memory.c 103.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/*
 *  linux/mm/memory.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 */

/*
 * demand-loading started 01.12.91 - seems it is high on the list of
 * things wanted, and it should be easy to implement. - Linus
 */

/*
 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
 * pages started 02.12.91, seems to work. - Linus.
 *
 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
 * would have taken more than the 6M I have free, but it worked well as
 * far as I could see.
 *
 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
 */

/*
 * Real VM (paging to/from disk) started 18.12.91. Much more work and
 * thought has to go into this. Oh, well..
 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
 *		Found it. Everything seems to work now.
 * 20.12.91  -  Ok, making the swap-device changeable like the root.
 */

/*
 * 05.04.94  -  Multi-page memory management added for v1.1.
 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
 *
 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
 *		(Gerhard.Wichert@pdb.siemens.de)
 *
 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
 */

#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
H
Hugh Dickins 已提交
48
#include <linux/ksm.h>
L
Linus Torvalds 已提交
49
#include <linux/rmap.h>
50
#include <linux/export.h>
51
#include <linux/delayacct.h>
L
Linus Torvalds 已提交
52
#include <linux/init.h>
P
Peter Zijlstra 已提交
53
#include <linux/writeback.h>
54
#include <linux/memcontrol.h>
A
Andrea Arcangeli 已提交
55
#include <linux/mmu_notifier.h>
56 57 58
#include <linux/kallsyms.h>
#include <linux/swapops.h>
#include <linux/elf.h>
59
#include <linux/gfp.h>
60
#include <linux/migrate.h>
A
Andy Shevchenko 已提交
61
#include <linux/string.h>
62
#include <linux/dma-debug.h>
63
#include <linux/debugfs.h>
L
Linus Torvalds 已提交
64

A
Alexey Dobriyan 已提交
65
#include <asm/io.h>
L
Linus Torvalds 已提交
66 67 68 69 70 71
#include <asm/pgalloc.h>
#include <asm/uaccess.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>

72 73
#include "internal.h"

74 75
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 77
#endif

A
Andy Whitcroft 已提交
78
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/* use the per-pgdat data instead for discontigmem - mbligh */
unsigned long max_mapnr;
struct page *mem_map;

EXPORT_SYMBOL(max_mapnr);
EXPORT_SYMBOL(mem_map);
#endif

/*
 * A number of key systems in x86 including ioremap() rely on the assumption
 * that high_memory defines the upper bound on direct map memory, then end
 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 * and ZONE_HIGHMEM.
 */
void * high_memory;

EXPORT_SYMBOL(high_memory);

98 99 100 101 102 103 104 105 106 107 108 109
/*
 * Randomize the address space (stacks, mmaps, brk, etc.).
 *
 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 *   as ancient (libc5 based) binaries can segfault. )
 */
int randomize_va_space __read_mostly =
#ifdef CONFIG_COMPAT_BRK
					1;
#else
					2;
#endif
110 111 112 113

static int __init disable_randmaps(char *s)
{
	randomize_va_space = 0;
114
	return 1;
115 116 117
}
__setup("norandmaps", disable_randmaps);

H
Hugh Dickins 已提交
118
unsigned long zero_pfn __read_mostly;
H
Hugh Dickins 已提交
119
unsigned long highest_memmap_pfn __read_mostly;
H
Hugh Dickins 已提交
120

121 122
EXPORT_SYMBOL(zero_pfn);

H
Hugh Dickins 已提交
123 124 125 126 127 128 129 130 131
/*
 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 */
static int __init init_zero_pfn(void)
{
	zero_pfn = page_to_pfn(ZERO_PAGE(0));
	return 0;
}
core_initcall(init_zero_pfn);
132

K
KAMEZAWA Hiroyuki 已提交
133

134 135
#if defined(SPLIT_RSS_COUNTING)

136
void sync_mm_rss(struct mm_struct *mm)
137 138 139 140
{
	int i;

	for (i = 0; i < NR_MM_COUNTERS; i++) {
141 142 143
		if (current->rss_stat.count[i]) {
			add_mm_counter(mm, i, current->rss_stat.count[i]);
			current->rss_stat.count[i] = 0;
144 145
		}
	}
146
	current->rss_stat.events = 0;
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
}

static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
{
	struct task_struct *task = current;

	if (likely(task->mm == mm))
		task->rss_stat.count[member] += val;
	else
		add_mm_counter(mm, member, val);
}
#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)

/* sync counter once per 64 page faults */
#define TASK_RSS_EVENTS_THRESH	(64)
static void check_sync_rss_stat(struct task_struct *task)
{
	if (unlikely(task != current))
		return;
	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168
		sync_mm_rss(task->mm);
169
}
170
#else /* SPLIT_RSS_COUNTING */
171 172 173 174 175 176 177 178

#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)

static void check_sync_rss_stat(struct task_struct *task)
{
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192
#endif /* SPLIT_RSS_COUNTING */

#ifdef HAVE_GENERIC_MMU_GATHER

static int tlb_next_batch(struct mmu_gather *tlb)
{
	struct mmu_gather_batch *batch;

	batch = tlb->active;
	if (batch->next) {
		tlb->active = batch->next;
		return 1;
	}

193 194 195
	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
		return 0;

196 197 198 199
	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
	if (!batch)
		return 0;

200
	tlb->batch_count++;
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
	batch->next = NULL;
	batch->nr   = 0;
	batch->max  = MAX_GATHER_BATCH;

	tlb->active->next = batch;
	tlb->active = batch;

	return 1;
}

/* tlb_gather_mmu
 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 *	users and we're going to destroy the full address space (exit/execve).
 */
216
void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 218 219
{
	tlb->mm = mm;

220 221
	/* Is it from 0 to ~0? */
	tlb->fullmm     = !(start | (end+1));
222
	tlb->need_flush_all = 0;
223 224 225 226
	tlb->local.next = NULL;
	tlb->local.nr   = 0;
	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
	tlb->active     = &tlb->local;
227
	tlb->batch_count = 0;
228 229 230 231

#ifdef CONFIG_HAVE_RCU_TABLE_FREE
	tlb->batch = NULL;
#endif
232 233

	__tlb_reset_range(tlb);
234 235
}

236
static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
237
{
238 239 240
	if (!tlb->end)
		return;

241
	tlb_flush(tlb);
242
	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
243 244
#ifdef CONFIG_HAVE_RCU_TABLE_FREE
	tlb_table_flush(tlb);
245
#endif
246
	__tlb_reset_range(tlb);
247 248 249 250 251
}

static void tlb_flush_mmu_free(struct mmu_gather *tlb)
{
	struct mmu_gather_batch *batch;
252

253
	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
254 255 256 257 258 259
		free_pages_and_swap_cache(batch->pages, batch->nr);
		batch->nr = 0;
	}
	tlb->active = &tlb->local;
}

260 261 262 263 264 265
void tlb_flush_mmu(struct mmu_gather *tlb)
{
	tlb_flush_mmu_tlbonly(tlb);
	tlb_flush_mmu_free(tlb);
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
/* tlb_finish_mmu
 *	Called at the end of the shootdown operation to free up any resources
 *	that were required.
 */
void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
{
	struct mmu_gather_batch *batch, *next;

	tlb_flush_mmu(tlb);

	/* keep the page table cache within bounds */
	check_pgt_cache();

	for (batch = tlb->local.next; batch; batch = next) {
		next = batch->next;
		free_pages((unsigned long)batch, 0);
	}
	tlb->local.next = NULL;
}

/* __tlb_remove_page
 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 *	handling the additional races in SMP caused by other CPUs caching valid
 *	mappings in their TLBs. Returns the number of free page slots left.
 *	When out of page slots we must call tlb_flush_mmu().
 */
int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
{
	struct mmu_gather_batch *batch;

296
	VM_BUG_ON(!tlb->end);
297 298 299 300 301 302

	batch = tlb->active;
	batch->pages[batch->nr++] = page;
	if (batch->nr == batch->max) {
		if (!tlb_next_batch(tlb))
			return 0;
303
		batch = tlb->active;
304
	}
305
	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
306 307 308 309 310 311

	return batch->max - batch->nr;
}

#endif /* HAVE_GENERIC_MMU_GATHER */

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
#ifdef CONFIG_HAVE_RCU_TABLE_FREE

/*
 * See the comment near struct mmu_table_batch.
 */

static void tlb_remove_table_smp_sync(void *arg)
{
	/* Simply deliver the interrupt */
}

static void tlb_remove_table_one(void *table)
{
	/*
	 * This isn't an RCU grace period and hence the page-tables cannot be
	 * assumed to be actually RCU-freed.
	 *
	 * It is however sufficient for software page-table walkers that rely on
	 * IRQ disabling. See the comment near struct mmu_table_batch.
	 */
	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
	__tlb_remove_table(table);
}

static void tlb_remove_table_rcu(struct rcu_head *head)
{
	struct mmu_table_batch *batch;
	int i;

	batch = container_of(head, struct mmu_table_batch, rcu);

	for (i = 0; i < batch->nr; i++)
		__tlb_remove_table(batch->tables[i]);

	free_page((unsigned long)batch);
}

void tlb_table_flush(struct mmu_gather *tlb)
{
	struct mmu_table_batch **batch = &tlb->batch;

	if (*batch) {
		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
		*batch = NULL;
	}
}

void tlb_remove_table(struct mmu_gather *tlb, void *table)
{
	struct mmu_table_batch **batch = &tlb->batch;

	/*
	 * When there's less then two users of this mm there cannot be a
	 * concurrent page-table walk.
	 */
	if (atomic_read(&tlb->mm->mm_users) < 2) {
		__tlb_remove_table(table);
		return;
	}

	if (*batch == NULL) {
		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
		if (*batch == NULL) {
			tlb_remove_table_one(table);
			return;
		}
		(*batch)->nr = 0;
	}
	(*batch)->tables[(*batch)->nr++] = table;
	if ((*batch)->nr == MAX_TABLE_BATCH)
		tlb_table_flush(tlb);
}

385
#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
386

L
Linus Torvalds 已提交
387 388 389 390
/*
 * Note: this doesn't free the actual pages themselves. That
 * has been handled earlier when unmapping all the memory regions.
 */
391 392
static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
			   unsigned long addr)
L
Linus Torvalds 已提交
393
{
394
	pgtable_t token = pmd_pgtable(*pmd);
395
	pmd_clear(pmd);
396
	pte_free_tlb(tlb, token, addr);
397
	atomic_long_dec(&tlb->mm->nr_ptes);
L
Linus Torvalds 已提交
398 399
}

400 401 402
static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
L
Linus Torvalds 已提交
403 404 405
{
	pmd_t *pmd;
	unsigned long next;
406
	unsigned long start;
L
Linus Torvalds 已提交
407

408
	start = addr;
L
Linus Torvalds 已提交
409 410 411 412 413
	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
414
		free_pte_range(tlb, pmd, addr);
L
Linus Torvalds 已提交
415 416
	} while (pmd++, addr = next, addr != end);

417 418 419 420 421 422 423
	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
424
	}
425 426 427 428 429
	if (end - 1 > ceiling - 1)
		return;

	pmd = pmd_offset(pud, start);
	pud_clear(pud);
430
	pmd_free_tlb(tlb, pmd, start);
431
	mm_dec_nr_pmds(tlb->mm);
L
Linus Torvalds 已提交
432 433
}

434 435 436
static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
L
Linus Torvalds 已提交
437 438 439
{
	pud_t *pud;
	unsigned long next;
440
	unsigned long start;
L
Linus Torvalds 已提交
441

442
	start = addr;
L
Linus Torvalds 已提交
443 444 445 446 447
	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(pud))
			continue;
448
		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
L
Linus Torvalds 已提交
449 450
	} while (pud++, addr = next, addr != end);

451 452 453 454 455 456 457
	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
458
	}
459 460 461 462 463
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
464
	pud_free_tlb(tlb, pud, start);
L
Linus Torvalds 已提交
465 466 467
}

/*
468
 * This function frees user-level page tables of a process.
L
Linus Torvalds 已提交
469
 */
470
void free_pgd_range(struct mmu_gather *tlb,
471 472
			unsigned long addr, unsigned long end,
			unsigned long floor, unsigned long ceiling)
L
Linus Torvalds 已提交
473 474 475
{
	pgd_t *pgd;
	unsigned long next;
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501

	/*
	 * The next few lines have given us lots of grief...
	 *
	 * Why are we testing PMD* at this top level?  Because often
	 * there will be no work to do at all, and we'd prefer not to
	 * go all the way down to the bottom just to discover that.
	 *
	 * Why all these "- 1"s?  Because 0 represents both the bottom
	 * of the address space and the top of it (using -1 for the
	 * top wouldn't help much: the masks would do the wrong thing).
	 * The rule is that addr 0 and floor 0 refer to the bottom of
	 * the address space, but end 0 and ceiling 0 refer to the top
	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
	 * that end 0 case should be mythical).
	 *
	 * Wherever addr is brought up or ceiling brought down, we must
	 * be careful to reject "the opposite 0" before it confuses the
	 * subsequent tests.  But what about where end is brought down
	 * by PMD_SIZE below? no, end can't go down to 0 there.
	 *
	 * Whereas we round start (addr) and ceiling down, by different
	 * masks at different levels, in order to test whether a table
	 * now has no other vmas using it, so can be freed, we don't
	 * bother to round floor or end up - the tests don't need that.
	 */
L
Linus Torvalds 已提交
502

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
	addr &= PMD_MASK;
	if (addr < floor) {
		addr += PMD_SIZE;
		if (!addr)
			return;
	}
	if (ceiling) {
		ceiling &= PMD_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		end -= PMD_SIZE;
	if (addr > end - 1)
		return;

519
	pgd = pgd_offset(tlb->mm, addr);
L
Linus Torvalds 已提交
520 521 522 523
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
524
		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
L
Linus Torvalds 已提交
525
	} while (pgd++, addr = next, addr != end);
526 527
}

528
void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
529
		unsigned long floor, unsigned long ceiling)
530 531 532 533 534
{
	while (vma) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long addr = vma->vm_start;

535
		/*
N
npiggin@suse.de 已提交
536 537
		 * Hide vma from rmap and truncate_pagecache before freeing
		 * pgtables
538
		 */
539
		unlink_anon_vmas(vma);
540 541
		unlink_file_vma(vma);

542
		if (is_vm_hugetlb_page(vma)) {
543
			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
544
				floor, next? next->vm_start: ceiling);
545 546 547 548 549
		} else {
			/*
			 * Optimization: gather nearby vmas into one call down
			 */
			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
550
			       && !is_vm_hugetlb_page(next)) {
551 552
				vma = next;
				next = vma->vm_next;
553
				unlink_anon_vmas(vma);
554
				unlink_file_vma(vma);
555 556 557 558
			}
			free_pgd_range(tlb, addr, vma->vm_end,
				floor, next? next->vm_start: ceiling);
		}
559 560
		vma = next;
	}
L
Linus Torvalds 已提交
561 562
}

563 564
int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
		pmd_t *pmd, unsigned long address)
L
Linus Torvalds 已提交
565
{
566
	spinlock_t *ptl;
567
	pgtable_t new = pte_alloc_one(mm, address);
568
	int wait_split_huge_page;
569 570 571
	if (!new)
		return -ENOMEM;

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	/*
	 * Ensure all pte setup (eg. pte page lock and page clearing) are
	 * visible before the pte is made visible to other CPUs by being
	 * put into page tables.
	 *
	 * The other side of the story is the pointer chasing in the page
	 * table walking code (when walking the page table without locking;
	 * ie. most of the time). Fortunately, these data accesses consist
	 * of a chain of data-dependent loads, meaning most CPUs (alpha
	 * being the notable exception) will already guarantee loads are
	 * seen in-order. See the alpha page table accessors for the
	 * smp_read_barrier_depends() barriers in page table walking code.
	 */
	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */

