len;
	}
tlv_put_failure:
	fs_path_free(p);
	return ret;
}

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
static int send_write_or_clone(struct send_ctx *sctx,
			       struct btrfs_path *path,
			       struct btrfs_key *key,
			       struct clone_root *clone_root)
{
	int ret = 0;
	struct btrfs_file_extent_item *ei;
	u64 offset = key->offset;
	u64 pos = 0;
	u64 len;
	u32 l;
	u8 type;
4405
	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4406 4407 4408 4409

	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
			struct btrfs_file_extent_item);
	type = btrfs_file_extent_type(path->nodes[0], ei);
4410
	if (type == BTRFS_FILE_EXTENT_INLINE) {
4411 4412
		len = btrfs_file_extent_inline_len(path->nodes[0],
						   path->slots[0], ei);
4413 4414 4415 4416 4417 4418 4419
		/*
		 * it is possible the inline item won't cover the whole page,
		 * but there may be items after this page.  Make
		 * sure to send the whole thing
		 */
		len = PAGE_CACHE_ALIGN(len);
	} else {
4420
		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4421
	}
4422 4423 4424 4425 4426 4427 4428 4429

	if (offset + len > sctx->cur_inode_size)
		len = sctx->cur_inode_size - offset;
	if (len == 0) {
		ret = 0;
		goto out;
	}

4430
	if (clone_root && IS_ALIGNED(offset + len, bs)) {
4431 4432 4433 4434
		ret = send_clone(sctx, offset, len, clone_root);
	} else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
		ret = send_update_extent(sctx, offset, len);
	} else {
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469
		while (pos < len) {
			l = len - pos;
			if (l > BTRFS_SEND_READ_SIZE)
				l = BTRFS_SEND_READ_SIZE;
			ret = send_write(sctx, pos + offset, l);
			if (ret < 0)
				goto out;
			if (!ret)
				break;
			pos += ret;
		}
		ret = 0;
	}
out:
	return ret;
}

static int is_extent_unchanged(struct send_ctx *sctx,
			       struct btrfs_path *left_path,
			       struct btrfs_key *ekey)
{
	int ret = 0;
	struct btrfs_key key;
	struct btrfs_path *path = NULL;
	struct extent_buffer *eb;
	int slot;
	struct btrfs_key found_key;
	struct btrfs_file_extent_item *ei;
	u64 left_disknr;
	u64 right_disknr;
	u64 left_offset;
	u64 right_offset;
	u64 left_offset_fixed;
	u64 left_len;
	u64 right_len;
4470 4471
	u64 left_gen;
	u64 right_gen;
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
	u8 left_type;
	u8 right_type;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	eb = left_path->nodes[0];
	slot = left_path->slots[0];
	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
	left_type = btrfs_file_extent_type(eb, ei);

	if (left_type != BTRFS_FILE_EXTENT_REG) {
		ret = 0;
		goto out;
	}
4488 4489 4490 4491
	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
	left_len = btrfs_file_extent_num_bytes(eb, ei);
	left_offset = btrfs_file_extent_offset(eb, ei);
	left_gen = btrfs_file_extent_generation(eb, ei);
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532

	/*
	 * Following comments will refer to these graphics. L is the left
	 * extents which we are checking at the moment. 1-8 are the right
	 * extents that we iterate.
	 *
	 *       |-----L-----|
	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
	 *
	 *       |-----L-----|
	 * |--1--|-2b-|...(same as above)
	 *
	 * Alternative situation. Happens on files where extents got split.
	 *       |-----L-----|
	 * |-----------7-----------|-6-|
	 *
	 * Alternative situation. Happens on files which got larger.
	 *       |-----L-----|
	 * |-8-|
	 * Nothing follows after 8.
	 */

	key.objectid = ekey->objectid;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = ekey->offset;
	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
	if (ret) {
		ret = 0;
		goto out;
	}

	/*
	 * Handle special case where the right side has no extents at all.
	 */
	eb = path->nodes[0];
	slot = path->slots[0];
	btrfs_item_key_to_cpu(eb, &found_key, slot);
	if (found_key.objectid != key.objectid ||
	    found_key.type != key.type) {
4533 4534
		/* If we're a hole then just pretend nothing changed */
		ret = (left_disknr) ? 0 : 1;
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
		goto out;
	}

	/*
	 * We're now on 2a, 2b or 7.
	 */
	key = found_key;
	while (key.offset < ekey->offset + left_len) {
		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
		right_type = btrfs_file_extent_type(eb, ei);
		if (right_type != BTRFS_FILE_EXTENT_REG) {
			ret = 0;
			goto out;
		}

4550 4551 4552 4553 4554
		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
		right_len = btrfs_file_extent_num_bytes(eb, ei);
		right_offset = btrfs_file_extent_offset(eb, ei);
		right_gen = btrfs_file_extent_generation(eb, ei);

