tps6524x-regulator.c 15.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
/*
 * Regulator driver for TPS6524x PMIC
 *
 * Copyright (C) 2010 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any kind,
 * whether express or implied; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>

#define REG_LDO_SET		0x0
#define LDO_ILIM_MASK		1	/* 0 = 400-800, 1 = 900-1500 */
#define LDO_VSEL_MASK		0x0f
#define LDO2_ILIM_SHIFT		12
#define LDO2_VSEL_SHIFT		4
#define LDO1_ILIM_SHIFT		8
#define LDO1_VSEL_SHIFT		0

#define REG_BLOCK_EN		0x1
#define BLOCK_MASK		1
#define BLOCK_LDO1_SHIFT	0
#define BLOCK_LDO2_SHIFT	1
#define BLOCK_LCD_SHIFT		2
#define BLOCK_USB_SHIFT		3

#define REG_DCDC_SET		0x2
#define DCDC_VDCDC_MASK		0x1f
#define DCDC_VDCDC1_SHIFT	0
#define DCDC_VDCDC2_SHIFT	5
#define DCDC_VDCDC3_SHIFT	10

#define REG_DCDC_EN		0x3
#define DCDCDCDC_EN_MASK	0x1
#define DCDCDCDC1_EN_SHIFT	0
#define DCDCDCDC1_PG_MSK	BIT(1)
#define DCDCDCDC2_EN_SHIFT	2
#define DCDCDCDC2_PG_MSK	BIT(3)
#define DCDCDCDC3_EN_SHIFT	4
#define DCDCDCDC3_PG_MSK	BIT(5)

#define REG_USB			0x4
#define USB_ILIM_SHIFT		0
#define USB_ILIM_MASK		0x3
#define USB_TSD_SHIFT		2
#define USB_TSD_MASK		0x3
#define USB_TWARN_SHIFT		4
#define USB_TWARN_MASK		0x3
#define USB_IWARN_SD		BIT(6)
#define USB_FAST_LOOP		BIT(7)

#define REG_ALARM		0x5
#define ALARM_LDO1		BIT(0)
#define ALARM_DCDC1		BIT(1)
#define ALARM_DCDC2		BIT(2)
#define ALARM_DCDC3		BIT(3)
#define ALARM_LDO2		BIT(4)
#define ALARM_USB_WARN		BIT(5)
#define ALARM_USB_ALARM		BIT(6)
#define ALARM_LCD		BIT(9)
#define ALARM_TEMP_WARM		BIT(10)
#define ALARM_TEMP_HOT		BIT(11)
#define ALARM_NRST		BIT(14)
#define ALARM_POWERUP		BIT(15)

#define REG_INT_ENABLE		0x6
#define INT_LDO1		BIT(0)
#define INT_DCDC1		BIT(1)
#define INT_DCDC2		BIT(2)
#define INT_DCDC3		BIT(3)
#define INT_LDO2		BIT(4)
#define INT_USB_WARN		BIT(5)
#define INT_USB_ALARM		BIT(6)
#define INT_LCD			BIT(9)
#define INT_TEMP_WARM		BIT(10)
#define INT_TEMP_HOT		BIT(11)
#define INT_GLOBAL_EN		BIT(15)

#define REG_INT_STATUS		0x7
#define STATUS_LDO1		BIT(0)
#define STATUS_DCDC1		BIT(1)
#define STATUS_DCDC2		BIT(2)
#define STATUS_DCDC3		BIT(3)
#define STATUS_LDO2		BIT(4)
#define STATUS_USB_WARN		BIT(5)
#define STATUS_USB_ALARM	BIT(6)
#define STATUS_LCD		BIT(9)
#define STATUS_TEMP_WARM	BIT(10)
#define STATUS_TEMP_HOT		BIT(11)

#define REG_SOFTWARE_RESET	0xb
#define REG_WRITE_ENABLE	0xd
#define REG_REV_ID		0xf

#define N_DCDC			3
#define N_LDO			2
#define N_SWITCH		2
111
#define N_REGULATORS		(N_DCDC + N_LDO + N_SWITCH)
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

#define FIXED_ILIMSEL		BIT(0)
#define FIXED_VOLTAGE		BIT(1)