587
	ptl = pmd_lock(mm, pmd);
588 589
	wait_split_huge_page = 0;
	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
590
		atomic_long_inc(&mm->nr_ptes);
L
Linus Torvalds 已提交
591
		pmd_populate(mm, pmd, new);
592
		new = NULL;
593 594
	} else if (unlikely(pmd_trans_splitting(*pmd)))
		wait_split_huge_page = 1;
595
	spin_unlock(ptl);
596 597
	if (new)
		pte_free(mm, new);
598 599
	if (wait_split_huge_page)
		wait_split_huge_page(vma->anon_vma, pmd);
600
	return 0;
L
Linus Torvalds 已提交
601 602
}

603
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
L
Linus Torvalds 已提交
604
{
605 606 607 608
	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
	if (!new)
		return -ENOMEM;

609 610
	smp_wmb(); /* See comment in __pte_alloc */

611
	spin_lock(&init_mm.page_table_lock);
612
	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
613
		pmd_populate_kernel(&init_mm, pmd, new);
614
		new = NULL;
615 616
	} else
		VM_BUG_ON(pmd_trans_splitting(*pmd));
617
	spin_unlock(&init_mm.page_table_lock);
618 619
	if (new)
		pte_free_kernel(&init_mm, new);
620
	return 0;
L
Linus Torvalds 已提交
621 622
}

K
KAMEZAWA Hiroyuki 已提交
623 624 625 626 627 628
static inline void init_rss_vec(int *rss)
{
	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
}

static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
629
{
K
KAMEZAWA Hiroyuki 已提交
630 631
	int i;

632
	if (current->mm == mm)
633
		sync_mm_rss(mm);
K
KAMEZAWA Hiroyuki 已提交
634 635 636
	for (i = 0; i < NR_MM_COUNTERS; i++)
		if (rss[i])
			add_mm_counter(mm, i, rss[i]);
637 638
}

N
Nick Piggin 已提交
639
/*
640 641 642
 * This function is called to print an error when a bad pte
 * is found. For example, we might have a PFN-mapped pte in
 * a region that doesn't allow it.
N
Nick Piggin 已提交
643 644 645
 *
 * The calling function must still handle the error.
 */
646 647
static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
			  pte_t pte, struct page *page)
N
Nick Piggin 已提交
648
{
649 650 651 652 653
	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
	pud_t *pud = pud_offset(pgd, addr);
	pmd_t *pmd = pmd_offset(pud, addr);
	struct address_space *mapping;
	pgoff_t index;
654 655 656 657 658 659 660 661 662 663 664 665 666 667
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			return;
		}
		if (nr_unshown) {
668 669
			printk(KERN_ALERT
				"BUG: Bad page map: %lu messages suppressed\n",
670 671 672 673 674 675 676
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;
677 678 679 680

	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
	index = linear_page_index(vma, addr);

681 682
	printk(KERN_ALERT
		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
683 684
		current->comm,
		(long long)pte_val(pte), (long long)pmd_val(*pmd));
685
	if (page)
686
		dump_page(page, "bad pte");
687
	printk(KERN_ALERT
688 689 690 691 692
		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
	/*
	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
	 */
693 694 695 696 697
	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
		 vma->vm_file,
		 vma->vm_ops ? vma->vm_ops->fault : NULL,
		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
		 mapping ? mapping->a_ops->readpage : NULL);
N
Nick Piggin 已提交
698
	dump_stack();
699
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
N
Nick Piggin 已提交
700 701
}

H
Hugh Dickins 已提交
702
/*
N
Nick Piggin 已提交
703
 * vm_normal_page -- This function gets the "struct page" associated with a pte.
704
 *
N
Nick Piggin 已提交
705 706 707
 * "Special" mappings do not wish to be associated with a "struct page" (either
 * it doesn't exist, or it exists but they don't want to touch it). In this
 * case, NULL is returned here. "Normal" mappings do have a struct page.
J
Jared Hulbert 已提交
708
 *
N
Nick Piggin 已提交
709 710 711 712 713 714 715 716
 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 * pte bit, in which case this function is trivial. Secondly, an architecture
 * may not have a spare pte bit, which requires a more complicated scheme,
 * described below.
 *
 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 * special mapping (even if there are underlying and valid "struct pages").
 * COWed pages of a VM_PFNMAP are always normal.
717
 *
J
Jared Hulbert 已提交
718 719
 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
N
Nick Piggin 已提交
720 721
 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 * mapping will always honor the rule
722 723 724
 *
 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 *
N
Nick Piggin 已提交
725 726 727 728 729 730
 * And for normal mappings this is false.
 *
 * This restricts such mappings to be a linear translation from virtual address
 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 * as the vma is not a COW mapping; in that case, we know that all ptes are
 * special (because none can have been COWed).
J
Jared Hulbert 已提交
731 732
 *
 *
N
Nick Piggin 已提交
733
 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
J
Jared Hulbert 已提交
734 735 736 737 738 739 740 741 742
 *
 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 * page" backing, however the difference is that _all_ pages with a struct
 * page (that is, those where pfn_valid is true) are refcounted and considered
 * normal pages by the VM. The disadvantage is that pages are refcounted
 * (which can be slower and simply not an option for some PFNMAP users). The
 * advantage is that we don't have to follow the strict linearity rule of
 * PFNMAP mappings in order to support COWable mappings.
 *
H
Hugh Dickins 已提交
743
 */
N
Nick Piggin 已提交
744 745 746 747 748 749 750
#ifdef __HAVE_ARCH_PTE_SPECIAL
# define HAVE_PTE_SPECIAL 1
#else
# define HAVE_PTE_SPECIAL 0
#endif
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
				pte_t pte)
H
Hugh Dickins 已提交
751
{
752
	unsigned long pfn = pte_pfn(pte);
N
Nick Piggin 已提交
753 754

	if (HAVE_PTE_SPECIAL) {
755
		if (likely(!pte_special(pte)))
756
			goto check_pfn;
757 758
		if (vma->vm_ops && vma->vm_ops->find_special_page)
			return vma->vm_ops->find_special_page(vma, addr);
H
Hugh Dickins 已提交
759 760
		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
			return NULL;
H
Hugh Dickins 已提交
761
		if (!is_zero_pfn(pfn))
762
			print_bad_pte(vma, addr, pte, NULL);
N
Nick Piggin 已提交
763 764 765 766 767
		return NULL;
	}

	/* !HAVE_PTE_SPECIAL case follows: */

J
Jared Hulbert 已提交
768 769 770 771 772 773
	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
		if (vma->vm_flags & VM_MIXEDMAP) {
			if (!pfn_valid(pfn))
				return NULL;
			goto out;
		} else {
N
Nick Piggin 已提交
774 775
			unsigned long off;
			off = (addr - vma->vm_start) >> PAGE_SHIFT;
J
Jared Hulbert 已提交
776 777 778 779 780
			if (pfn == vma->vm_pgoff + off)
				return NULL;
			if (!is_cow_mapping(vma->vm_flags))
				return NULL;
		}
781 782
	}

783 784
	if (is_zero_pfn(pfn))
		return NULL;
785 786 787 788 789
check_pfn:
	if (unlikely(pfn > highest_memmap_pfn)) {
		print_bad_pte(vma, addr, pte, NULL);
		return NULL;
	}
790 791

	/*
N
Nick Piggin 已提交
792 793
	 * NOTE! We still have PageReserved() pages in the page tables.
	 * eg. VDSO mappings can cause them to exist.
794
	 */
J
Jared Hulbert 已提交
795
out:
796
	return pfn_to_page(pfn);
H
Hugh Dickins 已提交
797 798
}

L
Linus Torvalds 已提交
799 800 801 802 803 804
/*
 * copy one vm_area from one task to the other. Assumes the page tables
 * already present in the new task to be cleared in the whole range
 * covered by this vma.
 */

H
Hugh Dickins 已提交
805
static inline unsigned long
L
Linus Torvalds 已提交
806
copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
N
Nick Piggin 已提交
807
		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
H
Hugh Dickins 已提交
808
		unsigned long addr, int *rss)
L
Linus Torvalds 已提交
809
{
N
Nick Piggin 已提交
810
	unsigned long vm_flags = vma->vm_flags;
L
Linus Torvalds 已提交
811 812 813 814 815
	pte_t pte = *src_pte;
	struct page *page;

	/* pte contains position in swap or file, so copy. */
	if (unlikely(!pte_present(pte))) {
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
		swp_entry_t entry = pte_to_swp_entry(pte);

		if (likely(!non_swap_entry(entry))) {
			if (swap_duplicate(entry) < 0)
				return entry.val;

			/* make sure dst_mm is on swapoff's mmlist. */
			if (unlikely(list_empty(&dst_mm->mmlist))) {
				spin_lock(&mmlist_lock);
				if (list_empty(&dst_mm->mmlist))
					list_add(&dst_mm->mmlist,
							&src_mm->mmlist);
				spin_unlock(&mmlist_lock);
			}
			rss[MM_SWAPENTS]++;
		} else if (is_migration_entry(entry)) {
			page = migration_entry_to_page(entry);

			if (PageAnon(page))
				rss[MM_ANONPAGES]++;
			else
				rss[MM_FILEPAGES]++;

			if (is_write_migration_entry(entry) &&
					is_cow_mapping(vm_flags)) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&entry);
				pte = swp_entry_to_pte(entry);
				if (pte_swp_soft_dirty(*src_pte))
					pte = pte_swp_mksoft_dirty(pte);
				set_pte_at(src_mm, addr, src_pte, pte);
850
			}
L
Linus Torvalds 已提交
851
		}
852
		goto out_set_pte;
L
Linus Torvalds 已提交
853 854 855 856 857 858
	}

	/*
	 * If it's a COW mapping, write protect it both
	 * in the parent and the child
	 */
859
	if (is_cow_mapping(vm_flags)) {
L
Linus Torvalds 已提交
860
		ptep_set_wrprotect(src_mm, addr, src_pte);
861
		pte = pte_wrprotect(pte);
L
Linus Torvalds 已提交
862 863 864 865 866 867 868 869 870
	}

	/*
	 * If it's a shared mapping, mark it clean in
	 * the child
	 */
	if (vm_flags & VM_SHARED)
		pte = pte_mkclean(pte);
	pte = pte_mkold(pte);
871 872 873 874

	page = vm_normal_page(vma, addr, pte);
	if (page) {
		get_page(page);
H
Hugh Dickins 已提交
875
		page_dup_rmap(page);
K
KAMEZAWA Hiroyuki 已提交
876 877 878 879
		if (PageAnon(page))
			rss[MM_ANONPAGES]++;
		else
			rss[MM_FILEPAGES]++;
880
	}
881 882 883

out_set_pte:
	set_pte_at(dst_mm, addr, dst_pte, pte);
H
Hugh Dickins 已提交
884
	return 0;
L
Linus Torvalds 已提交
885 886
}

887
static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
888 889
		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
		   unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
890
{
891
	pte_t *orig_src_pte, *orig_dst_pte;
L
Linus Torvalds 已提交
892
	pte_t *src_pte, *dst_pte;
H
Hugh Dickins 已提交
893
	spinlock_t *src_ptl, *dst_ptl;
894
	int progress = 0;
K
KAMEZAWA Hiroyuki 已提交
895
	int rss[NR_MM_COUNTERS];
H
Hugh Dickins 已提交
896
	swp_entry_t entry = (swp_entry_t){0};
L
Linus Torvalds 已提交
897 898

again:
K
KAMEZAWA Hiroyuki 已提交
899 900
	init_rss_vec(rss);

H
Hugh Dickins 已提交
901
	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
L
Linus Torvalds 已提交
902 903
	if (!dst_pte)
		return -ENOMEM;
P
Peter Zijlstra 已提交
904
	src_pte = pte_offset_map(src_pmd, addr);
H
Hugh Dickins 已提交
905
	src_ptl = pte_lockptr(src_mm, src_pmd);
I
Ingo Molnar 已提交
906
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
907 908
	orig_src_pte = src_pte;
	orig_dst_pte = dst_pte;
909
	arch_enter_lazy_mmu_mode();
L
Linus Torvalds 已提交
910 911 912 913 914 915

	do {
		/*
		 * We are holding two locks at this point - either of them
		 * could generate latencies in another task on another CPU.
		 */
916 917 918
		if (progress >= 32) {
			progress = 0;
			if (need_resched() ||
N
Nick Piggin 已提交
919
			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
920 921
				break;
		}
L
Linus Torvalds 已提交
922 923 924 925
		if (pte_none(*src_pte)) {
			progress++;
			continue;
		}
H
Hugh Dickins 已提交
926 927 928 929
		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
							vma, addr, rss);
		if (entry.val)
			break;
L
Linus Torvalds 已提交
930 931 932
		progress += 8;
	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);

933
	arch_leave_lazy_mmu_mode();
H
Hugh Dickins 已提交
934
	spin_unlock(src_ptl);
P
Peter Zijlstra 已提交
935
	pte_unmap(orig_src_pte);
K
KAMEZAWA Hiroyuki 已提交
936
	add_mm_rss_vec(dst_mm, rss);
937
	pte_unmap_unlock(orig_dst_pte, dst_ptl);
H
Hugh Dickins 已提交
938
	cond_resched();
H
Hugh Dickins 已提交
939 940 941 942 943 944

	if (entry.val) {
		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
			return -ENOMEM;
		progress = 0;
	}
L
Linus Torvalds 已提交
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	if (addr != end)
		goto again;
	return 0;
}

static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pmd_t *src_pmd, *dst_pmd;
	unsigned long next;

	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
	if (!dst_pmd)
		return -ENOMEM;
	src_pmd = pmd_offset(src_pud, addr);
	do {
		next = pmd_addr_end(addr, end);
963 964
		if (pmd_trans_huge(*src_pmd)) {
			int err;
965
			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
966 967 968 969 970 971 972 973
			err = copy_huge_pmd(dst_mm, src_mm,
					    dst_pmd, src_pmd, addr, vma);
			if (err == -ENOMEM)
				return -ENOMEM;
			if (!err)
				continue;
			/* fall through */
		}
L
Linus Torvalds 已提交
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		if (pmd_none_or_clear_bad(src_pmd))
			continue;
		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
	return 0;
}

static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pud_t *src_pud, *dst_pud;
	unsigned long next;

	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
	if (!dst_pud)
		return -ENOMEM;
	src_pud = pud_offset(src_pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(src_pud))
			continue;
		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pud++, src_pud++, addr = next, addr != end);
	return 0;
}

int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		struct vm_area_struct *vma)
{
	pgd_t *src_pgd, *dst_pgd;
	unsigned long next;
	unsigned long addr = vma->vm_start;
	unsigned long end = vma->vm_end;
1012 1013 1014
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	bool is_cow;
A
Andrea Arcangeli 已提交
1015
	int ret;
L
Linus Torvalds 已提交
1016

1017 1018 1019 1020 1021 1022
	/*
	 * Don't copy ptes where a page fault will fill them correctly.
	 * Fork becomes much lighter when there are big shared or private
	 * readonly mappings. The tradeoff is that copy_page_range is more
	 * efficient than faulting.
	 */
1023 1024 1025
	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
			!vma->anon_vma)
		return 0;
1026

L
Linus Torvalds 已提交
1027 1028 1029
	if (is_vm_hugetlb_page(vma))
		return copy_hugetlb_page_range(dst_mm, src_mm, vma);

1030
	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1031 1032 1033 1034
		/*
		 * We do not free on error cases below as remove_vma
		 * gets called on error from higher level routine
		 */
1035
		ret = track_pfn_copy(vma);
1036 1037 1038 1039
		if (ret)
			return ret;
	}