4555 4556 4557 4558
		/*
		 * Are we at extent 8? If yes, we know the extent is changed.
		 * This may only happen on the first iteration.
		 */
4559
		if (found_key.offset + right_len <= ekey->offset) {
4560 4561
			/* If we're a hole just pretend nothing changed */
			ret = (left_disknr) ? 0 : 1;
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
			goto out;
		}

		left_offset_fixed = left_offset;
		if (key.offset < ekey->offset) {
			/* Fix the right offset for 2a and 7. */
			right_offset += ekey->offset - key.offset;
		} else {
			/* Fix the left offset for all behind 2a and 2b */
			left_offset_fixed += key.offset - ekey->offset;
		}

		/*
		 * Check if we have the same extent.
		 */
4577
		if (left_disknr != right_disknr ||
4578 4579
		    left_offset_fixed != right_offset ||
		    left_gen != right_gen) {
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
			ret = 0;
			goto out;
		}

		/*
		 * Go to the next extent.
		 */
		ret = btrfs_next_item(sctx->parent_root, path);
		if (ret < 0)
			goto out;
		if (!ret) {
			eb = path->nodes[0];
			slot = path->slots[0];
			btrfs_item_key_to_cpu(eb, &found_key, slot);
		}
		if (ret || found_key.objectid != key.objectid ||
		    found_key.type != key.type) {
			key.offset += right_len;
			break;
4599 4600 4601 4602
		}
		if (found_key.offset != key.offset + right_len) {
			ret = 0;
			goto out;
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
		}
		key = found_key;
	}

	/*
	 * We're now behind the left extent (treat as unchanged) or at the end
	 * of the right side (treat as changed).
	 */
	if (key.offset >= ekey->offset + left_len)
		ret = 1;
	else
		ret = 0;


out:
	btrfs_free_path(path);
	return ret;
}

4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
static int get_last_extent(struct send_ctx *sctx, u64 offset)
{
	struct btrfs_path *path;
	struct btrfs_root *root = sctx->send_root;
	struct btrfs_file_extent_item *fi;
	struct btrfs_key key;
	u64 extent_end;
	u8 type;
	int ret;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	sctx->cur_inode_last_extent = 0;

	key.objectid = sctx->cur_ino;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = offset;
	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
	if (ret < 0)
		goto out;
	ret = 0;
	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
		goto out;

	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
			    struct btrfs_file_extent_item);
	type = btrfs_file_extent_type(path->nodes[0], fi);
	if (type == BTRFS_FILE_EXTENT_INLINE) {
4653 4654
		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
							path->slots[0], fi);
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
		extent_end = ALIGN(key.offset + size,
				   sctx->send_root->sectorsize);
	} else {
		extent_end = key.offset +
			btrfs_file_extent_num_bytes(path->nodes[0], fi);
	}
	sctx->cur_inode_last_extent = extent_end;
out:
	btrfs_free_path(path);
	return ret;
}

static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
			   struct btrfs_key *key)
{
	struct btrfs_file_extent_item *fi;
	u64 extent_end;
	u8 type;
	int ret = 0;

	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
		return 0;

	if (sctx->cur_inode_last_extent == (u64)-1) {
		ret = get_last_extent(sctx, key->offset - 1);
		if (ret)
			return ret;
	}

	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
			    struct btrfs_file_extent_item);
	type = btrfs_file_extent_type(path->nodes[0], fi);
	if (type == BTRFS_FILE_EXTENT_INLINE) {
4688 4689
		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
							path->slots[0], fi);
4690 4691 4692 4693 4694 4695
		extent_end = ALIGN(key->offset + size,
				   sctx->send_root->sectorsize);
	} else {
		extent_end = key->offset +
			btrfs_file_extent_num_bytes(path->nodes[0], fi);
	}
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710

	if (path->slots[0] == 0 &&
	    sctx->cur_inode_last_extent < key->offset) {
		/*
		 * We might have skipped entire leafs that contained only
		 * file extent items for our current inode. These leafs have
		 * a generation number smaller (older) than the one in the
		 * current leaf and the leaf our last extent came from, and
		 * are located between these 2 leafs.
		 */
		ret = get_last_extent(sctx, key->offset - 1);
		if (ret)
			return ret;
	}

4711 4712 4713 4714 4715 4716
	if (sctx->cur_inode_last_extent < key->offset)
		ret = send_hole(sctx, key->offset);
	sctx->cur_inode_last_extent = extent_end;
	return ret;
}

4717 4718 4719 4720 4721
static int process_extent(struct send_ctx *sctx,
			  struct btrfs_path *path,
			  struct btrfs_key *key)
{
	struct clone_root *found_clone = NULL;
4722
	int ret = 0;
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732

	if (S_ISLNK(sctx->cur_inode_mode))
		return 0;

	if (sctx->parent_root && !sctx->cur_inode_new) {
		ret = is_extent_unchanged(sctx, path, key);
		if (ret < 0)
			goto out;
		if (ret) {
			ret = 0;
4733
			goto out_hole;
4734
		}
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
	} else {
		struct btrfs_file_extent_item *ei;
		u8 type;