#define CMD_READ(reg)		((reg) << 6)
#define CMD_WRITE(reg)		(BIT(5) | (reg) << 6)
#define STAT_CLK		BIT(3)
#define STAT_WRITE		BIT(2)
#define STAT_INVALID		BIT(1)
#define STAT_WP			BIT(0)

struct field {
	int		reg;
	int		shift;
	int		mask;
};

struct supply_info {
	const char	*name;
	int		n_voltages;
	const int	*voltages;
	int		fixed_voltage;
	int		n_ilimsels;
	const int	*ilimsels;
	int		fixed_ilimsel;
	int		flags;
	struct field	enable, voltage, ilimsel;
};

struct tps6524x {
	struct device		*dev;
	struct spi_device	*spi;
	struct mutex		lock;
	struct regulator_desc	desc[N_REGULATORS];
	struct regulator_dev	*rdev[N_REGULATORS];
};

static int __read_reg(struct tps6524x *hw, int reg)
{
	int error = 0;
	u16 cmd = CMD_READ(reg), in;
	u8 status;
	struct spi_message m;
	struct spi_transfer t[3];

	spi_message_init(&m);
	memset(t, 0, sizeof(t));

	t[0].tx_buf = &cmd;
	t[0].len = 2;
	t[0].bits_per_word = 12;
	spi_message_add_tail(&t[0], &m);

	t[1].rx_buf = &in;
	t[1].len = 2;
	t[1].bits_per_word = 16;
	spi_message_add_tail(&t[1], &m);

	t[2].rx_buf = &status;
	t[2].len = 1;
	t[2].bits_per_word = 4;
	spi_message_add_tail(&t[2], &m);

	error = spi_sync(hw->spi, &m);
	if (error < 0)
		return error;

	dev_dbg(hw->dev, "read reg %d, data %x, status %x\n",
		reg, in, status);

	if (!(status & STAT_CLK) || (status & STAT_WRITE))
		return -EIO;

	if (status & STAT_INVALID)
		return -EINVAL;

	return in;
}

static int read_reg(struct tps6524x *hw, int reg)
{
	int ret;

	mutex_lock(&hw->lock);
	ret = __read_reg(hw, reg);
	mutex_unlock(&hw->lock);

	return ret;
}

static int __write_reg(struct tps6524x *hw, int reg, int val)
{
	int error = 0;
	u16 cmd = CMD_WRITE(reg), out = val;
	u8 status;
	struct spi_message m;
	struct spi_transfer t[3];

	spi_message_init(&m);
	memset(t, 0, sizeof(t));

	t[0].tx_buf = &cmd;
	t[0].len = 2;
	t[0].bits_per_word = 12;
	spi_message_add_tail(&t[0], &m);

	t[1].tx_buf = &out;
	t[1].len = 2;
	t[1].bits_per_word = 16;
	spi_message_add_tail(&t[1], &m);

	t[2].rx_buf = &status;
	t[2].len = 1;
	t[2].bits_per_word = 4;
	spi_message_add_tail(&t[2], &m);

	error = spi_sync(hw->spi, &m);
	if (error < 0)
		return error;

	dev_dbg(hw->dev, "wrote reg %d, data %x, status %x\n",
		reg, out, status);

	if (!(status & STAT_CLK) || !(status & STAT_WRITE))
		return -EIO;

	if (status & (STAT_INVALID | STAT_WP))
		return -EINVAL;

	return error;
}

static int __rmw_reg(struct tps6524x *hw, int reg, int mask, int val)
{
	int ret;

	ret = __read_reg(hw, reg);
	if (ret < 0)
		return ret;

	ret &= ~mask;
	ret |= val;

	ret = __write_reg(hw, reg, ret);

	return (ret < 0) ? ret : 0;
}

static int rmw_protect(struct tps6524x *hw, int reg, int mask, int val)
{
	int ret;

	mutex_lock(&hw->lock);

	ret = __write_reg(hw, REG_WRITE_ENABLE, 1);
	if (ret) {
		dev_err(hw->dev, "failed to set write enable\n");
		goto error;
	}

	ret = __rmw_reg(hw, reg, mask, val);
	if (ret)
		dev_err(hw->dev, "failed to rmw register %d\n", reg);

	ret = __write_reg(hw, REG_WRITE_ENABLE, 0);
	if (ret) {
		dev_err(hw->dev, "failed to clear write enable\n");
		goto error;
	}

error:
	mutex_unlock(&hw->lock);

	return ret;
}

static int read_field(struct tps6524x *hw, const struct field *field)
{
	int tmp;

	tmp = read_reg(hw, field->reg);
	if (tmp < 0)
		return tmp;