A
Andrea Arcangeli 已提交
1040 1041 1042 1043 1044 1045
	/*
	 * We need to invalidate the secondary MMU mappings only when
	 * there could be a permission downgrade on the ptes of the
	 * parent mm. And a permission downgrade will only happen if
	 * is_cow_mapping() returns true.
	 */
1046 1047 1048 1049 1050 1051
	is_cow = is_cow_mapping(vma->vm_flags);
	mmun_start = addr;
	mmun_end   = end;
	if (is_cow)
		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
						    mmun_end);
A
Andrea Arcangeli 已提交
1052 1053

	ret = 0;
L
Linus Torvalds 已提交
1054 1055 1056 1057 1058 1059
	dst_pgd = pgd_offset(dst_mm, addr);
	src_pgd = pgd_offset(src_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(src_pgd))
			continue;
A
Andrea Arcangeli 已提交
1060 1061 1062 1063 1064
		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
					    vma, addr, next))) {
			ret = -ENOMEM;
			break;
		}
L
Linus Torvalds 已提交
1065
	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
A
Andrea Arcangeli 已提交
1066

1067 1068
	if (is_cow)
		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
1069
	return ret;
L
Linus Torvalds 已提交
1070 1071
}

1072
static unsigned long zap_pte_range(struct mmu_gather *tlb,
N
Nick Piggin 已提交
1073
				struct vm_area_struct *vma, pmd_t *pmd,
L
Linus Torvalds 已提交
1074
				unsigned long addr, unsigned long end,
1075
				struct zap_details *details)
L
Linus Torvalds 已提交
1076
{
N
Nick Piggin 已提交
1077
	struct mm_struct *mm = tlb->mm;
P
Peter Zijlstra 已提交
1078
	int force_flush = 0;
K
KAMEZAWA Hiroyuki 已提交
1079
	int rss[NR_MM_COUNTERS];
1080
	spinlock_t *ptl;
1081
	pte_t *start_pte;
1082
	pte_t *pte;
1083
	swp_entry_t entry;
K
KAMEZAWA Hiroyuki 已提交
1084

P
Peter Zijlstra 已提交
1085
again:
1086
	init_rss_vec(rss);
1087 1088
	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
	pte = start_pte;
1089
	arch_enter_lazy_mmu_mode();
L
Linus Torvalds 已提交
1090 1091
	do {
		pte_t ptent = *pte;
1092
		if (pte_none(ptent)) {
L
Linus Torvalds 已提交
1093
			continue;
1094
		}
1095

L
Linus Torvalds 已提交
1096
		if (pte_present(ptent)) {
H
Hugh Dickins 已提交
1097
			struct page *page;
1098

1099
			page = vm_normal_page(vma, addr, ptent);
L
Linus Torvalds 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
			if (unlikely(details) && page) {
				/*
				 * unmap_shared_mapping_pages() wants to
				 * invalidate cache without truncating:
				 * unmap shared but keep private pages.
				 */
				if (details->check_mapping &&
				    details->check_mapping != page->mapping)
					continue;
			}
N
Nick Piggin 已提交
1110
			ptent = ptep_get_and_clear_full(mm, addr, pte,
1111
							tlb->fullmm);
L
Linus Torvalds 已提交
1112 1113 1114 1115
			tlb_remove_tlb_entry(tlb, pte, addr);
			if (unlikely(!page))
				continue;
			if (PageAnon(page))
K
KAMEZAWA Hiroyuki 已提交
1116
				rss[MM_ANONPAGES]--;
1117
			else {
1118 1119
				if (pte_dirty(ptent)) {
					force_flush = 1;
1120
					set_page_dirty(page);
1121
				}
1122
				if (pte_young(ptent) &&
1123
				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1124
					mark_page_accessed(page);
K
KAMEZAWA Hiroyuki 已提交
1125
				rss[MM_FILEPAGES]--;
1126
			}
1127
			page_remove_rmap(page);
1128 1129
			if (unlikely(page_mapcount(page) < 0))
				print_bad_pte(vma, addr, ptent, page);
1130 1131
			if (unlikely(!__tlb_remove_page(tlb, page))) {
				force_flush = 1;
1132
				addr += PAGE_SIZE;
P
Peter Zijlstra 已提交
1133
				break;
1134
			}
L
Linus Torvalds 已提交
1135 1136
			continue;
		}
1137
		/* If details->check_mapping, we leave swap entries. */
L
Linus Torvalds 已提交
1138 1139
		if (unlikely(details))
			continue;
K
KAMEZAWA Hiroyuki 已提交
1140

1141 1142 1143 1144 1145
		entry = pte_to_swp_entry(ptent);
		if (!non_swap_entry(entry))
			rss[MM_SWAPENTS]--;
		else if (is_migration_entry(entry)) {
			struct page *page;
1146

1147
			page = migration_entry_to_page(entry);
1148

1149 1150 1151 1152
			if (PageAnon(page))
				rss[MM_ANONPAGES]--;
			else
				rss[MM_FILEPAGES]--;
K
KAMEZAWA Hiroyuki 已提交
1153
		}
1154 1155
		if (unlikely(!free_swap_and_cache(entry)))
			print_bad_pte(vma, addr, ptent, NULL);
1156
		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1157
	} while (pte++, addr += PAGE_SIZE, addr != end);
1158

K
KAMEZAWA Hiroyuki 已提交
1159
	add_mm_rss_vec(mm, rss);
1160
	arch_leave_lazy_mmu_mode();
1161

1162
	/* Do the actual TLB flush before dropping ptl */
1163
	if (force_flush)
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
		tlb_flush_mmu_tlbonly(tlb);
	pte_unmap_unlock(start_pte, ptl);

	/*
	 * If we forced a TLB flush (either due to running out of
	 * batch buffers or because we needed to flush dirty TLB
	 * entries before releasing the ptl), free the batched
	 * memory too. Restart if we didn't do everything.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu_free(tlb);
1176 1177

		if (addr != end)
P
Peter Zijlstra 已提交
1178 1179 1180
			goto again;
	}

1181
	return addr;
L
Linus Torvalds 已提交
1182 1183
}

1184
static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
N
Nick Piggin 已提交
1185
				struct vm_area_struct *vma, pud_t *pud,
L
Linus Torvalds 已提交
1186
				unsigned long addr, unsigned long end,
1187
				struct zap_details *details)
L
Linus Torvalds 已提交
1188 1189 1190 1191 1192 1193 1194
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
1195
		if (pmd_trans_huge(*pmd)) {
1196
			if (next - addr != HPAGE_PMD_SIZE) {
1197 1198 1199 1200 1201 1202 1203 1204 1205
#ifdef CONFIG_DEBUG_VM
				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
						__func__, addr, end,
						vma->vm_start,
						vma->vm_end);
					BUG();
				}
#endif
1206
				split_huge_page_pmd(vma, addr, pmd);
S
Shaohua Li 已提交
1207
			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1208
				goto next;
1209 1210
			/* fall through */
		}
1211 1212 1213 1214 1215 1216 1217 1218 1219
		/*
		 * Here there can be other concurrent MADV_DONTNEED or
		 * trans huge page faults running, and if the pmd is
		 * none or trans huge it can change under us. This is
		 * because MADV_DONTNEED holds the mmap_sem in read
		 * mode.
		 */
		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
			goto next;
1220
		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1221
next:
1222 1223
		cond_resched();
	} while (pmd++, addr = next, addr != end);
1224 1225

	return addr;
L
Linus Torvalds 已提交
1226 1227
}

1228
static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
N
Nick Piggin 已提交
1229
				struct vm_area_struct *vma, pgd_t *pgd,
L
Linus Torvalds 已提交
1230
				unsigned long addr, unsigned long end,
1231
				struct zap_details *details)
L
Linus Torvalds 已提交
1232 1233 1234 1235 1236 1237 1238
{
	pud_t *pud;
	unsigned long next;

	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
1239
		if (pud_none_or_clear_bad(pud))
L
Linus Torvalds 已提交
1240
			continue;
1241 1242
		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
	} while (pud++, addr = next, addr != end);
1243 1244

	return addr;
L
Linus Torvalds 已提交
1245 1246
}

A
Al Viro 已提交
1247 1248 1249 1250
static void unmap_page_range(struct mmu_gather *tlb,
			     struct vm_area_struct *vma,
			     unsigned long addr, unsigned long end,
			     struct zap_details *details)
L
Linus Torvalds 已提交
1251 1252 1253 1254
{
	pgd_t *pgd;
	unsigned long next;

1255
	if (details && !details->check_mapping)
L
Linus Torvalds 已提交
1256 1257 1258 1259 1260 1261 1262
		details = NULL;

	BUG_ON(addr >= end);
	tlb_start_vma(tlb, vma);
	pgd = pgd_offset(vma->vm_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
1263
		if (pgd_none_or_clear_bad(pgd))
L
Linus Torvalds 已提交
1264
			continue;
1265 1266
		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
	} while (pgd++, addr = next, addr != end);
L
Linus Torvalds 已提交
1267 1268
	tlb_end_vma(tlb, vma);
}
1269

1270 1271 1272

static void unmap_single_vma(struct mmu_gather *tlb,
		struct vm_area_struct *vma, unsigned long start_addr,
1273
		unsigned long end_addr,
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
		struct zap_details *details)
{
	unsigned long start = max(vma->vm_start, start_addr);
	unsigned long end;

	if (start >= vma->vm_end)
		return;
	end = min(vma->vm_end, end_addr);
	if (end <= vma->vm_start)
		return;

1285 1286 1287
	if (vma->vm_file)
		uprobe_munmap(vma, start, end);

1288
	if (unlikely(vma->vm_flags & VM_PFNMAP))
1289
		untrack_pfn(vma, 0, 0);
1290 1291 1292 1293 1294 1295 1296

	if (start != end) {
		if (unlikely(is_vm_hugetlb_page(vma))) {
			/*
			 * It is undesirable to test vma->vm_file as it
			 * should be non-null for valid hugetlb area.
			 * However, vm_file will be NULL in the error
1297
			 * cleanup path of mmap_region. When
1298
			 * hugetlbfs ->mmap method fails,
1299
			 * mmap_region() nullifies vma->vm_file
1300 1301 1302 1303
			 * before calling this function to clean up.
			 * Since no pte has actually been setup, it is
			 * safe to do nothing in this case.
			 */
1304
			if (vma->vm_file) {
1305
				i_mmap_lock_write(vma->vm_file->f_mapping);
1306
				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1307
				i_mmap_unlock_write(vma->vm_file->f_mapping);
1308
			}
1309 1310 1311
		} else
			unmap_page_range(tlb, vma, start, end, details);
	}
L
Linus Torvalds 已提交
1312 1313 1314 1315
}

/**
 * unmap_vmas - unmap a range of memory covered by a list of vma's
1316
 * @tlb: address of the caller's struct mmu_gather
L
Linus Torvalds 已提交
1317 1318 1319 1320
 * @vma: the starting vma
 * @start_addr: virtual address at which to start unmapping
 * @end_addr: virtual address at which to end unmapping
 *
1321
 * Unmap all pages in the vma list.
L
Linus Torvalds 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
 *
 * Only addresses between `start' and `end' will be unmapped.
 *
 * The VMA list must be sorted in ascending virtual address order.
 *
 * unmap_vmas() assumes that the caller will flush the whole unmapped address
 * range after unmap_vmas() returns.  So the only responsibility here is to
 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
 * drops the lock and schedules.
 */
A
Al Viro 已提交
1332
void unmap_vmas(struct mmu_gather *tlb,
L
Linus Torvalds 已提交
1333
		struct vm_area_struct *vma, unsigned long start_addr,
1334
		unsigned long end_addr)
L
Linus Torvalds 已提交
1335
{
A
Andrea Arcangeli 已提交
1336
	struct mm_struct *mm = vma->vm_mm;
L
Linus Torvalds 已提交
1337

A
Andrea Arcangeli 已提交
1338
	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1339
	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1340
		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
A
Andrea Arcangeli 已提交
1341
	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
L
Linus Torvalds 已提交
1342 1343 1344 1345 1346
}

/**
 * zap_page_range - remove user pages in a given range
 * @vma: vm_area_struct holding the applicable pages
1347
 * @start: starting address of pages to zap
L
Linus Torvalds 已提交
1348
 * @size: number of bytes to zap
1349
 * @details: details of shared cache invalidation
1350 1351
 *
 * Caller must protect the VMA list
L
Linus Torvalds 已提交
1352
 */
1353
void zap_page_range(struct vm_area_struct *vma, unsigned long start,
L
Linus Torvalds 已提交
1354 1355 1356
		unsigned long size, struct zap_details *details)
{
	struct mm_struct *mm = vma->vm_mm;
P
Peter Zijlstra 已提交
1357
	struct mmu_gather tlb;
1358
	unsigned long end = start + size;
L
Linus Torvalds 已提交
1359 1360

	lru_add_drain();
1361
	tlb_gather_mmu(&tlb, mm, start, end);
1362
	update_hiwater_rss(mm);
1363 1364
	mmu_notifier_invalidate_range_start(mm, start, end);
	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1365
		unmap_single_vma(&tlb, vma, start, end, details);
1366 1367
	mmu_notifier_invalidate_range_end(mm, start, end);
	tlb_finish_mmu(&tlb, start, end);
L
Linus Torvalds 已提交
1368 1369
}

1370 1371 1372 1373 1374
/**
 * zap_page_range_single - remove user pages in a given range
 * @vma: vm_area_struct holding the applicable pages
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
1375
 * @details: details of shared cache invalidation
1376 1377
 *
 * The range must fit into one VMA.
L
Linus Torvalds 已提交
1378
 */
1379
static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
L
Linus Torvalds 已提交
1380 1381 1382
		unsigned long size, struct zap_details *details)
{
	struct mm_struct *mm = vma->vm_mm;
P
Peter Zijlstra 已提交
1383
	struct mmu_gather tlb;
L
Linus Torvalds 已提交
1384 1385 1386
	unsigned long end = address + size;

	lru_add_drain();
1387
	tlb_gather_mmu(&tlb, mm, address, end);
1388
	update_hiwater_rss(mm);
1389
	mmu_notifier_invalidate_range_start(mm, address, end);
1390
	unmap_single_vma(&tlb, vma, address, end, details);
1391
	mmu_notifier_invalidate_range_end(mm, address, end);
P
Peter Zijlstra 已提交
1392
	tlb_finish_mmu(&tlb, address, end);
L
Linus Torvalds 已提交
1393 1394
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
/**
 * zap_vma_ptes - remove ptes mapping the vma
 * @vma: vm_area_struct holding ptes to be zapped
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
 *
 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
 *
 * The entire address range must be fully contained within the vma.
 *
 * Returns 0 if successful.
 */
int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
		unsigned long size)
{
	if (address < vma->vm_start || address + size > vma->vm_end ||
	    		!(vma->vm_flags & VM_PFNMAP))
		return -1;
1413
	zap_page_range_single(vma, address, size, NULL);
1414 1415 1416 1417
	return 0;
}
EXPORT_SYMBOL_GPL(zap_vma_ptes);

1418
pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
H
Harvey Harrison 已提交
1419
			spinlock_t **ptl)
1420 1421 1422 1423
{
	pgd_t * pgd = pgd_offset(mm, addr);
	pud_t * pud = pud_alloc(mm, pgd, addr);
	if (pud) {
1424
		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1425 1426
		if (pmd) {
			VM_BUG_ON(pmd_trans_huge(*pmd));
1427
			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1428
		}
1429 1430 1431 1432
	}
	return NULL;
}