		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
				    struct btrfs_file_extent_item);
		type = btrfs_file_extent_type(path->nodes[0], ei);
		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
		    type == BTRFS_FILE_EXTENT_REG) {
			/*
			 * The send spec does not have a prealloc command yet,
			 * so just leave a hole for prealloc'ed extents until
			 * we have enough commands queued up to justify rev'ing
			 * the send spec.
			 */
			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
				ret = 0;
				goto out;
			}

			/* Have a hole, just skip it. */
			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
				ret = 0;
				goto out;
			}
		}
4761 4762 4763 4764 4765 4766 4767 4768
	}

	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
			sctx->cur_inode_size, &found_clone);
	if (ret != -ENOENT && ret < 0)
		goto out;

	ret = send_write_or_clone(sctx, path, key, found_clone);
4769 4770 4771 4772
	if (ret)
		goto out;
out_hole:
	ret = maybe_send_hole(sctx, path, key);
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
out:
	return ret;
}

static int process_all_extents(struct send_ctx *sctx)
{
	int ret;
	struct btrfs_root *root;
	struct btrfs_path *path;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	int slot;

	root = sctx->send_root;
	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

	key.objectid = sctx->cmp_key->objectid;
	key.type = BTRFS_EXTENT_DATA_KEY;
	key.offset = 0;
4795 4796 4797
	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0)
		goto out;
4798

4799
	while (1) {
4800 4801
		eb = path->nodes[0];
		slot = path->slots[0];
4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813

		if (slot >= btrfs_header_nritems(eb)) {
			ret = btrfs_next_leaf(root, path);
			if (ret < 0) {
				goto out;
			} else if (ret > 0) {
				ret = 0;
				break;
			}
			continue;
		}

4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
		btrfs_item_key_to_cpu(eb, &found_key, slot);

		if (found_key.objectid != key.objectid ||
		    found_key.type != key.type) {
			ret = 0;
			goto out;
		}

		ret = process_extent(sctx, path, &found_key);
		if (ret < 0)
			goto out;

4826
		path->slots[0]++;
4827 4828 4829 4830 4831 4832 4833
	}

out:
	btrfs_free_path(path);
	return ret;
}

4834 4835 4836
static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
					   int *pending_move,
					   int *refs_processed)
4837 4838 4839 4840 4841 4842
{
	int ret = 0;

	if (sctx->cur_ino == 0)
		goto out;
	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
4843
	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
4844 4845 4846 4847
		goto out;
	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
		goto out;

4848
	ret = process_recorded_refs(sctx, pending_move);
4849 4850 4851
	if (ret < 0)
		goto out;

4852
	*refs_processed = 1;
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867
out:
	return ret;
}

static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
{
	int ret = 0;
	u64 left_mode;
	u64 left_uid;
	u64 left_gid;
	u64 right_mode;
	u64 right_uid;
	u64 right_gid;
	int need_chmod = 0;
	int need_chown = 0;
4868 4869
	int pending_move = 0;
	int refs_processed = 0;
4870

4871 4872
	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
					      &refs_processed);
4873 4874 4875
	if (ret < 0)
		goto out;

4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
	/*
	 * We have processed the refs and thus need to advance send_progress.
	 * Now, calls to get_cur_xxx will take the updated refs of the current
	 * inode into account.
	 *
	 * On the other hand, if our current inode is a directory and couldn't
	 * be moved/renamed because its parent was renamed/moved too and it has
	 * a higher inode number, we can only move/rename our current inode
	 * after we moved/renamed its parent. Therefore in this case operate on
	 * the old path (pre move/rename) of our current inode, and the
	 * move/rename will be performed later.
	 */
	if (refs_processed && !pending_move)
		sctx->send_progress = sctx->cur_ino + 1;

4891 4892 4893 4894 4895 4896
	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
		goto out;
	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
		goto out;

	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
4897
			&left_mode, &left_uid, &left_gid, NULL);
4898 4899 4900
	if (ret < 0)
		goto out;

4901 4902 4903
	if (!sctx->parent_root || sctx->cur_inode_new) {
		need_chown = 1;
		if (!S_ISLNK(sctx->cur_inode_mode))
4904
			need_chmod = 1;
4905 4906 4907 4908 4909 4910
	} else {
		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
				NULL, NULL, &right_mode, &right_uid,
				&right_gid, NULL);
		if (ret < 0)
			goto out;
4911