	return (tmp >> field->shift) & field->mask;
}

static int write_field(struct tps6524x *hw, const struct field *field,
		       int val)
{
	if (val & ~field->mask)
		return -EOVERFLOW;

	return rmw_protect(hw, field->reg,
				    field->mask << field->shift,
				    val << field->shift);
}

static const int dcdc1_voltages[] = {
	 800000,  825000,  850000,  875000,
	 900000,  925000,  950000,  975000,
	1000000, 1025000, 1050000, 1075000,
	1100000, 1125000, 1150000, 1175000,
	1200000, 1225000, 1250000, 1275000,
	1300000, 1325000, 1350000, 1375000,
	1400000, 1425000, 1450000, 1475000,
	1500000, 1525000, 1550000, 1575000,
};

static const int dcdc2_voltages[] = {
	1400000, 1450000, 1500000, 1550000,
	1600000, 1650000, 1700000, 1750000,
	1800000, 1850000, 1900000, 1950000,
	2000000, 2050000, 2100000, 2150000,
	2200000, 2250000, 2300000, 2350000,
	2400000, 2450000, 2500000, 2550000,
	2600000, 2650000, 2700000, 2750000,
	2800000, 2850000, 2900000, 2950000,
};

static const int dcdc3_voltages[] = {
	2400000, 2450000, 2500000, 2550000, 2600000,
	2650000, 2700000, 2750000, 2800000, 2850000,
	2900000, 2950000, 3000000, 3050000, 3100000,
	3150000, 3200000, 3250000, 3300000, 3350000,
	3400000, 3450000, 3500000, 3550000, 3600000,
};

static const int ldo1_voltages[] = {
	4300000, 4350000, 4400000, 4450000,
	4500000, 4550000, 4600000, 4650000,
	4700000, 4750000, 4800000, 4850000,
	4900000, 4950000, 5000000, 5050000,
};

static const int ldo2_voltages[] = {
	1100000, 1150000, 1200000, 1250000,
	1300000, 1700000, 1750000, 1800000,
	1850000, 1900000, 3150000, 3200000,
	3250000, 3300000, 3350000, 3400000,
};

static const int ldo_ilimsel[] = {
	400000, 1500000
};

static const int usb_ilimsel[] = {
	200000, 400000, 800000, 1000000
};

#define __MK_FIELD(_reg, _mask, _shift) \
	{ .reg = (_reg), .mask = (_mask), .shift = (_shift), }