1433 1434 1435 1436 1437 1438 1439
/*
 * This is the old fallback for page remapping.
 *
 * For historical reasons, it only allows reserved pages. Only
 * old drivers should use this, and they needed to mark their
 * pages reserved for the old functions anyway.
 */
N
Nick Piggin 已提交
1440 1441
static int insert_page(struct vm_area_struct *vma, unsigned long addr,
			struct page *page, pgprot_t prot)
1442
{
N
Nick Piggin 已提交
1443
	struct mm_struct *mm = vma->vm_mm;
1444
	int retval;
1445
	pte_t *pte;
1446 1447
	spinlock_t *ptl;

1448
	retval = -EINVAL;
1449
	if (PageAnon(page))
1450
		goto out;
1451 1452
	retval = -ENOMEM;
	flush_dcache_page(page);
1453
	pte = get_locked_pte(mm, addr, &ptl);
1454
	if (!pte)
1455
		goto out;
1456 1457 1458 1459 1460 1461
	retval = -EBUSY;
	if (!pte_none(*pte))
		goto out_unlock;

	/* Ok, finally just insert the thing.. */
	get_page(page);
1462
	inc_mm_counter_fast(mm, MM_FILEPAGES);
1463 1464 1465 1466
	page_add_file_rmap(page);
	set_pte_at(mm, addr, pte, mk_pte(page, prot));

	retval = 0;
1467 1468
	pte_unmap_unlock(pte, ptl);
	return retval;
1469 1470 1471 1472 1473 1474
out_unlock:
	pte_unmap_unlock(pte, ptl);
out:
	return retval;
}

1475 1476 1477 1478 1479 1480
/**
 * vm_insert_page - insert single page into user vma
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @page: source kernel page
 *
1481 1482 1483 1484 1485 1486
 * This allows drivers to insert individual pages they've allocated
 * into a user vma.
 *
 * The page has to be a nice clean _individual_ kernel allocation.
 * If you allocate a compound page, you need to have marked it as
 * such (__GFP_COMP), or manually just split the page up yourself
N
Nick Piggin 已提交
1487
 * (see split_page()).
1488 1489 1490 1491 1492 1493 1494 1495
 *
 * NOTE! Traditionally this was done with "remap_pfn_range()" which
 * took an arbitrary page protection parameter. This doesn't allow
 * that. Your vma protection will have to be set up correctly, which
 * means that if you want a shared writable mapping, you'd better
 * ask for a shared writable mapping!
 *
 * The page does not need to be reserved.
1496 1497 1498 1499 1500
 *
 * Usually this function is called from f_op->mmap() handler
 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
 * Caller must set VM_MIXEDMAP on vma if it wants to call this
 * function from other places, for example from page-fault handler.
1501
 */
N
Nick Piggin 已提交
1502 1503
int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
			struct page *page)
1504 1505 1506 1507 1508
{
	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
	if (!page_count(page))
		return -EINVAL;
1509 1510 1511 1512 1513
	if (!(vma->vm_flags & VM_MIXEDMAP)) {
		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
		BUG_ON(vma->vm_flags & VM_PFNMAP);
		vma->vm_flags |= VM_MIXEDMAP;
	}
N
Nick Piggin 已提交
1514
	return insert_page(vma, addr, page, vma->vm_page_prot);
1515
}
1516
EXPORT_SYMBOL(vm_insert_page);
1517

N
Nick Piggin 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn, pgprot_t prot)
{
	struct mm_struct *mm = vma->vm_mm;
	int retval;
	pte_t *pte, entry;
	spinlock_t *ptl;

	retval = -ENOMEM;
	pte = get_locked_pte(mm, addr, &ptl);
	if (!pte)
		goto out;
	retval = -EBUSY;
	if (!pte_none(*pte))
		goto out_unlock;

	/* Ok, finally just insert the thing.. */
	entry = pte_mkspecial(pfn_pte(pfn, prot));
	set_pte_at(mm, addr, pte, entry);
1537
	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
N
Nick Piggin 已提交
1538 1539 1540 1541 1542 1543 1544 1545

	retval = 0;
out_unlock:
	pte_unmap_unlock(pte, ptl);
out:
	return retval;
}

N
Nick Piggin 已提交
1546 1547 1548 1549 1550 1551
/**
 * vm_insert_pfn - insert single pfn into user vma
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @pfn: source kernel pfn
 *
1552
 * Similar to vm_insert_page, this allows drivers to insert individual pages
N
Nick Piggin 已提交
1553 1554 1555 1556
 * they've allocated into a user vma. Same comments apply.
 *
 * This function should only be called from a vm_ops->fault handler, and
 * in that case the handler should return NULL.
N
Nick Piggin 已提交
1557 1558 1559 1560 1561
 *
 * vma cannot be a COW mapping.
 *
 * As this is called only for pages that do not currently exist, we
 * do not need to flush old virtual caches or the TLB.
N
Nick Piggin 已提交
1562 1563
 */
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
N
Nick Piggin 已提交
1564
			unsigned long pfn)
N
Nick Piggin 已提交
1565
{
1566
	int ret;
1567
	pgprot_t pgprot = vma->vm_page_prot;
N
Nick Piggin 已提交
1568 1569 1570 1571 1572 1573
	/*
	 * Technically, architectures with pte_special can avoid all these
	 * restrictions (same for remap_pfn_range).  However we would like
	 * consistency in testing and feature parity among all, so we should
	 * try to keep these invariants in place for everybody.
	 */
J
Jared Hulbert 已提交
1574 1575 1576 1577 1578
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
N
Nick Piggin 已提交
1579

N
Nick Piggin 已提交
1580 1581
	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
1582
	if (track_pfn_insert(vma, &pgprot, pfn))
1583 1584
		return -EINVAL;

1585
	ret = insert_pfn(vma, addr, pfn, pgprot);
1586 1587

	return ret;
N
Nick Piggin 已提交
1588 1589
}
EXPORT_SYMBOL(vm_insert_pfn);
N
Nick Piggin 已提交
1590

N
Nick Piggin 已提交
1591 1592 1593 1594
int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn)
{
	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
N
Nick Piggin 已提交
1595

N
Nick Piggin 已提交
1596 1597
	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
N
Nick Piggin 已提交
1598

N
Nick Piggin 已提交
1599 1600 1601 1602
	/*
	 * If we don't have pte special, then we have to use the pfn_valid()
	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
	 * refcount the page if pfn_valid is true (hence insert_page rather
H
Hugh Dickins 已提交
1603 1604
	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
	 * without pte special, it would there be refcounted as a normal page.
N
Nick Piggin 已提交
1605 1606 1607 1608 1609 1610 1611 1612
	 */
	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
		struct page *page;

		page = pfn_to_page(pfn);
		return insert_page(vma, addr, page, vma->vm_page_prot);
	}
	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
N
Nick Piggin 已提交
1613
}
N
Nick Piggin 已提交
1614
EXPORT_SYMBOL(vm_insert_mixed);
N
Nick Piggin 已提交
1615

L
Linus Torvalds 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
/*
 * maps a range of physical memory into the requested pages. the old
 * mappings are removed. any references to nonexistent pages results
 * in null mappings (currently treated as "copy-on-access")
 */
static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pte_t *pte;
H
Hugh Dickins 已提交
1626
	spinlock_t *ptl;
L
Linus Torvalds 已提交
1627

H
Hugh Dickins 已提交
1628
	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
L
Linus Torvalds 已提交
1629 1630
	if (!pte)
		return -ENOMEM;
1631
	arch_enter_lazy_mmu_mode();
L
Linus Torvalds 已提交
1632 1633
	do {
		BUG_ON(!pte_none(*pte));
N
Nick Piggin 已提交
1634
		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
L
Linus Torvalds 已提交
1635 1636
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
1637
	arch_leave_lazy_mmu_mode();
H
Hugh Dickins 已提交
1638
	pte_unmap_unlock(pte - 1, ptl);
L
Linus Torvalds 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	return 0;
}

static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pmd_t *pmd;
	unsigned long next;

	pfn -= addr >> PAGE_SHIFT;
	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
1653
	VM_BUG_ON(pmd_trans_huge(*pmd));
L
Linus Torvalds 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	do {
		next = pmd_addr_end(addr, end);
		if (remap_pte_range(mm, pmd, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot))
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pud_t *pud;
	unsigned long next;

	pfn -= addr >> PAGE_SHIFT;
	pud = pud_alloc(mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
		if (remap_pmd_range(mm, pud, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot))
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
/**
 * remap_pfn_range - remap kernel memory to userspace
 * @vma: user vma to map to
 * @addr: target user address to start at
 * @pfn: physical address of kernel memory
 * @size: size of map area
 * @prot: page protection flags for this mapping
 *
 *  Note: this is only safe if the mm semaphore is held when called.
 */
L
Linus Torvalds 已提交
1693 1694 1695 1696 1697
int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
		    unsigned long pfn, unsigned long size, pgprot_t prot)
{
	pgd_t *pgd;
	unsigned long next;
1698
	unsigned long end = addr + PAGE_ALIGN(size);
L
Linus Torvalds 已提交
1699 1700 1701 1702 1703 1704 1705 1706
	struct mm_struct *mm = vma->vm_mm;
	int err;

	/*
	 * Physically remapped pages are special. Tell the
	 * rest of the world about it:
	 *   VM_IO tells people not to look at these pages
	 *	(accesses can have side effects).
1707 1708 1709
	 *   VM_PFNMAP tells the core MM that the base pages are just
	 *	raw PFN mappings, and do not have a "struct page" associated
	 *	with them.
1710 1711 1712 1713
	 *   VM_DONTEXPAND
	 *      Disable vma merging and expanding with mremap().
	 *   VM_DONTDUMP
	 *      Omit vma from core dump, even when VM_IO turned off.
L
Linus Torvalds 已提交
1714 1715 1716 1717
	 *
	 * There's a horrible special case to handle copy-on-write
	 * behaviour that some programs depend on. We mark the "original"
	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1718
	 * See vm_normal_page() for details.
L
Linus Torvalds 已提交
1719
	 */
1720 1721 1722
	if (is_cow_mapping(vma->vm_flags)) {
		if (addr != vma->vm_start || end != vma->vm_end)
			return -EINVAL;
L
Linus Torvalds 已提交
1723
		vma->vm_pgoff = pfn;
1724 1725 1726 1727
	}

	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
	if (err)
1728
		return -EINVAL;
L
Linus Torvalds 已提交
1729

1730
	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
L
Linus Torvalds 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

	BUG_ON(addr >= end);
	pfn -= addr >> PAGE_SHIFT;
	pgd = pgd_offset(mm, addr);
	flush_cache_range(vma, addr, end);
	do {
		next = pgd_addr_end(addr, end);
		err = remap_pud_range(mm, pgd, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);
1743 1744

	if (err)
1745
		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1746

L
Linus Torvalds 已提交
1747 1748 1749 1750
	return err;
}
EXPORT_SYMBOL(remap_pfn_range);

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
/**
 * vm_iomap_memory - remap memory to userspace
 * @vma: user vma to map to
 * @start: start of area
 * @len: size of area
 *
 * This is a simplified io_remap_pfn_range() for common driver use. The
 * driver just needs to give us the physical memory range to be mapped,
 * we'll figure out the rest from the vma information.
 *
 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
 * whatever write-combining details or similar.
 */
int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
{
	unsigned long vm_len, pfn, pages;

	/* Check that the physical memory area passed in looks valid */
	if (start + len < start)
		return -EINVAL;
	/*
	 * You *really* shouldn't map things that aren't page-aligned,
	 * but we've historically allowed it because IO memory might
	 * just have smaller alignment.
	 */
	len += start & ~PAGE_MASK;
	pfn = start >> PAGE_SHIFT;
	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
	if (pfn + pages < pfn)
		return -EINVAL;

	/* We start the mapping 'vm_pgoff' pages into the area */
	if (vma->vm_pgoff > pages)
		return -EINVAL;
	pfn += vma->vm_pgoff;
	pages -= vma->vm_pgoff;

	/* Can we fit all of the mapping? */
	vm_len = vma->vm_end - vma->vm_start;
	if (vm_len >> PAGE_SHIFT > pages)
		return -EINVAL;

	/* Ok, let it rip */
	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
}
EXPORT_SYMBOL(vm_iomap_memory);

1798 1799 1800 1801 1802 1803
static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pte_t *pte;
	int err;
1804
	pgtable_t token;
1805
	spinlock_t *uninitialized_var(ptl);
1806 1807 1808 1809 1810 1811 1812 1813 1814

	pte = (mm == &init_mm) ?
		pte_alloc_kernel(pmd, addr) :
		pte_alloc_map_lock(mm, pmd, addr, &ptl);
	if (!pte)
		return -ENOMEM;

	BUG_ON(pmd_huge(*pmd));

1815 1816
	arch_enter_lazy_mmu_mode();

1817
	token = pmd_pgtable(*pmd);
1818 1819

	do {
1820
		err = fn(pte++, token, addr, data);
1821 1822
		if (err)
			break;
1823
	} while (addr += PAGE_SIZE, addr != end);
1824

1825 1826
	arch_leave_lazy_mmu_mode();

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
	if (mm != &init_mm)
		pte_unmap_unlock(pte-1, ptl);
	return err;
}

static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pmd_t *pmd;
	unsigned long next;
	int err;

A
Andi Kleen 已提交
1840 1841
	BUG_ON(pud_huge(*pud));

1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
		if (err)
			break;
	} while (pmd++, addr = next, addr != end);
	return err;
}

static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pud_t *pud;
	unsigned long next;
	int err;

	pud = pud_alloc(mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
		if (err)
			break;
	} while (pud++, addr = next, addr != end);
	return err;
}

/*
 * Scan a region of virtual memory, filling in page tables as necessary
 * and calling a provided function on each leaf page table.
 */
int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
			unsigned long size, pte_fn_t fn, void *data)
{
	pgd_t *pgd;
	unsigned long next;
1883
	unsigned long end = addr + size;
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	int err;

	BUG_ON(addr >= end);
	pgd = pgd_offset(mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);
1894

1895 1896 1897 1898
	return err;
}
EXPORT_SYMBOL_GPL(apply_to_page_range);

1899
/*
1900 1901 1902 1903 1904
 * handle_pte_fault chooses page fault handler according to an entry which was
 * read non-atomically.  Before making any commitment, on those architectures
 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
 * parts, do_swap_page must check under lock before unmapping the pte and
 * proceeding (but do_wp_page is only called after already making such a check;
1905
 * and do_anonymous_page can safely check later on).
1906
 */
H
Hugh Dickins 已提交
1907
static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1908 1909 1910 1911 1912
				pte_t *page_table, pte_t orig_pte)
{
	int same = 1;
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
	if (sizeof(pte_t) > sizeof(unsigned long)) {
H
Hugh Dickins 已提交
1913 1914
		spinlock_t *ptl = pte_lockptr(mm, pmd);
		spin_lock(ptl);
1915
		same = pte_same(*page_table, orig_pte);
H
Hugh Dickins 已提交
1916
		spin_unlock(ptl);
1917 1918 1919 1920 1921 1922
	}
#endif
	pte_unmap(page_table);
	return same;
}

1923
static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1924
{
1925 1926
	debug_dma_assert_idle(src);

1927 1928 1929 1930 1931 1932 1933
	/*
	 * If the source page was a PFN mapping, we don't have
	 * a "struct page" for it. We do a best-effort copy by
	 * just copying from the original user address. If that
	 * fails, we just zero-fill it. Live with it.
	 */
	if (unlikely(!src)) {
1934
		void *kaddr = kmap_atomic(dst);
L
Linus Torvalds 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943
		void __user *uaddr = (void __user *)(va & PAGE_MASK);