4912 4913 4914 4915
		if (left_uid != right_uid || left_gid != right_gid)
			need_chown = 1;
		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
			need_chmod = 1;
4916 4917 4918
	}

	if (S_ISREG(sctx->cur_inode_mode)) {
4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931
		if (need_send_hole(sctx)) {
			if (sctx->cur_inode_last_extent == (u64)-1) {
				ret = get_last_extent(sctx, (u64)-1);
				if (ret)
					goto out;
			}
			if (sctx->cur_inode_last_extent <
			    sctx->cur_inode_size) {
				ret = send_hole(sctx, sctx->cur_inode_size);
				if (ret)
					goto out;
			}
		}
4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
				sctx->cur_inode_size);
		if (ret < 0)
			goto out;
	}

	if (need_chown) {
		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
				left_uid, left_gid);
		if (ret < 0)
			goto out;
	}
	if (need_chmod) {
		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
				left_mode);
		if (ret < 0)
			goto out;
	}

	/*
4952 4953
	 * If other directory inodes depended on our current directory
	 * inode's move/rename, now do their move/rename operations.
4954
	 */
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
		ret = apply_children_dir_moves(sctx);
		if (ret)
			goto out;
	}

	/*
	 * Need to send that every time, no matter if it actually
	 * changed between the two trees as we have done changes to
	 * the inode before.
	 */
	sctx->send_progress = sctx->cur_ino + 1;
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
	ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
	if (ret < 0)
		goto out;

out:
	return ret;
}

static int changed_inode(struct send_ctx *sctx,
			 enum btrfs_compare_tree_result result)
{
	int ret = 0;
	struct btrfs_key *key = sctx->cmp_key;
	struct btrfs_inode_item *left_ii = NULL;
	struct btrfs_inode_item *right_ii = NULL;
	u64 left_gen = 0;
	u64 right_gen = 0;

	sctx->cur_ino = key->objectid;
	sctx->cur_inode_new_gen = 0;
4987
	sctx->cur_inode_last_extent = (u64)-1;
4988 4989 4990 4991 4992 4993

	/*
	 * Set send_progress to current inode. This will tell all get_cur_xxx
	 * functions that the current inode's refs are not updated yet. Later,
	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
	 */
4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
	sctx->send_progress = sctx->cur_ino;

	if (result == BTRFS_COMPARE_TREE_NEW ||
	    result == BTRFS_COMPARE_TREE_CHANGED) {
		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
				sctx->left_path->slots[0],
				struct btrfs_inode_item);
		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
				left_ii);
	} else {
		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
				sctx->right_path->slots[0],
				struct btrfs_inode_item);
		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
				right_ii);
	}
	if (result == BTRFS_COMPARE_TREE_CHANGED) {
		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
				sctx->right_path->slots[0],
				struct btrfs_inode_item);

		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
				right_ii);
5017 5018 5019 5020 5021 5022 5023 5024

		/*
		 * The cur_ino = root dir case is special here. We can't treat
		 * the inode as deleted+reused because it would generate a
		 * stream that tries to delete/mkdir the root dir.
		 */
		if (left_gen != right_gen &&
		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
			sctx->cur_inode_new_gen = 1;
	}

	if (result == BTRFS_COMPARE_TREE_NEW) {
		sctx->cur_inode_gen = left_gen;
		sctx->cur_inode_new = 1;
		sctx->cur_inode_deleted = 0;
		sctx->cur_inode_size = btrfs_inode_size(
				sctx->left_path->nodes[0], left_ii);
		sctx->cur_inode_mode = btrfs_inode_mode(
				sctx->left_path->nodes[0], left_ii);
		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5037
			ret = send_create_inode_if_needed(sctx);
5038 5039 5040 5041 5042 5043 5044 5045 5046
	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
		sctx->cur_inode_gen = right_gen;
		sctx->cur_inode_new = 0;
		sctx->cur_inode_deleted = 1;
		sctx->cur_inode_size = btrfs_inode_size(
				sctx->right_path->nodes[0], right_ii);
		sctx->cur_inode_mode = btrfs_inode_mode(
				sctx->right_path->nodes[0], right_ii);
	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5047 5048 5049 5050 5051 5052 5053
		/*
		 * We need to do some special handling in case the inode was
		 * reported as changed with a changed generation number. This
		 * means that the original inode was deleted and new inode
		 * reused the same inum. So we have to treat the old inode as
		 * deleted and the new one as new.
		 */
5054
		if (sctx->cur_inode_new_gen) {
5055 5056 5057
			/*
			 * First, process the inode as if it was deleted.
			 */
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
			sctx->cur_inode_gen = right_gen;
			sctx->cur_inode_new = 0;
			sctx->cur_inode_deleted = 1;
			sctx->cur_inode_size = btrfs_inode_size(
					sctx->right_path->nodes[0], right_ii);
			sctx->cur_inode_mode = btrfs_inode_mode(
					sctx->right_path->nodes[0], right_ii);
			ret = process_all_refs(sctx,
					BTRFS_COMPARE_TREE_DELETED);
			if (ret < 0)
				goto out;