static const struct supply_info supply_info[N_REGULATORS] = {
	{
		.name		= "DCDC1",
		.flags		= FIXED_ILIMSEL,
		.n_voltages	= ARRAY_SIZE(dcdc1_voltages),
		.voltages	= dcdc1_voltages,
		.fixed_ilimsel	= 2400000,
		.enable		= __MK_FIELD(REG_DCDC_EN, DCDCDCDC_EN_MASK,
					     DCDCDCDC1_EN_SHIFT),
		.voltage	= __MK_FIELD(REG_DCDC_SET, DCDC_VDCDC_MASK,
					     DCDC_VDCDC1_SHIFT),
	},
	{
		.name		= "DCDC2",
		.flags		= FIXED_ILIMSEL,
		.n_voltages	= ARRAY_SIZE(dcdc2_voltages),
		.voltages	= dcdc2_voltages,
		.fixed_ilimsel	= 1200000,
		.enable		= __MK_FIELD(REG_DCDC_EN, DCDCDCDC_EN_MASK,
					     DCDCDCDC2_EN_SHIFT),
		.voltage	= __MK_FIELD(REG_DCDC_SET, DCDC_VDCDC_MASK,
					     DCDC_VDCDC2_SHIFT),
	},
	{
		.name		= "DCDC3",
		.flags		= FIXED_ILIMSEL,
		.n_voltages	= ARRAY_SIZE(dcdc3_voltages),
		.voltages	= dcdc3_voltages,
		.fixed_ilimsel	= 1200000,
		.enable		= __MK_FIELD(REG_DCDC_EN, DCDCDCDC_EN_MASK,
					DCDCDCDC3_EN_SHIFT),
		.voltage	= __MK_FIELD(REG_DCDC_SET, DCDC_VDCDC_MASK,
					     DCDC_VDCDC3_SHIFT),
	},
	{
		.name		= "LDO1",
		.n_voltages	= ARRAY_SIZE(ldo1_voltages),
		.voltages	= ldo1_voltages,
		.n_ilimsels	= ARRAY_SIZE(ldo_ilimsel),
		.ilimsels	= ldo_ilimsel,
		.enable		= __MK_FIELD(REG_BLOCK_EN, BLOCK_MASK,
					     BLOCK_LDO1_SHIFT),
		.voltage	= __MK_FIELD(REG_LDO_SET, LDO_VSEL_MASK,
					     LDO1_VSEL_SHIFT),
		.ilimsel	= __MK_FIELD(REG_LDO_SET, LDO_ILIM_MASK,
					     LDO1_ILIM_SHIFT),
	},
	{
		.name		= "LDO2",
		.n_voltages	= ARRAY_SIZE(ldo2_voltages),
		.voltages	= ldo2_voltages,
		.n_ilimsels	= ARRAY_SIZE(ldo_ilimsel),
		.ilimsels	= ldo_ilimsel,
		.enable		= __MK_FIELD(REG_BLOCK_EN, BLOCK_MASK,
					     BLOCK_LDO2_SHIFT),
		.voltage	= __MK_FIELD(REG_LDO_SET, LDO_VSEL_MASK,
					     LDO2_VSEL_SHIFT),
		.ilimsel	= __MK_FIELD(REG_LDO_SET, LDO_ILIM_MASK,
					     LDO2_ILIM_SHIFT),
	},
	{
		.name		= "USB",
		.flags		= FIXED_VOLTAGE,
		.fixed_voltage	= 5000000,
		.n_ilimsels	= ARRAY_SIZE(usb_ilimsel),
		.ilimsels	= usb_ilimsel,
		.enable		= __MK_FIELD(REG_BLOCK_EN, BLOCK_MASK,
					     BLOCK_USB_SHIFT),
		.ilimsel	= __MK_FIELD(REG_USB, USB_ILIM_MASK,
					     USB_ILIM_SHIFT),
	},
	{
		.name		= "LCD",
		.flags		= FIXED_VOLTAGE | FIXED_ILIMSEL,
		.fixed_voltage	= 5000000,
		.fixed_ilimsel	=  400000,
		.enable		= __MK_FIELD(REG_BLOCK_EN, BLOCK_MASK,
					     BLOCK_LCD_SHIFT),
	},
};

static int list_voltage(struct regulator_dev *rdev, unsigned selector)
{
	const struct supply_info *info;
	struct tps6524x *hw;

	hw	= rdev_get_drvdata(rdev);
	info	= &supply_info[rdev_get_id(rdev)];

	if (info->flags & FIXED_VOLTAGE)
		return selector ? -EINVAL : info->fixed_voltage;

	return ((selector < info->n_voltages) ?
		info->voltages[selector] : -EINVAL);
}

461
static int set_voltage_sel(struct regulator_dev *rdev, unsigned selector)
462 463 464 465 466 467 468 469 470 471
{
	const struct supply_info *info;
	struct tps6524x *hw;

	hw	= rdev_get_drvdata(rdev);
	info	= &supply_info[rdev_get_id(rdev)];

	if (info->flags & FIXED_VOLTAGE)
		return -EINVAL;

472
	return write_field(hw, &info->voltage, selector);
473 474
}

475
static int get_voltage_sel(struct regulator_dev *rdev)
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
{
	const struct supply_info *info;
	struct tps6524x *hw;
	int ret;

	hw	= rdev_get_drvdata(rdev);
	info	= &supply_info[rdev_get_id(rdev)];

	if (info->flags & FIXED_VOLTAGE)
		return info->fixed_voltage;

	ret = read_field(hw, &info->voltage);
	if (ret < 0)
		return ret;
	if (WARN_ON(ret >= info->n_voltages))
		return -EIO;

493
	return ret;
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
}

static int set_current_limit(struct regulator_dev *rdev, int min_uA,
			     int max_uA)
{
	const struct supply_info *info;
	struct tps6524x *hw;
	int i;

	hw	= rdev_get_drvdata(rdev);
	info	= &supply_info[rdev_get_id(rdev)];

	if (info->flags & FIXED_ILIMSEL)
		return -EINVAL;

	for (i = 0; i < info->n_ilimsels; i++)
		if (min_uA <= info->ilimsels[i] &&
		    max_uA >= info->ilimsels[i])
			break;

	if (i >= info->n_ilimsels)
		return -EINVAL;

	return write_field(hw, &info->ilimsel, i);
}

static int get_current_limit(struct regulator_dev *rdev)
{
	const struct supply_info *info;
	struct tps6524x *hw;
	int ret;