		/*
		 * This really shouldn't fail, because the page is there
		 * in the page tables. But it might just be unreadable,
		 * in which case we just give up and fill the result with
		 * zeroes.
		 */
		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1944
			clear_page(kaddr);
1945
		kunmap_atomic(kaddr);
1946
		flush_dcache_page(dst);
N
Nick Piggin 已提交
1947 1948
	} else
		copy_user_highpage(dst, src, va, vma);
1949 1950
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
/*
 * Notify the address space that the page is about to become writable so that
 * it can prohibit this or wait for the page to get into an appropriate state.
 *
 * We do this without the lock held, so that it can sleep if it needs to.
 */
static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
	       unsigned long address)
{
	struct vm_fault vmf;
	int ret;

	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
	vmf.pgoff = page->index;
	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
	vmf.page = page;
1967
	vmf.cow_page = NULL;
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
		return ret;
	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
		lock_page(page);
		if (!page->mapping) {
			unlock_page(page);
			return 0; /* retry */
		}
		ret |= VM_FAULT_LOCKED;
	} else
		VM_BUG_ON_PAGE(!PageLocked(page), page);
	return ret;
}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
/*
 * Handle write page faults for pages that can be reused in the current vma
 *
 * This can happen either due to the mapping being with the VM_SHARED flag,
 * or due to us being the last reference standing to the page. In either
 * case, all we need to do here is to mark the page as writable and update
 * any related book-keeping.
 */
static inline int wp_page_reuse(struct mm_struct *mm,
			struct vm_area_struct *vma, unsigned long address,
			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
			struct page *page, int page_mkwrite,
			int dirty_shared)
	__releases(ptl)
{
	pte_t entry;
	/*
	 * Clear the pages cpupid information as the existing
	 * information potentially belongs to a now completely
	 * unrelated process.
	 */
	if (page)
		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);

	flush_cache_page(vma, address, pte_pfn(orig_pte));
	entry = pte_mkyoung(orig_pte);
	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
	if (ptep_set_access_flags(vma, address, page_table, entry, 1))
		update_mmu_cache(vma, address, page_table);
	pte_unmap_unlock(page_table, ptl);

	if (dirty_shared) {
		struct address_space *mapping;
		int dirtied;

		if (!page_mkwrite)
			lock_page(page);

		dirtied = set_page_dirty(page);
		VM_BUG_ON_PAGE(PageAnon(page), page);
		mapping = page->mapping;
		unlock_page(page);
		page_cache_release(page);

		if ((dirtied || page_mkwrite) && mapping) {
			/*
			 * Some device drivers do not set page.mapping
			 * but still dirty their pages
			 */
			balance_dirty_pages_ratelimited(mapping);
		}

		if (!page_mkwrite)
			file_update_time(vma->vm_file);
	}

	return VM_FAULT_WRITE;
}

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
/*
 * Handle the case of a page which we actually need to copy to a new page.
 *
 * Called with mmap_sem locked and the old page referenced, but
 * without the ptl held.
 *
 * High level logic flow:
 *
 * - Allocate a page, copy the content of the old page to the new one.
 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
 * - Take the PTL. If the pte changed, bail out and release the allocated page
 * - If the pte is still the way we remember it, update the page table and all
 *   relevant references. This includes dropping the reference the page-table
 *   held to the old page, as well as updating the rmap.
 * - In any case, unlock the PTL and drop the reference we took to the old page.
 */
static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, pte_t *page_table, pmd_t *pmd,
			pte_t orig_pte, struct page *old_page)
{
	struct page *new_page = NULL;
	spinlock_t *ptl = NULL;
	pte_t entry;
	int page_copied = 0;
	const unsigned long mmun_start = address & PAGE_MASK;	/* For mmu_notifiers */
	const unsigned long mmun_end = mmun_start + PAGE_SIZE;	/* For mmu_notifiers */
	struct mem_cgroup *memcg;

	if (unlikely(anon_vma_prepare(vma)))
		goto oom;

	if (is_zero_pfn(pte_pfn(orig_pte))) {
		new_page = alloc_zeroed_user_highpage_movable(vma, address);
		if (!new_page)
			goto oom;
	} else {
		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
		if (!new_page)
			goto oom;
		cow_user_page(new_page, old_page, address, vma);
	}

	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
		goto oom_free_new;

2088 2089
	__SetPageUptodate(new_page);

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);

	/*
	 * Re-check the pte - we dropped the lock
	 */
	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (likely(pte_same(*page_table, orig_pte))) {
		if (old_page) {
			if (!PageAnon(old_page)) {
				dec_mm_counter_fast(mm, MM_FILEPAGES);
				inc_mm_counter_fast(mm, MM_ANONPAGES);
			}
		} else {
			inc_mm_counter_fast(mm, MM_ANONPAGES);
		}
		flush_cache_page(vma, address, pte_pfn(orig_pte));
		entry = mk_pte(new_page, vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
		/*
		 * Clear the pte entry and flush it first, before updating the
		 * pte with the new entry. This will avoid a race condition
		 * seen in the presence of one thread doing SMC and another
		 * thread doing COW.
		 */
		ptep_clear_flush_notify(vma, address, page_table);
		page_add_new_anon_rmap(new_page, vma, address);
		mem_cgroup_commit_charge(new_page, memcg, false);
		lru_cache_add_active_or_unevictable(new_page, vma);
		/*
		 * We call the notify macro here because, when using secondary
		 * mmu page tables (such as kvm shadow page tables), we want the
		 * new page to be mapped directly into the secondary page table.
		 */
		set_pte_at_notify(mm, address, page_table, entry);
		update_mmu_cache(vma, address, page_table);
		if (old_page) {
			/*
			 * Only after switching the pte to the new page may
			 * we remove the mapcount here. Otherwise another
			 * process may come and find the rmap count decremented
			 * before the pte is switched to the new page, and
			 * "reuse" the old page writing into it while our pte
			 * here still points into it and can be read by other
			 * threads.
			 *
			 * The critical issue is to order this
			 * page_remove_rmap with the ptp_clear_flush above.
			 * Those stores are ordered by (if nothing else,)
			 * the barrier present in the atomic_add_negative
			 * in page_remove_rmap.
			 *
			 * Then the TLB flush in ptep_clear_flush ensures that
			 * no process can access the old page before the
			 * decremented mapcount is visible. And the old page
			 * cannot be reused until after the decremented
			 * mapcount is visible. So transitively, TLBs to
			 * old page will be flushed before it can be reused.
			 */
			page_remove_rmap(old_page);
		}

		/* Free the old page.. */
		new_page = old_page;
		page_copied = 1;
	} else {
		mem_cgroup_cancel_charge(new_page, memcg);
	}

	if (new_page)
		page_cache_release(new_page);

	pte_unmap_unlock(page_table, ptl);
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
	if (old_page) {
		/*
		 * Don't let another task, with possibly unlocked vma,
		 * keep the mlocked page.
		 */
		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
			lock_page(old_page);	/* LRU manipulation */
			munlock_vma_page(old_page);
			unlock_page(old_page);
		}
		page_cache_release(old_page);
	}
	return page_copied ? VM_FAULT_WRITE : 0;
oom_free_new:
	page_cache_release(new_page);
oom:
	if (old_page)
		page_cache_release(old_page);
	return VM_FAULT_OOM;
}

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
/*
 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
 * mapping
 */
static int wp_pfn_shared(struct mm_struct *mm,
			struct vm_area_struct *vma, unsigned long address,
			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
			pmd_t *pmd)
{
	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
		struct vm_fault vmf = {
			.page = NULL,
			.pgoff = linear_page_index(vma, address),
			.virtual_address = (void __user *)(address & PAGE_MASK),
			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
		};
		int ret;

		pte_unmap_unlock(page_table, ptl);
		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
		if (ret & VM_FAULT_ERROR)
			return ret;
		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
		/*
		 * We might have raced with another page fault while we
		 * released the pte_offset_map_lock.
		 */
		if (!pte_same(*page_table, orig_pte)) {
			pte_unmap_unlock(page_table, ptl);
			return 0;
		}
	}
	return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
			     NULL, 0, 0);
}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
			  unsigned long address, pte_t *page_table,
			  pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
			  struct page *old_page)
	__releases(ptl)
{
	int page_mkwrite = 0;

	page_cache_get(old_page);

	/*
	 * Only catch write-faults on shared writable pages,
	 * read-only shared pages can get COWed by
	 * get_user_pages(.write=1, .force=1).
	 */
	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
		int tmp;

		pte_unmap_unlock(page_table, ptl);
		tmp = do_page_mkwrite(vma, old_page, address);
		if (unlikely(!tmp || (tmp &
				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
			page_cache_release(old_page);
			return tmp;
		}
		/*
		 * Since we dropped the lock we need to revalidate
		 * the PTE as someone else may have changed it.  If
		 * they did, we just return, as we can count on the
		 * MMU to tell us if they didn't also make it writable.
		 */
		page_table = pte_offset_map_lock(mm, pmd, address,
						 &ptl);
		if (!pte_same(*page_table, orig_pte)) {
			unlock_page(old_page);
			pte_unmap_unlock(page_table, ptl);
			page_cache_release(old_page);
			return 0;
		}
		page_mkwrite = 1;
	}

	return wp_page_reuse(mm, vma, address, page_table, ptl,
			     orig_pte, old_page, page_mkwrite, 1);
}

L
Linus Torvalds 已提交
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
/*
 * This routine handles present pages, when users try to write
 * to a shared page. It is done by copying the page to a new address
 * and decrementing the shared-page counter for the old page.
 *
 * Note that this routine assumes that the protection checks have been
 * done by the caller (the low-level page fault routine in most cases).
 * Thus we can safely just mark it writable once we've done any necessary
 * COW.
 *
 * We also mark the page dirty at this point even though the page will
 * change only once the write actually happens. This avoids a few races,
 * and potentially makes it more efficient.
 *
2280 2281 2282
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), with pte both mapped and locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
L
Linus Torvalds 已提交
2283
 */
2284 2285
static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
2286
		spinlock_t *ptl, pte_t orig_pte)
2287
	__releases(ptl)
L
Linus Torvalds 已提交
2288
{
2289
	struct page *old_page;
L
Linus Torvalds 已提交
2290

2291
	old_page = vm_normal_page(vma, address, orig_pte);
2292 2293
	if (!old_page) {
		/*
2294 2295
		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
		 * VM_PFNMAP VMA.
2296 2297
		 *
		 * We should not cow pages in a shared writeable mapping.
2298
		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2299 2300 2301
		 */
		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
				     (VM_WRITE|VM_SHARED))
2302 2303
			return wp_pfn_shared(mm, vma, address, page_table, ptl,
					     orig_pte, pmd);
2304 2305 2306 2307

		pte_unmap_unlock(page_table, ptl);
		return wp_page_copy(mm, vma, address, page_table, pmd,
				    orig_pte, old_page);
2308
	}
L
Linus Torvalds 已提交
2309

2310
	/*
P
Peter Zijlstra 已提交
2311 2312
	 * Take out anonymous pages first, anonymous shared vmas are
	 * not dirty accountable.
2313
	 */
H
Hugh Dickins 已提交
2314
	if (PageAnon(old_page) && !PageKsm(old_page)) {
2315 2316 2317 2318 2319 2320 2321 2322
		if (!trylock_page(old_page)) {
			page_cache_get(old_page);
			pte_unmap_unlock(page_table, ptl);
			lock_page(old_page);
			page_table = pte_offset_map_lock(mm, pmd, address,
							 &ptl);
			if (!pte_same(*page_table, orig_pte)) {
				unlock_page(old_page);
2323 2324 2325
				pte_unmap_unlock(page_table, ptl);
				page_cache_release(old_page);
				return 0;
2326 2327
			}
			page_cache_release(old_page);
P
Peter Zijlstra 已提交
2328
		}
2329
		if (reuse_swap_page(old_page)) {
2330 2331 2332 2333 2334 2335
			/*
			 * The page is all ours.  Move it to our anon_vma so
			 * the rmap code will not search our parent or siblings.
			 * Protected against the rmap code by the page lock.
			 */
			page_move_anon_rmap(old_page, vma, address);
2336
			unlock_page(old_page);
2337 2338
			return wp_page_reuse(mm, vma, address, page_table, ptl,
					     orig_pte, old_page, 0, 0);
2339
		}
2340
		unlock_page(old_page);
P
Peter Zijlstra 已提交
2341
	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2342
					(VM_WRITE|VM_SHARED))) {
2343 2344
		return wp_page_shared(mm, vma, address, page_table, pmd,
				      ptl, orig_pte, old_page);
L
Linus Torvalds 已提交
2345 2346 2347 2348 2349
	}

	/*
	 * Ok, we need to copy. Oh, well..
	 */
N
Nick Piggin 已提交
2350
	page_cache_get(old_page);
2351

2352
	pte_unmap_unlock(page_table, ptl);
2353 2354
	return wp_page_copy(mm, vma, address, page_table, pmd,
			    orig_pte, old_page);
L
Linus Torvalds 已提交
2355 2356
}

2357
static void unmap_mapping_range_vma(struct vm_area_struct *vma,
L
Linus Torvalds 已提交
2358 2359 2360
		unsigned long start_addr, unsigned long end_addr,
		struct zap_details *details)
{
2361
	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
L
Linus Torvalds 已提交
2362 2363
}

2364
static inline void unmap_mapping_range_tree(struct rb_root *root,
L
Linus Torvalds 已提交
2365 2366 2367 2368 2369
					    struct zap_details *details)
{
	struct vm_area_struct *vma;
	pgoff_t vba, vea, zba, zea;

2370
	vma_interval_tree_foreach(vma, root,
L
Linus Torvalds 已提交
2371 2372 2373
			details->first_index, details->last_index) {

		vba = vma->vm_pgoff;
2374
		vea = vba + vma_pages(vma) - 1;
L
Linus Torvalds 已提交
2375 2376 2377 2378 2379 2380 2381 2382
		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
		zba = details->first_index;
		if (zba < vba)
			zba = vba;
		zea = details->last_index;
		if (zea > vea)
			zea = vea;

2383
		unmap_mapping_range_vma(vma,
L
Linus Torvalds 已提交
2384 2385
			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2386
				details);
L
Linus Torvalds 已提交
2387 2388 2389 2390
	}
}

/**
2391 2392 2393 2394
 * unmap_mapping_range - unmap the portion of all mmaps in the specified
 * address_space corresponding to the specified page range in the underlying
 * file.
 *
M
Martin Waitz 已提交
2395
 * @mapping: the address space containing mmaps to be unmapped.
L
Linus Torvalds 已提交
2396 2397
 * @holebegin: byte in first page to unmap, relative to the start of
 * the underlying file.  This will be rounded down to a PAGE_SIZE
N
npiggin@suse.de 已提交
2398
 * boundary.  Note that this is different from truncate_pagecache(), which
L
Linus Torvalds 已提交
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
 * must keep the partial page.  In contrast, we must get rid of
 * partial pages.
 * @holelen: size of prospective hole in bytes.  This will be rounded
 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
 * end of the file.
 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
 * but 0 when invalidating pagecache, don't throw away private data.
 */
void unmap_mapping_range(struct address_space *mapping,
		loff_t const holebegin, loff_t const holelen, int even_cows)
{
	struct zap_details details;
	pgoff_t hba = holebegin >> PAGE_SHIFT;
	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;

	/* Check for overflow. */
	if (sizeof(holelen) > sizeof(hlen)) {
		long long holeend =
			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
		if (holeend & ~(long long)ULONG_MAX)
			hlen = ULONG_MAX - hba + 1;
	}

	details.check_mapping = even_cows? NULL: mapping;
	details.first_index = hba;
	details.last_index = hba + hlen - 1;
	if (details.last_index < details.first_index)
		details.last_index = ULONG_MAX;


2429
	/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2430
	i_mmap_lock_write(mapping);
2431
	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
L
Linus Torvalds 已提交
2432
		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2433
	i_mmap_unlock_write(mapping);
L
Linus Torvalds 已提交
2434 2435 2436 2437
}
EXPORT_SYMBOL(unmap_mapping_range);