5070 5071 5072
			/*
			 * Now process the inode as if it was new.
			 */
5073 5074 5075 5076 5077 5078 5079
			sctx->cur_inode_gen = left_gen;
			sctx->cur_inode_new = 1;
			sctx->cur_inode_deleted = 0;
			sctx->cur_inode_size = btrfs_inode_size(
					sctx->left_path->nodes[0], left_ii);
			sctx->cur_inode_mode = btrfs_inode_mode(
					sctx->left_path->nodes[0], left_ii);
5080
			ret = send_create_inode_if_needed(sctx);
5081 5082 5083 5084 5085 5086
			if (ret < 0)
				goto out;

			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
			if (ret < 0)
				goto out;
5087 5088 5089 5090 5091
			/*
			 * Advance send_progress now as we did not get into
			 * process_recorded_refs_if_needed in the new_gen case.
			 */
			sctx->send_progress = sctx->cur_ino + 1;
5092 5093 5094 5095 5096

			/*
			 * Now process all extents and xattrs of the inode as if
			 * they were all new.
			 */
5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
			ret = process_all_extents(sctx);
			if (ret < 0)
				goto out;
			ret = process_all_new_xattrs(sctx);
			if (ret < 0)
				goto out;
		} else {
			sctx->cur_inode_gen = left_gen;
			sctx->cur_inode_new = 0;
			sctx->cur_inode_new_gen = 0;
			sctx->cur_inode_deleted = 0;
			sctx->cur_inode_size = btrfs_inode_size(
					sctx->left_path->nodes[0], left_ii);
			sctx->cur_inode_mode = btrfs_inode_mode(
					sctx->left_path->nodes[0], left_ii);
		}
	}

out:
	return ret;
}

5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
/*
 * We have to process new refs before deleted refs, but compare_trees gives us
 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
 * first and later process them in process_recorded_refs.
 * For the cur_inode_new_gen case, we skip recording completely because
 * changed_inode did already initiate processing of refs. The reason for this is
 * that in this case, compare_tree actually compares the refs of 2 different
 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
 * refs of the right tree as deleted and all refs of the left tree as new.
 */
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
static int changed_ref(struct send_ctx *sctx,
		       enum btrfs_compare_tree_result result)
{
	int ret = 0;

	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);

	if (!sctx->cur_inode_new_gen &&
	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
		if (result == BTRFS_COMPARE_TREE_NEW)
			ret = record_new_ref(sctx);
		else if (result == BTRFS_COMPARE_TREE_DELETED)
			ret = record_deleted_ref(sctx);
		else if (result == BTRFS_COMPARE_TREE_CHANGED)
			ret = record_changed_ref(sctx);
	}

	return ret;
}

5149 5150 5151 5152 5153
/*
 * Process new/deleted/changed xattrs. We skip processing in the
 * cur_inode_new_gen case because changed_inode did already initiate processing
 * of xattrs. The reason is the same as in changed_ref
 */
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
static int changed_xattr(struct send_ctx *sctx,
			 enum btrfs_compare_tree_result result)
{
	int ret = 0;

	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);

	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
		if (result == BTRFS_COMPARE_TREE_NEW)
			ret = process_new_xattr(sctx);
		else if (result == BTRFS_COMPARE_TREE_DELETED)
			ret = process_deleted_xattr(sctx);
		else if (result == BTRFS_COMPARE_TREE_CHANGED)
			ret = process_changed_xattr(sctx);
	}

	return ret;
}

5173 5174 5175 5176 5177
/*
 * Process new/deleted/changed extents. We skip processing in the
 * cur_inode_new_gen case because changed_inode did already initiate processing
 * of extents. The reason is the same as in changed_ref
 */
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
static int changed_extent(struct send_ctx *sctx,
			  enum btrfs_compare_tree_result result)
{
	int ret = 0;

	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);

	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
		if (result != BTRFS_COMPARE_TREE_DELETED)
			ret = process_extent(sctx, sctx->left_path,
					sctx->cmp_key);
	}

	return ret;
}

5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
static int dir_changed(struct send_ctx *sctx, u64 dir)
{
	u64 orig_gen, new_gen;
	int ret;

	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
			     NULL, NULL);
	if (ret)
		return ret;

	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
			     NULL, NULL, NULL);
	if (ret)
		return ret;

	return (orig_gen != new_gen) ? 1 : 0;
}

static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
			struct btrfs_key *key)
{
	struct btrfs_inode_extref *extref;
	struct extent_buffer *leaf;
	u64 dirid = 0, last_dirid = 0;
	unsigned long ptr;
	u32 item_size;
	u32 cur_offset = 0;
	int ref_name_len;
	int ret = 0;

	/* Easy case, just check this one dirid */
	if (key->type == BTRFS_INODE_REF_KEY) {
		dirid = key->offset;

		ret = dir_changed(sctx, dirid);
		goto out;
	}

	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
	while (cur_offset < item_size) {
		extref = (struct btrfs_inode_extref *)(ptr +
						       cur_offset);
		dirid = btrfs_inode_extref_parent(leaf, extref);
		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
		cur_offset += ref_name_len + sizeof(*extref);
		if (dirid == last_dirid)
			continue;
		ret = dir_changed(sctx, dirid);
		if (ret)
			break;
		last_dirid = dirid;
	}
out:
	return ret;
}