	hw	= rdev_get_drvdata(rdev);
	info	= &supply_info[rdev_get_id(rdev)];

	if (info->flags & FIXED_ILIMSEL)
		return info->fixed_ilimsel;

	ret = read_field(hw, &info->ilimsel);
	if (ret < 0)
		return ret;
	if (WARN_ON(ret >= info->n_ilimsels))
		return -EIO;

	return info->ilimsels[ret];
}

static int enable_supply(struct regulator_dev *rdev)
{
	const struct supply_info *info;
	struct tps6524x *hw;

	hw	= rdev_get_drvdata(rdev);
	info	= &supply_info[rdev_get_id(rdev)];

	return write_field(hw, &info->enable, 1);
}

static int disable_supply(struct regulator_dev *rdev)
{
	const struct supply_info *info;
	struct tps6524x *hw;

	hw	= rdev_get_drvdata(rdev);
	info	= &supply_info[rdev_get_id(rdev)];

	return write_field(hw, &info->enable, 0);
}

static int is_supply_enabled(struct regulator_dev *rdev)
{
	const struct supply_info *info;
	struct tps6524x *hw;

	hw	= rdev_get_drvdata(rdev);
	info	= &supply_info[rdev_get_id(rdev)];

	return read_field(hw, &info->enable);
}

static struct regulator_ops regulator_ops = {
	.is_enabled		= is_supply_enabled,
	.enable			= enable_supply,
	.disable		= disable_supply,
578
	.get_voltage_sel	= get_voltage_sel,
579
	.set_voltage_sel	= set_voltage_sel,
580 581 582 583 584
	.list_voltage		= list_voltage,
	.set_current_limit	= set_current_limit,
	.get_current_limit	= get_current_limit,
};

585
static int pmic_remove(struct spi_device *spi)
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
{
	struct tps6524x *hw = spi_get_drvdata(spi);
	int i;

	if (!hw)
		return 0;
	for (i = 0; i < N_REGULATORS; i++) {
		if (hw->rdev[i])
			regulator_unregister(hw->rdev[i]);
		hw->rdev[i] = NULL;
	}
	spi_set_drvdata(spi, NULL);
	kfree(hw);
	return 0;
}

static int __devinit pmic_probe(struct spi_device *spi)
{
	struct tps6524x *hw;
	struct device *dev = &spi->dev;
	const struct supply_info *info = supply_info;
	struct regulator_init_data *init_data;
	int ret = 0, i;

	init_data = dev->platform_data;
	if (!init_data) {
		dev_err(dev, "could not find regulator platform data\n");
		return -EINVAL;
	}

	hw = kzalloc(sizeof(struct tps6524x), GFP_KERNEL);
	if (!hw) {
		dev_err(dev, "cannot allocate regulator private data\n");
		return -ENOMEM;
	}
	spi_set_drvdata(spi, hw);

	memset(hw, 0, sizeof(struct tps6524x));
	hw->dev = dev;
	hw->spi = spi_dev_get(spi);
	mutex_init(&hw->lock);

	for (i = 0; i < N_REGULATORS; i++, info++, init_data++) {
		hw->desc[i].name	= info->name;
		hw->desc[i].id		= i;
		hw->desc[i].n_voltages	= info->n_voltages;
		hw->desc[i].ops		= &regulator_ops;
		hw->desc[i].type	= REGULATOR_VOLTAGE;
		hw->desc[i].owner	= THIS_MODULE;

		if (info->flags & FIXED_VOLTAGE)
			hw->desc[i].n_voltages = 1;

		hw->rdev[i] = regulator_register(&hw->desc[i], dev,
640
						 init_data, hw, NULL);
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
		if (IS_ERR(hw->rdev[i])) {
			ret = PTR_ERR(hw->rdev[i]);
			hw->rdev[i] = NULL;
			goto fail;
		}
	}

	return 0;

fail:
	pmic_remove(spi);
	return ret;
}

static struct spi_driver pmic_driver = {
	.probe		= pmic_probe,
	.remove		= __devexit_p(pmic_remove),
	.driver		= {
		.name	= "tps6524x",
		.owner	= THIS_MODULE,
	},
};

664
module_spi_driver(pmic_driver);
665 666 667 668 669

MODULE_DESCRIPTION("TPS6524X PMIC Driver");
MODULE_AUTHOR("Cyril Chemparathy");
MODULE_LICENSE("GPL");
MODULE_ALIAS("spi:tps6524x");