/*
2438 2439
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
2440 2441 2442 2443
 * We return with pte unmapped and unlocked.
 *
 * We return with the mmap_sem locked or unlocked in the same cases
 * as does filemap_fault().
L
Linus Torvalds 已提交
2444
 */
2445 2446
static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
2447
		unsigned int flags, pte_t orig_pte)
L
Linus Torvalds 已提交
2448
{
2449
	spinlock_t *ptl;
2450
	struct page *page, *swapcache;
2451
	struct mem_cgroup *memcg;
2452
	swp_entry_t entry;
L
Linus Torvalds 已提交
2453
	pte_t pte;
2454
	int locked;
2455
	int exclusive = 0;
N
Nick Piggin 已提交
2456
	int ret = 0;
L
Linus Torvalds 已提交
2457

H
Hugh Dickins 已提交
2458
	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2459
		goto out;
2460 2461

	entry = pte_to_swp_entry(orig_pte);
2462 2463 2464 2465 2466 2467 2468
	if (unlikely(non_swap_entry(entry))) {
		if (is_migration_entry(entry)) {
			migration_entry_wait(mm, pmd, address);
		} else if (is_hwpoison_entry(entry)) {
			ret = VM_FAULT_HWPOISON;
		} else {
			print_bad_pte(vma, address, orig_pte, NULL);
H
Hugh Dickins 已提交
2469
			ret = VM_FAULT_SIGBUS;
2470
		}
2471 2472
		goto out;
	}
2473
	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
L
Linus Torvalds 已提交
2474 2475
	page = lookup_swap_cache(entry);
	if (!page) {
2476 2477
		page = swapin_readahead(entry,
					GFP_HIGHUSER_MOVABLE, vma, address);
L
Linus Torvalds 已提交
2478 2479
		if (!page) {
			/*
2480 2481
			 * Back out if somebody else faulted in this pte
			 * while we released the pte lock.
L
Linus Torvalds 已提交
2482
			 */
2483
			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
L
Linus Torvalds 已提交
2484 2485
			if (likely(pte_same(*page_table, orig_pte)))
				ret = VM_FAULT_OOM;
2486
			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2487
			goto unlock;
L
Linus Torvalds 已提交
2488 2489 2490 2491
		}

		/* Had to read the page from swap area: Major fault */
		ret = VM_FAULT_MAJOR;
2492
		count_vm_event(PGMAJFAULT);
2493
		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2494
	} else if (PageHWPoison(page)) {
2495 2496 2497 2498
		/*
		 * hwpoisoned dirty swapcache pages are kept for killing
		 * owner processes (which may be unknown at hwpoison time)
		 */
2499 2500
		ret = VM_FAULT_HWPOISON;
		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2501
		swapcache = page;
2502
		goto out_release;
L
Linus Torvalds 已提交
2503 2504
	}

2505
	swapcache = page;
2506
	locked = lock_page_or_retry(page, mm, flags);
R
Rik van Riel 已提交
2507

2508
	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2509 2510 2511 2512
	if (!locked) {
		ret |= VM_FAULT_RETRY;
		goto out_release;
	}
2513

A
Andrea Arcangeli 已提交
2514
	/*
2515 2516 2517 2518
	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
	 * release the swapcache from under us.  The page pin, and pte_same
	 * test below, are not enough to exclude that.  Even if it is still
	 * swapcache, we need to check that the page's swap has not changed.
A
Andrea Arcangeli 已提交
2519
	 */
2520
	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
A
Andrea Arcangeli 已提交
2521 2522
		goto out_page;

2523 2524 2525 2526 2527
	page = ksm_might_need_to_copy(page, vma, address);
	if (unlikely(!page)) {
		ret = VM_FAULT_OOM;
		page = swapcache;
		goto out_page;
H
Hugh Dickins 已提交
2528 2529
	}

2530
	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2531
		ret = VM_FAULT_OOM;
2532
		goto out_page;
2533 2534
	}

L
Linus Torvalds 已提交
2535
	/*
2536
	 * Back out if somebody else already faulted in this pte.
L
Linus Torvalds 已提交
2537
	 */
2538
	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
H
Hugh Dickins 已提交
2539
	if (unlikely(!pte_same(*page_table, orig_pte)))
2540 2541 2542 2543 2544
		goto out_nomap;

	if (unlikely(!PageUptodate(page))) {
		ret = VM_FAULT_SIGBUS;
		goto out_nomap;
L
Linus Torvalds 已提交
2545 2546
	}

2547 2548 2549 2550 2551 2552 2553 2554 2555
	/*
	 * The page isn't present yet, go ahead with the fault.
	 *
	 * Be careful about the sequence of operations here.
	 * To get its accounting right, reuse_swap_page() must be called
	 * while the page is counted on swap but not yet in mapcount i.e.
	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
	 * must be called after the swap_free(), or it will never succeed.
	 */
L
Linus Torvalds 已提交
2556

2557
	inc_mm_counter_fast(mm, MM_ANONPAGES);
K
KAMEZAWA Hiroyuki 已提交
2558
	dec_mm_counter_fast(mm, MM_SWAPENTS);
L
Linus Torvalds 已提交
2559
	pte = mk_pte(page, vma->vm_page_prot);
2560
	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
L
Linus Torvalds 已提交
2561
		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2562
		flags &= ~FAULT_FLAG_WRITE;
2563
		ret |= VM_FAULT_WRITE;
2564
		exclusive = 1;
L
Linus Torvalds 已提交
2565 2566
	}
	flush_icache_page(vma, page);
2567 2568
	if (pte_swp_soft_dirty(orig_pte))
		pte = pte_mksoft_dirty(pte);
L
Linus Torvalds 已提交
2569
	set_pte_at(mm, address, page_table, pte);
2570
	if (page == swapcache) {
2571
		do_page_add_anon_rmap(page, vma, address, exclusive);
2572 2573
		mem_cgroup_commit_charge(page, memcg, true);
	} else { /* ksm created a completely new copy */
2574
		page_add_new_anon_rmap(page, vma, address);
2575 2576 2577
		mem_cgroup_commit_charge(page, memcg, false);
		lru_cache_add_active_or_unevictable(page, vma);
	}
L
Linus Torvalds 已提交
2578

2579
	swap_free(entry);
N
Nick Piggin 已提交
2580
	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2581
		try_to_free_swap(page);
2582
	unlock_page(page);
2583
	if (page != swapcache) {
A
Andrea Arcangeli 已提交
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
		/*
		 * Hold the lock to avoid the swap entry to be reused
		 * until we take the PT lock for the pte_same() check
		 * (to avoid false positives from pte_same). For
		 * further safety release the lock after the swap_free
		 * so that the swap count won't change under a
		 * parallel locked swapcache.
		 */
		unlock_page(swapcache);
		page_cache_release(swapcache);
	}
2595

2596
	if (flags & FAULT_FLAG_WRITE) {
2597 2598 2599
		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
		if (ret & VM_FAULT_ERROR)
			ret &= VM_FAULT_ERROR;
L
Linus Torvalds 已提交
2600 2601 2602 2603
		goto out;
	}

	/* No need to invalidate - it was non-present before */
2604
	update_mmu_cache(vma, address, page_table);
2605
unlock:
2606
	pte_unmap_unlock(page_table, ptl);
L
Linus Torvalds 已提交
2607 2608
out:
	return ret;
2609
out_nomap:
2610
	mem_cgroup_cancel_charge(page, memcg);
2611
	pte_unmap_unlock(page_table, ptl);
2612
out_page:
2613
	unlock_page(page);
2614
out_release:
2615
	page_cache_release(page);
2616
	if (page != swapcache) {
A
Andrea Arcangeli 已提交
2617 2618 2619
		unlock_page(swapcache);
		page_cache_release(swapcache);
	}
2620
	return ret;
L
Linus Torvalds 已提交
2621 2622
}

2623
/*
2624 2625
 * This is like a special single-page "expand_{down|up}wards()",
 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2626 2627 2628 2629 2630 2631
 * doesn't hit another vma.
 */
static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
{
	address &= PAGE_MASK;
	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
		struct vm_area_struct *prev = vma->vm_prev;

		/*
		 * Is there a mapping abutting this one below?
		 *
		 * That's only ok if it's the same stack mapping
		 * that has gotten split..
		 */
		if (prev && prev->vm_end == address)
			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2642

2643
		return expand_downwards(vma, address - PAGE_SIZE);
2644
	}
2645 2646 2647 2648 2649 2650 2651
	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
		struct vm_area_struct *next = vma->vm_next;

		/* As VM_GROWSDOWN but s/below/above/ */
		if (next && next->vm_start == address + PAGE_SIZE)
			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;

2652
		return expand_upwards(vma, address + PAGE_SIZE);
2653
	}
2654 2655 2656
	return 0;
}

L
Linus Torvalds 已提交
2657
/*
2658 2659 2660
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
L
Linus Torvalds 已提交
2661
 */
2662 2663
static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
2664
		unsigned int flags)
L
Linus Torvalds 已提交
2665
{
2666
	struct mem_cgroup *memcg;
2667 2668
	struct page *page;
	spinlock_t *ptl;
L
Linus Torvalds 已提交
2669 2670
	pte_t entry;

2671 2672
	pte_unmap(page_table);

2673 2674 2675 2676
	/* File mapping without ->vm_ops ? */
	if (vma->vm_flags & VM_SHARED)
		return VM_FAULT_SIGBUS;

2677 2678
	/* Check if we need to add a guard page to the stack */
	if (check_stack_guard_page(vma, address) < 0)
2679
		return VM_FAULT_SIGSEGV;
2680

2681
	/* Use the zero-page for reads */
2682
	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
H
Hugh Dickins 已提交
2683 2684
		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
						vma->vm_page_prot));
2685
		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
H
Hugh Dickins 已提交
2686 2687 2688 2689 2690
		if (!pte_none(*page_table))
			goto unlock;
		goto setpte;
	}

N
Nick Piggin 已提交
2691 2692 2693 2694 2695 2696
	/* Allocate our own private page. */
	if (unlikely(anon_vma_prepare(vma)))
		goto oom;
	page = alloc_zeroed_user_highpage_movable(vma, address);
	if (!page)
		goto oom;
2697 2698 2699 2700

	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
		goto oom_free_page;

2701 2702 2703 2704 2705
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceeding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
N
Nick Piggin 已提交
2706
	__SetPageUptodate(page);
2707

N
Nick Piggin 已提交
2708
	entry = mk_pte(page, vma->vm_page_prot);
H
Hugh Dickins 已提交
2709 2710
	if (vma->vm_flags & VM_WRITE)
		entry = pte_mkwrite(pte_mkdirty(entry));
L
Linus Torvalds 已提交
2711

N
Nick Piggin 已提交
2712
	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2713
	if (!pte_none(*page_table))
N
Nick Piggin 已提交
2714
		goto release;
H
Hugh Dickins 已提交
2715

2716
	inc_mm_counter_fast(mm, MM_ANONPAGES);
N
Nick Piggin 已提交
2717
	page_add_new_anon_rmap(page, vma, address);
2718 2719
	mem_cgroup_commit_charge(page, memcg, false);
	lru_cache_add_active_or_unevictable(page, vma);
H
Hugh Dickins 已提交
2720
setpte:
2721
	set_pte_at(mm, address, page_table, entry);
L
Linus Torvalds 已提交
2722 2723

	/* No need to invalidate - it was non-present before */
2724
	update_mmu_cache(vma, address, page_table);
2725
unlock:
2726
	pte_unmap_unlock(page_table, ptl);
N
Nick Piggin 已提交
2727
	return 0;
2728
release:
2729
	mem_cgroup_cancel_charge(page, memcg);
2730 2731
	page_cache_release(page);
	goto unlock;
2732
oom_free_page:
2733
	page_cache_release(page);
2734
oom:
L
Linus Torvalds 已提交
2735 2736 2737
	return VM_FAULT_OOM;
}

2738 2739 2740 2741 2742
/*
 * The mmap_sem must have been held on entry, and may have been
 * released depending on flags and vma->vm_ops->fault() return value.
 * See filemap_fault() and __lock_page_retry().
 */
2743
static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2744 2745
			pgoff_t pgoff, unsigned int flags,
			struct page *cow_page, struct page **page)
2746 2747 2748 2749 2750 2751 2752 2753
{
	struct vm_fault vmf;
	int ret;

	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
	vmf.pgoff = pgoff;
	vmf.flags = flags;
	vmf.page = NULL;
2754
	vmf.cow_page = cow_page;
2755 2756 2757 2758

	ret = vma->vm_ops->fault(vma, &vmf);
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		return ret;
2759 2760
	if (!vmf.page)
		goto out;
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773

	if (unlikely(PageHWPoison(vmf.page))) {
		if (ret & VM_FAULT_LOCKED)
			unlock_page(vmf.page);
		page_cache_release(vmf.page);
		return VM_FAULT_HWPOISON;
	}

	if (unlikely(!(ret & VM_FAULT_LOCKED)))
		lock_page(vmf.page);
	else
		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);

2774
 out:
2775 2776 2777 2778
	*page = vmf.page;
	return ret;
}

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
/**
 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
 *
 * @vma: virtual memory area
 * @address: user virtual address
 * @page: page to map
 * @pte: pointer to target page table entry
 * @write: true, if new entry is writable
 * @anon: true, if it's anonymous page
 *
 * Caller must hold page table lock relevant for @pte.
 *
 * Target users are page handler itself and implementations of
 * vm_ops->map_pages.
 */
void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
		struct page *page, pte_t *pte, bool write, bool anon)
{
	pte_t entry;

	flush_icache_page(vma, page);
	entry = mk_pte(page, vma->vm_page_prot);
	if (write)
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
	if (anon) {
		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
		page_add_new_anon_rmap(page, vma, address);
	} else {
		inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
		page_add_file_rmap(page);
	}
	set_pte_at(vma->vm_mm, address, pte, entry);

	/* no need to invalidate: a not-present page won't be cached */
	update_mmu_cache(vma, address, pte);
}

2816 2817
static unsigned long fault_around_bytes __read_mostly =
	rounddown_pow_of_two(65536);
2818 2819 2820

#ifdef CONFIG_DEBUG_FS
static int fault_around_bytes_get(void *data, u64 *val)
2821
{
2822
	*val = fault_around_bytes;
2823 2824 2825
	return 0;
}

2826 2827 2828 2829 2830
/*
 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
 * rounded down to nearest page order. It's what do_fault_around() expects to
 * see.
 */
2831
static int fault_around_bytes_set(void *data, u64 val)
2832
{
2833
	if (val / PAGE_SIZE > PTRS_PER_PTE)
2834
		return -EINVAL;
2835 2836 2837 2838
	if (val > PAGE_SIZE)
		fault_around_bytes = rounddown_pow_of_two(val);
	else
		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2839 2840
	return 0;
}
2841 2842
DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2843 2844 2845 2846 2847

static int __init fault_around_debugfs(void)
{
	void *ret;

2848 2849
	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
			&fault_around_bytes_fops);
2850
	if (!ret)
2851
		pr_warn("Failed to create fault_around_bytes in debugfs");
2852 2853 2854 2855
	return 0;
}
late_initcall(fault_around_debugfs);
#endif
2856