5252 5253 5254 5255
/*
 * Updates compare related fields in sctx and simply forwards to the actual
 * changed_xxx functions.
 */
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
static int changed_cb(struct btrfs_root *left_root,
		      struct btrfs_root *right_root,
		      struct btrfs_path *left_path,
		      struct btrfs_path *right_path,
		      struct btrfs_key *key,
		      enum btrfs_compare_tree_result result,
		      void *ctx)
{
	int ret = 0;
	struct send_ctx *sctx = ctx;

5267
	if (result == BTRFS_COMPARE_TREE_SAME) {
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
		if (key->type == BTRFS_INODE_REF_KEY ||
		    key->type == BTRFS_INODE_EXTREF_KEY) {
			ret = compare_refs(sctx, left_path, key);
			if (!ret)
				return 0;
			if (ret < 0)
				return ret;
		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
			return maybe_send_hole(sctx, left_path, key);
		} else {
5278
			return 0;
5279
		}
5280 5281 5282 5283
		result = BTRFS_COMPARE_TREE_CHANGED;
		ret = 0;
	}

5284 5285 5286 5287 5288 5289 5290 5291
	sctx->left_path = left_path;
	sctx->right_path = right_path;
	sctx->cmp_key = key;

	ret = finish_inode_if_needed(sctx, 0);
	if (ret < 0)
		goto out;

5292 5293 5294 5295 5296
	/* Ignore non-FS objects */
	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
		goto out;

5297 5298
	if (key->type == BTRFS_INODE_ITEM_KEY)
		ret = changed_inode(sctx, result);
5299 5300
	else if (key->type == BTRFS_INODE_REF_KEY ||
		 key->type == BTRFS_INODE_EXTREF_KEY)
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
		ret = changed_ref(sctx, result);
	else if (key->type == BTRFS_XATTR_ITEM_KEY)
		ret = changed_xattr(sctx, result);
	else if (key->type == BTRFS_EXTENT_DATA_KEY)
		ret = changed_extent(sctx, result);

out:
	return ret;
}

static int full_send_tree(struct send_ctx *sctx)
{
	int ret;
5314
	struct btrfs_trans_handle *trans = NULL;
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
	struct btrfs_root *send_root = sctx->send_root;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_path *path;
	struct extent_buffer *eb;
	int slot;
	u64 start_ctransid;
	u64 ctransid;

	path = alloc_path_for_send();
	if (!path)
		return -ENOMEM;

5328
	spin_lock(&send_root->root_item_lock);
5329
	start_ctransid = btrfs_root_ctransid(&send_root->root_item);
5330
	spin_unlock(&send_root->root_item_lock);
5331 5332 5333 5334 5335

	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
join_trans:
	/*
	 * We need to make sure the transaction does not get committed
	 * while we do anything on commit roots. Join a transaction to prevent
	 * this.
	 */
	trans = btrfs_join_transaction(send_root);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		trans = NULL;
		goto out;
	}

5349
	/*
5350 5351
	 * Make sure the tree has not changed after re-joining. We detect this
	 * by comparing start_ctransid and ctransid. They should always match.
5352
	 */
5353
	spin_lock(&send_root->root_item_lock);
5354
	ctransid = btrfs_root_ctransid(&send_root->root_item);
5355
	spin_unlock(&send_root->root_item_lock);
5356 5357

	if (ctransid != start_ctransid) {
5358
		WARN(1, KERN_WARNING "BTRFS: the root that you're trying to "
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371
				     "send was modified in between. This is "
				     "probably a bug.\n");
		ret = -EIO;
		goto out;
	}

	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
	if (ret < 0)
		goto out;
	if (ret)
		goto out_finish;

	while (1) {
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
		/*
		 * When someone want to commit while we iterate, end the
		 * joined transaction and rejoin.
		 */
		if (btrfs_should_end_transaction(trans, send_root)) {
			ret = btrfs_end_transaction(trans, send_root);
			trans = NULL;
			if (ret < 0)
				goto out;
			btrfs_release_path(path);
			goto join_trans;
		}

5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
		eb = path->nodes[0];
		slot = path->slots[0];
		btrfs_item_key_to_cpu(eb, &found_key, slot);

		ret = changed_cb(send_root, NULL, path, NULL,
				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
		if (ret < 0)
			goto out;

		key.objectid = found_key.objectid;
		key.type = found_key.type;
		key.offset = found_key.offset + 1;

		ret = btrfs_next_item(send_root, path);
		if (ret < 0)
			goto out;
		if (ret) {
			ret  = 0;
			break;
		}
	}

out_finish:
	ret = finish_inode_if_needed(sctx, 1);

out:
	btrfs_free_path(path);
5412 5413 5414 5415 5416 5417
	if (trans) {
		if (!ret)
			ret = btrfs_end_transaction(trans, send_root);
		else
			btrfs_end_transaction(trans, send_root);
	}
5418 5419 5420 5421 5422 5423 5424
	return ret;
}

static int send_subvol(struct send_ctx *sctx)
{
	int ret;