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
/*
 * do_fault_around() tries to map few pages around the fault address. The hope
 * is that the pages will be needed soon and this will lower the number of
 * faults to handle.
 *
 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
 * not ready to be mapped: not up-to-date, locked, etc.
 *
 * This function is called with the page table lock taken. In the split ptlock
 * case the page table lock only protects only those entries which belong to
 * the page table corresponding to the fault address.
 *
 * This function doesn't cross the VMA boundaries, in order to call map_pages()
 * only once.
 *
 * fault_around_pages() defines how many pages we'll try to map.
 * do_fault_around() expects it to return a power of two less than or equal to
 * PTRS_PER_PTE.
 *
 * The virtual address of the area that we map is naturally aligned to the
 * fault_around_pages() value (and therefore to page order).  This way it's
 * easier to guarantee that we don't cross page table boundaries.
 */
2880 2881 2882
static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, pgoff_t pgoff, unsigned int flags)
{
2883
	unsigned long start_addr, nr_pages, mask;
2884 2885 2886 2887
	pgoff_t max_pgoff;
	struct vm_fault vmf;
	int off;

2888
	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2889 2890 2891
	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;

	start_addr = max(address & mask, vma->vm_start);
2892 2893 2894 2895 2896 2897
	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
	pte -= off;
	pgoff -= off;

	/*
	 *  max_pgoff is either end of page table or end of vma
2898
	 *  or fault_around_pages() from pgoff, depending what is nearest.
2899 2900 2901 2902
	 */
	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
		PTRS_PER_PTE - 1;
	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2903
			pgoff + nr_pages - 1);
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922

	/* Check if it makes any sense to call ->map_pages */
	while (!pte_none(*pte)) {
		if (++pgoff > max_pgoff)
			return;
		start_addr += PAGE_SIZE;
		if (start_addr >= vma->vm_end)
			return;
		pte++;
	}

	vmf.virtual_address = (void __user *) start_addr;
	vmf.pte = pte;
	vmf.pgoff = pgoff;
	vmf.max_pgoff = max_pgoff;
	vmf.flags = flags;
	vma->vm_ops->map_pages(vma, &vmf);
}

2923 2924 2925 2926 2927 2928
static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pmd_t *pmd,
		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
{
	struct page *fault_page;
	spinlock_t *ptl;
2929
	pte_t *pte;
2930 2931 2932 2933 2934 2935 2936
	int ret = 0;

	/*
	 * Let's call ->map_pages() first and use ->fault() as fallback
	 * if page by the offset is not ready to be mapped (cold cache or
	 * something).
	 */
2937
	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2938 2939 2940 2941 2942 2943
		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
		do_fault_around(vma, address, pte, pgoff, flags);
		if (!pte_same(*pte, orig_pte))
			goto unlock_out;
		pte_unmap_unlock(pte, ptl);
	}
2944

2945
	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		return ret;

	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (unlikely(!pte_same(*pte, orig_pte))) {
		pte_unmap_unlock(pte, ptl);
		unlock_page(fault_page);
		page_cache_release(fault_page);
		return ret;
	}
2956
	do_set_pte(vma, address, fault_page, pte, false, false);
2957
	unlock_page(fault_page);
2958 2959
unlock_out:
	pte_unmap_unlock(pte, ptl);
2960 2961 2962
	return ret;
}

2963 2964 2965 2966 2967
static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pmd_t *pmd,
		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
{
	struct page *fault_page, *new_page;
2968
	struct mem_cgroup *memcg;
2969
	spinlock_t *ptl;
2970
	pte_t *pte;
2971 2972 2973 2974 2975 2976 2977 2978 2979
	int ret;

	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;

	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
	if (!new_page)
		return VM_FAULT_OOM;

2980
	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2981 2982 2983 2984
		page_cache_release(new_page);
		return VM_FAULT_OOM;
	}

2985
	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
2986 2987 2988
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		goto uncharge_out;

2989 2990
	if (fault_page)
		copy_user_highpage(new_page, fault_page, address, vma);
2991 2992 2993 2994 2995
	__SetPageUptodate(new_page);

	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (unlikely(!pte_same(*pte, orig_pte))) {
		pte_unmap_unlock(pte, ptl);
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
		if (fault_page) {
			unlock_page(fault_page);
			page_cache_release(fault_page);
		} else {
			/*
			 * The fault handler has no page to lock, so it holds
			 * i_mmap_lock for read to protect against truncate.
			 */
			i_mmap_unlock_read(vma->vm_file->f_mapping);
		}
3006 3007
		goto uncharge_out;
	}
3008
	do_set_pte(vma, address, new_page, pte, true, true);
3009 3010
	mem_cgroup_commit_charge(new_page, memcg, false);
	lru_cache_add_active_or_unevictable(new_page, vma);
3011
	pte_unmap_unlock(pte, ptl);
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	if (fault_page) {
		unlock_page(fault_page);
		page_cache_release(fault_page);
	} else {
		/*
		 * The fault handler has no page to lock, so it holds
		 * i_mmap_lock for read to protect against truncate.
		 */
		i_mmap_unlock_read(vma->vm_file->f_mapping);
	}
3022 3023
	return ret;
uncharge_out:
3024
	mem_cgroup_cancel_charge(new_page, memcg);
3025 3026 3027 3028
	page_cache_release(new_page);
	return ret;
}

3029
static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3030
		unsigned long address, pmd_t *pmd,
3031
		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
L
Linus Torvalds 已提交
3032
{
3033 3034
	struct page *fault_page;
	struct address_space *mapping;
3035
	spinlock_t *ptl;
3036
	pte_t *pte;
3037 3038
	int dirtied = 0;
	int ret, tmp;
3039

3040
	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3041
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3042
		return ret;
L
Linus Torvalds 已提交
3043 3044

	/*
3045 3046
	 * Check if the backing address space wants to know that the page is
	 * about to become writable
L
Linus Torvalds 已提交
3047
	 */
3048 3049 3050 3051 3052
	if (vma->vm_ops->page_mkwrite) {
		unlock_page(fault_page);
		tmp = do_page_mkwrite(vma, fault_page, address);
		if (unlikely(!tmp ||
				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3053
			page_cache_release(fault_page);
3054
			return tmp;
3055
		}
3056 3057
	}

3058 3059 3060 3061 3062 3063
	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (unlikely(!pte_same(*pte, orig_pte))) {
		pte_unmap_unlock(pte, ptl);
		unlock_page(fault_page);
		page_cache_release(fault_page);
		return ret;
L
Linus Torvalds 已提交
3064
	}
3065
	do_set_pte(vma, address, fault_page, pte, true, false);
3066
	pte_unmap_unlock(pte, ptl);
N
Nick Piggin 已提交
3067

3068 3069
	if (set_page_dirty(fault_page))
		dirtied = 1;
3070 3071 3072 3073 3074 3075
	/*
	 * Take a local copy of the address_space - page.mapping may be zeroed
	 * by truncate after unlock_page().   The address_space itself remains
	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
	 * release semantics to prevent the compiler from undoing this copying.
	 */
3076 3077 3078 3079 3080 3081 3082 3083
	mapping = fault_page->mapping;
	unlock_page(fault_page);
	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
		/*
		 * Some device drivers do not set page.mapping but still
		 * dirty their pages
		 */
		balance_dirty_pages_ratelimited(mapping);
3084
	}
3085

3086
	if (!vma->vm_ops->page_mkwrite)
3087
		file_update_time(vma->vm_file);
N
Nick Piggin 已提交
3088

3089
	return ret;
3090
}
3091

3092 3093 3094 3095 3096 3097
/*
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults).
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
 */
3098
static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3099
		unsigned long address, pte_t *page_table, pmd_t *pmd,
3100
		unsigned int flags, pte_t orig_pte)
3101 3102
{
	pgoff_t pgoff = (((address & PAGE_MASK)
3103
			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3104

3105
	pte_unmap(page_table);
3106 3107 3108
	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
	if (!vma->vm_ops->fault)
		return VM_FAULT_SIGBUS;
3109 3110 3111
	if (!(flags & FAULT_FLAG_WRITE))
		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
				orig_pte);
3112 3113 3114
	if (!(vma->vm_flags & VM_SHARED))
		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
				orig_pte);
3115
	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3116 3117
}

3118
static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3119 3120
				unsigned long addr, int page_nid,
				int *flags)
3121 3122 3123 3124
{
	get_page(page);

	count_vm_numa_event(NUMA_HINT_FAULTS);
3125
	if (page_nid == numa_node_id()) {
3126
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3127 3128
		*flags |= TNF_FAULT_LOCAL;
	}
3129 3130 3131 3132

	return mpol_misplaced(page, vma, addr);
}

3133
static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3134 3135
		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
{
3136
	struct page *page = NULL;
3137
	spinlock_t *ptl;
3138
	int page_nid = -1;
3139
	int last_cpupid;
3140
	int target_nid;
3141
	bool migrated = false;
3142
	bool was_writable = pte_write(pte);
3143
	int flags = 0;
3144

3145 3146 3147
	/* A PROT_NONE fault should not end up here */
	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));

3148 3149 3150 3151 3152
	/*
	* The "pte" at this point cannot be used safely without
	* validation through pte_unmap_same(). It's of NUMA type but
	* the pfn may be screwed if the read is non atomic.
	*
3153 3154 3155
	* We can safely just do a "set_pte_at()", because the old
	* page table entry is not accessible, so there would be no
	* concurrent hardware modifications to the PTE.
3156 3157 3158
	*/
	ptl = pte_lockptr(mm, pmd);
	spin_lock(ptl);
3159 3160 3161 3162 3163
	if (unlikely(!pte_same(*ptep, pte))) {
		pte_unmap_unlock(ptep, ptl);
		goto out;
	}

3164 3165 3166
	/* Make it present again */
	pte = pte_modify(pte, vma->vm_page_prot);
	pte = pte_mkyoung(pte);
3167 3168
	if (was_writable)
		pte = pte_mkwrite(pte);
3169 3170 3171 3172 3173 3174 3175 3176 3177
	set_pte_at(mm, addr, ptep, pte);
	update_mmu_cache(vma, addr, ptep);

	page = vm_normal_page(vma, addr, pte);
	if (!page) {
		pte_unmap_unlock(ptep, ptl);
		return 0;
	}

3178
	/*
3179 3180 3181 3182 3183 3184
	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
	 * much anyway since they can be in shared cache state. This misses
	 * the case where a mapping is writable but the process never writes
	 * to it but pte_write gets cleared during protection updates and
	 * pte_dirty has unpredictable behaviour between PTE scan updates,
	 * background writeback, dirty balancing and application behaviour.
3185
	 */
3186
	if (!(vma->vm_flags & VM_WRITE))
3187 3188
		flags |= TNF_NO_GROUP;

3189 3190 3191 3192 3193 3194 3195
	/*
	 * Flag if the page is shared between multiple address spaces. This
	 * is later used when determining whether to group tasks together
	 */
	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
		flags |= TNF_SHARED;

3196
	last_cpupid = page_cpupid_last(page);
3197
	page_nid = page_to_nid(page);
3198
	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3199
	pte_unmap_unlock(ptep, ptl);
3200 3201 3202 3203 3204 3205
	if (target_nid == -1) {
		put_page(page);
		goto out;
	}

	/* Migrate to the requested node */
3206
	migrated = migrate_misplaced_page(page, vma, target_nid);
3207
	if (migrated) {
3208
		page_nid = target_nid;
3209
		flags |= TNF_MIGRATED;
3210 3211
	} else
		flags |= TNF_MIGRATE_FAIL;
3212 3213

out:
3214
	if (page_nid != -1)
3215
		task_numa_fault(last_cpupid, page_nid, 1, flags);
3216 3217 3218
	return 0;
}

L
Linus Torvalds 已提交
3219 3220 3221 3222 3223 3224 3225 3226 3227
/*
 * These routines also need to handle stuff like marking pages dirty
 * and/or accessed for architectures that don't do it in hardware (most
 * RISC architectures).  The early dirtying is also good on the i386.
 *
 * There is also a hook called "update_mmu_cache()" that architectures
 * with external mmu caches can use to update those (ie the Sparc or
 * PowerPC hashed page tables that act as extended TLBs).
 *
H
Hugh Dickins 已提交
3228 3229
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
3230 3231 3232 3233
 * We return with pte unmapped and unlocked.
 *
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
L
Linus Torvalds 已提交
3234
 */
3235
static int handle_pte_fault(struct mm_struct *mm,
3236 3237
		     struct vm_area_struct *vma, unsigned long address,
		     pte_t *pte, pmd_t *pmd, unsigned int flags)
L
Linus Torvalds 已提交
3238 3239
{
	pte_t entry;
3240
	spinlock_t *ptl;
L
Linus Torvalds 已提交
3241

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
	/*
	 * some architectures can have larger ptes than wordsize,
	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
	 * The code below just needs a consistent view for the ifs and
	 * we later double check anyway with the ptl lock held. So here
	 * a barrier will do.
	 */
	entry = *pte;
	barrier();
L
Linus Torvalds 已提交
3252
	if (!pte_present(entry)) {
3253
		if (pte_none(entry)) {
3254 3255 3256 3257 3258 3259
			if (vma->vm_ops)
				return do_fault(mm, vma, address, pte, pmd,
						flags, entry);

			return do_anonymous_page(mm, vma, address, pte, pmd,
					flags);
3260 3261
		}
		return do_swap_page(mm, vma, address,
3262
					pte, pmd, flags, entry);
L
Linus Torvalds 已提交
3263 3264
	}

3265
	if (pte_protnone(entry))
3266 3267
		return do_numa_page(mm, vma, address, entry, pte, pmd);

H
Hugh Dickins 已提交
3268
	ptl = pte_lockptr(mm, pmd);
3269 3270 3271
	spin_lock(ptl);
	if (unlikely(!pte_same(*pte, entry)))
		goto unlock;
3272
	if (flags & FAULT_FLAG_WRITE) {
L
Linus Torvalds 已提交
3273
		if (!pte_write(entry))
3274 3275
			return do_wp_page(mm, vma, address,
					pte, pmd, ptl, entry);
L
Linus Torvalds 已提交
3276 3277 3278
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
3279
	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3280
		update_mmu_cache(vma, address, pte);
3281 3282 3283 3284 3285 3286 3287
	} else {
		/*
		 * This is needed only for protection faults but the arch code
		 * is not yet telling us if this is a protection fault or not.
		 * This still avoids useless tlb flushes for .text page faults
		 * with threads.
		 */
3288
		if (flags & FAULT_FLAG_WRITE)
3289
			flush_tlb_fix_spurious_fault(vma, address);
3290
	}
3291 3292
unlock:
	pte_unmap_unlock(pte, ptl);
N
Nick Piggin 已提交
3293
	return 0;
L
Linus Torvalds 已提交
3294 3295 3296 3297
}

/*
 * By the time we get here, we already hold the mm semaphore
3298 3299 3300
 *
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
L
Linus Torvalds 已提交
3301
 */
3302 3303
static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			     unsigned long address, unsigned int flags)
L
Linus Torvalds 已提交
3304 3305 3306 3307 3308 3309
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

3310
	if (unlikely(is_vm_hugetlb_page(vma)))
3311
		return hugetlb_fault(mm, vma, address, flags);
L
Linus Torvalds 已提交
3312 3313 3314 3315

	pgd = pgd_offset(mm, address);
	pud = pud_alloc(mm, pgd, address);
	if (!pud)
H
Hugh Dickins 已提交
3316
		return VM_FAULT_OOM;
L
Linus Torvalds 已提交
3317 3318
	pmd = pmd_alloc(mm, pud, address);
	if (!pmd)
H
Hugh Dickins 已提交
3319
		return VM_FAULT_OOM;
3320
	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3321
		int ret = VM_FAULT_FALLBACK;
3322
		if (!vma->vm_ops)
3323 3324 3325 3326
			ret = do_huge_pmd_anonymous_page(mm, vma, address,
					pmd, flags);
		if (!(ret & VM_FAULT_FALLBACK))
			return ret;
3327 3328
	} else {
		pmd_t orig_pmd = *pmd;
3329 3330
		int ret;

3331 3332
		barrier();
		if (pmd_trans_huge(orig_pmd)) {
3333 3334
			unsigned int dirty = flags & FAULT_FLAG_WRITE;