5425 5426 5427 5428 5429
	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
		ret = send_header(sctx);
		if (ret < 0)
			goto out;
	}
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453

	ret = send_subvol_begin(sctx);
	if (ret < 0)
		goto out;

	if (sctx->parent_root) {
		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
				changed_cb, sctx);
		if (ret < 0)
			goto out;
		ret = finish_inode_if_needed(sctx, 1);
		if (ret < 0)
			goto out;
	} else {
		ret = full_send_tree(sctx);
		if (ret < 0)
			goto out;
	}

out:
	free_recorded_refs(sctx);
	return ret;
}

5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
{
	spin_lock(&root->root_item_lock);
	root->send_in_progress--;
	/*
	 * Not much left to do, we don't know why it's unbalanced and
	 * can't blindly reset it to 0.
	 */
	if (root->send_in_progress < 0)
		btrfs_err(root->fs_info,
			"send_in_progres unbalanced %d root %llu\n",
			root->send_in_progress, root->root_key.objectid);
	spin_unlock(&root->root_item_lock);
}

5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
{
	int ret = 0;
	struct btrfs_root *send_root;
	struct btrfs_root *clone_root;
	struct btrfs_fs_info *fs_info;
	struct btrfs_ioctl_send_args *arg = NULL;
	struct btrfs_key key;
	struct send_ctx *sctx = NULL;
	u32 i;
	u64 *clone_sources_tmp = NULL;
5480
	int clone_sources_to_rollback = 0;
5481
	int sort_clone_roots = 0;
5482
	int index;
5483 5484 5485 5486

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

A
Al Viro 已提交
5487
	send_root = BTRFS_I(file_inode(mnt_file))->root;
5488 5489
	fs_info = send_root->fs_info;

5490 5491 5492 5493 5494 5495 5496 5497
	/*
	 * The subvolume must remain read-only during send, protect against
	 * making it RW.
	 */
	spin_lock(&send_root->root_item_lock);
	send_root->send_in_progress++;
	spin_unlock(&send_root->root_item_lock);

J
Josef Bacik 已提交
5498 5499 5500 5501 5502 5503
	/*
	 * This is done when we lookup the root, it should already be complete
	 * by the time we get here.
	 */
	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);

5504 5505 5506 5507 5508 5509 5510 5511 5512
	/*
	 * Userspace tools do the checks and warn the user if it's
	 * not RO.
	 */
	if (!btrfs_root_readonly(send_root)) {
		ret = -EPERM;
		goto out;
	}

5513 5514 5515 5516 5517 5518 5519 5520
	arg = memdup_user(arg_, sizeof(*arg));
	if (IS_ERR(arg)) {
		ret = PTR_ERR(arg);
		arg = NULL;
		goto out;
	}

	if (!access_ok(VERIFY_READ, arg->clone_sources,
5521 5522
			sizeof(*arg->clone_sources) *
			arg->clone_sources_count)) {
5523 5524 5525 5526
		ret = -EFAULT;
		goto out;
	}

5527
	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5528 5529 5530 5531
		ret = -EINVAL;
		goto out;
	}

5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
	sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
	if (!sctx) {
		ret = -ENOMEM;
		goto out;
	}

	INIT_LIST_HEAD(&sctx->new_refs);
	INIT_LIST_HEAD(&sctx->deleted_refs);
	INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
	INIT_LIST_HEAD(&sctx->name_cache_list);

5543 5544
	sctx->flags = arg->flags;

5545
	sctx->send_filp = fget(arg->send_fd);
5546 5547
	if (!sctx->send_filp) {
		ret = -EBADF;
5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566
		goto out;
	}

	sctx->send_root = send_root;
	sctx->clone_roots_cnt = arg->clone_sources_count;

	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
	sctx->send_buf = vmalloc(sctx->send_max_size);
	if (!sctx->send_buf) {
		ret = -ENOMEM;
		goto out;
	}

	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
	if (!sctx->read_buf) {
		ret = -ENOMEM;
		goto out;
	}

5567 5568
	sctx->pending_dir_moves = RB_ROOT;
	sctx->waiting_dir_moves = RB_ROOT;
5569
	sctx->orphan_dirs = RB_ROOT;
5570

5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
			(arg->clone_sources_count + 1));
	if (!sctx->clone_roots) {
		ret = -ENOMEM;
		goto out;
	}

	if (arg->clone_sources_count) {
		clone_sources_tmp = vmalloc(arg->clone_sources_count *
				sizeof(*arg->clone_sources));
		if (!clone_sources_tmp) {
			ret = -ENOMEM;
			goto out;
		}