3335 3336 3337 3338 3339 3340 3341 3342
			/*
			 * If the pmd is splitting, return and retry the
			 * the fault.  Alternative: wait until the split
			 * is done, and goto retry.
			 */
			if (pmd_trans_splitting(orig_pmd))
				return 0;

3343
			if (pmd_protnone(orig_pmd))
3344
				return do_huge_pmd_numa_page(mm, vma, address,
3345 3346
							     orig_pmd, pmd);

3347
			if (dirty && !pmd_write(orig_pmd)) {
3348 3349
				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
							  orig_pmd);
3350 3351
				if (!(ret & VM_FAULT_FALLBACK))
					return ret;
3352 3353 3354
			} else {
				huge_pmd_set_accessed(mm, vma, address, pmd,
						      orig_pmd, dirty);
3355
				return 0;
3356
			}
3357 3358 3359 3360 3361 3362 3363 3364
		}
	}

	/*
	 * Use __pte_alloc instead of pte_alloc_map, because we can't
	 * run pte_offset_map on the pmd, if an huge pmd could
	 * materialize from under us from a different thread.
	 */
3365 3366
	if (unlikely(pmd_none(*pmd)) &&
	    unlikely(__pte_alloc(mm, vma, pmd, address)))
H
Hugh Dickins 已提交
3367
		return VM_FAULT_OOM;
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
	/* if an huge pmd materialized from under us just retry later */
	if (unlikely(pmd_trans_huge(*pmd)))
		return 0;
	/*
	 * A regular pmd is established and it can't morph into a huge pmd
	 * from under us anymore at this point because we hold the mmap_sem
	 * read mode and khugepaged takes it in write mode. So now it's
	 * safe to run pte_offset_map().
	 */
	pte = pte_offset_map(pmd, address);
L
Linus Torvalds 已提交
3378

3379
	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
L
Linus Torvalds 已提交
3380 3381
}

3382 3383 3384 3385 3386 3387
/*
 * By the time we get here, we already hold the mm semaphore
 *
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
 */
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		    unsigned long address, unsigned int flags)
{
	int ret;

	__set_current_state(TASK_RUNNING);

	count_vm_event(PGFAULT);
	mem_cgroup_count_vm_event(mm, PGFAULT);

	/* do counter updates before entering really critical section. */
	check_sync_rss_stat(current);

	/*
	 * Enable the memcg OOM handling for faults triggered in user
	 * space.  Kernel faults are handled more gracefully.
	 */
	if (flags & FAULT_FLAG_USER)
3406
		mem_cgroup_oom_enable();
3407 3408 3409

	ret = __handle_mm_fault(mm, vma, address, flags);

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
	if (flags & FAULT_FLAG_USER) {
		mem_cgroup_oom_disable();
                /*
                 * The task may have entered a memcg OOM situation but
                 * if the allocation error was handled gracefully (no
                 * VM_FAULT_OOM), there is no need to kill anything.
                 * Just clean up the OOM state peacefully.
                 */
                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
                        mem_cgroup_oom_synchronize(false);
	}
3421

3422 3423
	return ret;
}
3424
EXPORT_SYMBOL_GPL(handle_mm_fault);
3425

L
Linus Torvalds 已提交
3426 3427 3428
#ifndef __PAGETABLE_PUD_FOLDED
/*
 * Allocate page upper directory.
H
Hugh Dickins 已提交
3429
 * We've already handled the fast-path in-line.
L
Linus Torvalds 已提交
3430
 */
3431
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
L
Linus Torvalds 已提交
3432
{
H
Hugh Dickins 已提交
3433 3434
	pud_t *new = pud_alloc_one(mm, address);
	if (!new)
3435
		return -ENOMEM;
L
Linus Torvalds 已提交
3436

3437 3438
	smp_wmb(); /* See comment in __pte_alloc */

H
Hugh Dickins 已提交
3439
	spin_lock(&mm->page_table_lock);
3440
	if (pgd_present(*pgd))		/* Another has populated it */
3441
		pud_free(mm, new);
3442 3443
	else
		pgd_populate(mm, pgd, new);
H
Hugh Dickins 已提交
3444
	spin_unlock(&mm->page_table_lock);
3445
	return 0;
L
Linus Torvalds 已提交
3446 3447 3448 3449 3450 3451
}
#endif /* __PAGETABLE_PUD_FOLDED */

#ifndef __PAGETABLE_PMD_FOLDED
/*
 * Allocate page middle directory.
H
Hugh Dickins 已提交
3452
 * We've already handled the fast-path in-line.
L
Linus Torvalds 已提交
3453
 */
3454
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
L
Linus Torvalds 已提交
3455
{
H
Hugh Dickins 已提交
3456 3457
	pmd_t *new = pmd_alloc_one(mm, address);
	if (!new)
3458
		return -ENOMEM;
L
Linus Torvalds 已提交
3459

3460 3461
	smp_wmb(); /* See comment in __pte_alloc */

H
Hugh Dickins 已提交
3462
	spin_lock(&mm->page_table_lock);
L
Linus Torvalds 已提交
3463
#ifndef __ARCH_HAS_4LEVEL_HACK
3464 3465
	if (!pud_present(*pud)) {
		mm_inc_nr_pmds(mm);
3466
		pud_populate(mm, pud, new);
3467
	} else	/* Another has populated it */
3468
		pmd_free(mm, new);
3469 3470 3471
#else
	if (!pgd_present(*pud)) {
		mm_inc_nr_pmds(mm);
3472
		pgd_populate(mm, pud, new);
3473 3474
	} else /* Another has populated it */
		pmd_free(mm, new);
L
Linus Torvalds 已提交
3475
#endif /* __ARCH_HAS_4LEVEL_HACK */
H
Hugh Dickins 已提交
3476
	spin_unlock(&mm->page_table_lock);
3477
	return 0;
3478
}
L
Linus Torvalds 已提交
3479 3480
#endif /* __PAGETABLE_PMD_FOLDED */

3481
static int __follow_pte(struct mm_struct *mm, unsigned long address,
J
Johannes Weiner 已提交
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
		pte_t **ptepp, spinlock_t **ptlp)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep;

	pgd = pgd_offset(mm, address);
	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		goto out;

	pud = pud_offset(pgd, address);
	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
		goto out;

	pmd = pmd_offset(pud, address);
3498
	VM_BUG_ON(pmd_trans_huge(*pmd));
J
Johannes Weiner 已提交
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
		goto out;

	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
	if (pmd_huge(*pmd))
		goto out;

	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
	if (!ptep)
		goto out;
	if (!pte_present(*ptep))
		goto unlock;
	*ptepp = ptep;
	return 0;
unlock:
	pte_unmap_unlock(ptep, *ptlp);
out:
	return -EINVAL;
}

3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
static inline int follow_pte(struct mm_struct *mm, unsigned long address,
			     pte_t **ptepp, spinlock_t **ptlp)
{
	int res;

	/* (void) is needed to make gcc happy */
	(void) __cond_lock(*ptlp,
			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
	return res;
}

J
Johannes Weiner 已提交
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
/**
 * follow_pfn - look up PFN at a user virtual address
 * @vma: memory mapping
 * @address: user virtual address
 * @pfn: location to store found PFN
 *
 * Only IO mappings and raw PFN mappings are allowed.
 *
 * Returns zero and the pfn at @pfn on success, -ve otherwise.
 */
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
	unsigned long *pfn)
{
	int ret = -EINVAL;
	spinlock_t *ptl;
	pte_t *ptep;

	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
		return ret;

	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
	if (ret)
		return ret;
	*pfn = pte_pfn(*ptep);
	pte_unmap_unlock(ptep, ptl);
	return 0;
}
EXPORT_SYMBOL(follow_pfn);

3559
#ifdef CONFIG_HAVE_IOREMAP_PROT
3560 3561 3562
int follow_phys(struct vm_area_struct *vma,
		unsigned long address, unsigned int flags,
		unsigned long *prot, resource_size_t *phys)
3563
{
3564
	int ret = -EINVAL;
3565 3566 3567
	pte_t *ptep, pte;
	spinlock_t *ptl;

3568 3569
	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
		goto out;
3570

3571
	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3572
		goto out;
3573
	pte = *ptep;
3574

3575 3576 3577 3578
	if ((flags & FOLL_WRITE) && !pte_write(pte))
		goto unlock;

	*prot = pgprot_val(pte_pgprot(pte));
3579
	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3580

3581
	ret = 0;
3582 3583 3584
unlock:
	pte_unmap_unlock(ptep, ptl);
out:
3585
	return ret;
3586 3587 3588 3589 3590 3591 3592
}

int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
			void *buf, int len, int write)
{
	resource_size_t phys_addr;
	unsigned long prot = 0;
K
KOSAKI Motohiro 已提交
3593
	void __iomem *maddr;
3594 3595
	int offset = addr & (PAGE_SIZE-1);

3596
	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3597 3598
		return -EINVAL;

3599
	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3600 3601 3602 3603 3604 3605 3606 3607
	if (write)
		memcpy_toio(maddr + offset, buf, len);
	else
		memcpy_fromio(buf, maddr + offset, len);
	iounmap(maddr);

	return len;
}
3608
EXPORT_SYMBOL_GPL(generic_access_phys);
3609 3610
#endif

3611
/*
3612 3613
 * Access another process' address space as given in mm.  If non-NULL, use the
 * given task for page fault accounting.
3614
 */
3615 3616
static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long addr, void *buf, int len, int write)
3617 3618 3619 3620 3621
{
	struct vm_area_struct *vma;
	void *old_buf = buf;

	down_read(&mm->mmap_sem);
S
Simon Arlott 已提交
3622
	/* ignore errors, just check how much was successfully transferred */
3623 3624 3625
	while (len) {
		int bytes, ret, offset;
		void *maddr;
3626
		struct page *page = NULL;
3627 3628 3629

		ret = get_user_pages(tsk, mm, addr, 1,
				write, 1, &page, &vma);
3630
		if (ret <= 0) {
3631 3632 3633
#ifndef CONFIG_HAVE_IOREMAP_PROT
			break;
#else
3634 3635 3636 3637 3638
			/*
			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
			 * we can access using slightly different code.
			 */
			vma = find_vma(mm, addr);
3639
			if (!vma || vma->vm_start > addr)
3640 3641 3642 3643 3644 3645 3646
				break;
			if (vma->vm_ops && vma->vm_ops->access)
				ret = vma->vm_ops->access(vma, addr, buf,
							  len, write);
			if (ret <= 0)
				break;
			bytes = ret;
3647
#endif
3648
		} else {
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
			bytes = len;
			offset = addr & (PAGE_SIZE-1);
			if (bytes > PAGE_SIZE-offset)
				bytes = PAGE_SIZE-offset;

			maddr = kmap(page);
			if (write) {
				copy_to_user_page(vma, page, addr,
						  maddr + offset, buf, bytes);
				set_page_dirty_lock(page);
			} else {
				copy_from_user_page(vma, page, addr,
						    buf, maddr + offset, bytes);
			}
			kunmap(page);
			page_cache_release(page);
3665 3666 3667 3668 3669 3670 3671 3672 3673
		}
		len -= bytes;
		buf += bytes;
		addr += bytes;
	}
	up_read(&mm->mmap_sem);

	return buf - old_buf;
}
3674

S
Stephen Wilson 已提交
3675
/**
3676
 * access_remote_vm - access another process' address space
S
Stephen Wilson 已提交
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
 * @mm:		the mm_struct of the target address space
 * @addr:	start address to access
 * @buf:	source or destination buffer
 * @len:	number of bytes to transfer
 * @write:	whether the access is a write
 *
 * The caller must hold a reference on @mm.
 */
int access_remote_vm(struct mm_struct *mm, unsigned long addr,
		void *buf, int len, int write)
{
	return __access_remote_vm(NULL, mm, addr, buf, len, write);
}

3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
/*
 * Access another process' address space.
 * Source/target buffer must be kernel space,
 * Do not walk the page table directly, use get_user_pages
 */
int access_process_vm(struct task_struct *tsk, unsigned long addr,
		void *buf, int len, int write)
{
	struct mm_struct *mm;
	int ret;

	mm = get_task_mm(tsk);
	if (!mm)
		return 0;

	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
	mmput(mm);

	return ret;
}

3712 3713 3714 3715 3716 3717 3718 3719
/*
 * Print the name of a VMA.
 */
void print_vma_addr(char *prefix, unsigned long ip)
{
	struct mm_struct *mm = current->mm;
	struct vm_area_struct *vma;

3720 3721 3722 3723 3724 3725 3726
	/*
	 * Do not print if we are in atomic
	 * contexts (in exception stacks, etc.):
	 */
	if (preempt_count())
		return;

3727 3728 3729 3730 3731 3732
	down_read(&mm->mmap_sem);
	vma = find_vma(mm, ip);
	if (vma && vma->vm_file) {
		struct file *f = vma->vm_file;
		char *buf = (char *)__get_free_page(GFP_KERNEL);
		if (buf) {
A
Andy Shevchenko 已提交
3733
			char *p;
3734

M
Miklos Szeredi 已提交
3735
			p = file_path(f, buf, PAGE_SIZE);
3736 3737
			if (IS_ERR(p))
				p = "?";
A
Andy Shevchenko 已提交
3738
			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3739 3740 3741 3742 3743
					vma->vm_start,
					vma->vm_end - vma->vm_start);
			free_page((unsigned long)buf);
		}
	}
3744
	up_read(&mm->mmap_sem);
3745
}
3746

3747
#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3748
void __might_fault(const char *file, int line)
3749
{
3750 3751 3752 3753 3754 3755 3756 3757
	/*
	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
	 * holding the mmap_sem, this is safe because kernel memory doesn't
	 * get paged out, therefore we'll never actually fault, and the
	 * below annotations will generate false positives.
	 */
	if (segment_eq(get_fs(), KERNEL_DS))
		return;
3758
	if (pagefault_disabled())
3759
		return;
3760 3761
	__might_sleep(file, line, 0);
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3762
	if (current->mm)
3763
		might_lock_read(&current->mm->mmap_sem);
3764
#endif
3765
}
3766
EXPORT_SYMBOL(__might_fault);
3767
#endif
A
Andrea Arcangeli 已提交
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838

#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
static void clear_gigantic_page(struct page *page,
				unsigned long addr,
				unsigned int pages_per_huge_page)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < pages_per_huge_page;
	     i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
void clear_huge_page(struct page *page,
		     unsigned long addr, unsigned int pages_per_huge_page)
{
	int i;

	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
		clear_gigantic_page(page, addr, pages_per_huge_page);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page; i++) {
		cond_resched();
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
	}
}

static void copy_user_gigantic_page(struct page *dst, struct page *src,
				    unsigned long addr,
				    struct vm_area_struct *vma,
				    unsigned int pages_per_huge_page)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page; ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_user_huge_page(struct page *dst, struct page *src,
			 unsigned long addr, struct vm_area_struct *vma,
			 unsigned int pages_per_huge_page)
{
	int i;

	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
		copy_user_gigantic_page(dst, src, addr, vma,
					pages_per_huge_page);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page; i++) {
		cond_resched();
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
	}
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3839

3840
#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3841 3842 3843 3844 3845 3846 3847 3848 3849

static struct kmem_cache *page_ptl_cachep;

void __init ptlock_cache_init(void)
{
	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
			SLAB_PANIC, NULL);
}

3850
bool ptlock_alloc(struct page *page)
3851 3852 3853
{
	spinlock_t *ptl;

3854
	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3855 3856
	if (!ptl)
		return false;
3857
	page->ptl = ptl;
3858 3859 3860
	return true;
}

3861
void ptlock_free(struct page *page)
3862
{
3863
	kmem_cache_free(page_ptl_cachep, page->ptl);
3864 3865
}
#endif