		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
				arg->clone_sources_count *
				sizeof(*arg->clone_sources));
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

		for (i = 0; i < arg->clone_sources_count; i++) {
			key.objectid = clone_sources_tmp[i];
			key.type = BTRFS_ROOT_ITEM_KEY;
			key.offset = (u64)-1;
5598 5599 5600

			index = srcu_read_lock(&fs_info->subvol_srcu);

5601 5602
			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
			if (IS_ERR(clone_root)) {
5603
				srcu_read_unlock(&fs_info->subvol_srcu, index);
5604 5605 5606
				ret = PTR_ERR(clone_root);
				goto out;
			}
5607 5608 5609 5610 5611
			clone_sources_to_rollback = i + 1;
			spin_lock(&clone_root->root_item_lock);
			clone_root->send_in_progress++;
			if (!btrfs_root_readonly(clone_root)) {
				spin_unlock(&clone_root->root_item_lock);
5612
				srcu_read_unlock(&fs_info->subvol_srcu, index);
5613 5614 5615 5616
				ret = -EPERM;
				goto out;
			}
			spin_unlock(&clone_root->root_item_lock);
5617 5618
			srcu_read_unlock(&fs_info->subvol_srcu, index);

5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
			sctx->clone_roots[i].root = clone_root;
		}
		vfree(clone_sources_tmp);
		clone_sources_tmp = NULL;
	}

	if (arg->parent_root) {
		key.objectid = arg->parent_root;
		key.type = BTRFS_ROOT_ITEM_KEY;
		key.offset = (u64)-1;
5629 5630 5631

		index = srcu_read_lock(&fs_info->subvol_srcu);

5632
		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
5633
		if (IS_ERR(sctx->parent_root)) {
5634
			srcu_read_unlock(&fs_info->subvol_srcu, index);
5635
			ret = PTR_ERR(sctx->parent_root);
5636 5637
			goto out;
		}
5638

5639 5640 5641 5642
		spin_lock(&sctx->parent_root->root_item_lock);
		sctx->parent_root->send_in_progress++;
		if (!btrfs_root_readonly(sctx->parent_root)) {
			spin_unlock(&sctx->parent_root->root_item_lock);
5643
			srcu_read_unlock(&fs_info->subvol_srcu, index);
5644 5645 5646 5647
			ret = -EPERM;
			goto out;
		}
		spin_unlock(&sctx->parent_root->root_item_lock);
5648 5649

		srcu_read_unlock(&fs_info->subvol_srcu, index);
5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
	}

	/*
	 * Clones from send_root are allowed, but only if the clone source
	 * is behind the current send position. This is checked while searching
	 * for possible clone sources.
	 */
	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;

	/* We do a bsearch later */
	sort(sctx->clone_roots, sctx->clone_roots_cnt,
			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
			NULL);
5663
	sort_clone_roots = 1;
5664 5665 5666 5667 5668

	ret = send_subvol(sctx);
	if (ret < 0)
		goto out;

5669 5670 5671 5672 5673 5674 5675 5676
	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
		if (ret < 0)
			goto out;
		ret = send_cmd(sctx);
		if (ret < 0)
			goto out;
	}
5677 5678

out:
5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
		struct rb_node *n;
		struct pending_dir_move *pm;

		n = rb_first(&sctx->pending_dir_moves);
		pm = rb_entry(n, struct pending_dir_move, node);
		while (!list_empty(&pm->list)) {
			struct pending_dir_move *pm2;

			pm2 = list_first_entry(&pm->list,
					       struct pending_dir_move, list);
			free_pending_move(sctx, pm2);
		}
		free_pending_move(sctx, pm);
	}

	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
		struct rb_node *n;
		struct waiting_dir_move *dm;

		n = rb_first(&sctx->waiting_dir_moves);
		dm = rb_entry(n, struct waiting_dir_move, node);
		rb_erase(&dm->node, &sctx->waiting_dir_moves);
		kfree(dm);
	}

5707 5708 5709 5710 5711 5712 5713 5714 5715 5716
	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
		struct rb_node *n;
		struct orphan_dir_info *odi;

		n = rb_first(&sctx->orphan_dirs);
		odi = rb_entry(n, struct orphan_dir_info, node);
		free_orphan_dir_info(sctx, odi);
	}

5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727
	if (sort_clone_roots) {
		for (i = 0; i < sctx->clone_roots_cnt; i++)
			btrfs_root_dec_send_in_progress(
					sctx->clone_roots[i].root);
	} else {
		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
			btrfs_root_dec_send_in_progress(
					sctx->clone_roots[i].root);

		btrfs_root_dec_send_in_progress(send_root);
	}
5728 5729
	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
		btrfs_root_dec_send_in_progress(sctx->parent_root);
5730

5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748
	kfree(arg);
	vfree(clone_sources_tmp);

	if (sctx) {
		if (sctx->send_filp)
			fput(sctx->send_filp);

		vfree(sctx->clone_roots);
		vfree(sctx->send_buf);
		vfree(sctx->read_buf);

		name_cache_free(sctx);

		kfree(sctx);
	}

	return ret;
}