cfq-iosched.c 76.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  CFQ, or complete fairness queueing, disk scheduler.
 *
 *  Based on ideas from a previously unfinished io
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
8 9
 */
#include <linux/module.h>
A
Al Viro 已提交
10 11
#include <linux/blkdev.h>
#include <linux/elevator.h>
L
Linus Torvalds 已提交
12
#include <linux/rbtree.h>
13
#include <linux/ioprio.h>
14
#include <linux/blktrace_api.h>
L
Linus Torvalds 已提交
15 16 17 18

/*
 * tunables
 */
19 20
/* max queue in one round of service */
static const int cfq_quantum = 4;
21
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 23 24 25
/* maximum backwards seek, in KiB */
static const int cfq_back_max = 16 * 1024;
/* penalty of a backwards seek */
static const int cfq_back_penalty = 2;
26
static const int cfq_slice_sync = HZ / 10;
J
Jens Axboe 已提交
27
static int cfq_slice_async = HZ / 25;
28
static const int cfq_slice_async_rq = 2;
29
static int cfq_slice_idle = HZ / 125;
30 31
static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
static const int cfq_hist_divisor = 4;
32

33
/*
34
 * offset from end of service tree
35
 */
36
#define CFQ_IDLE_DELAY		(HZ / 5)
37 38 39 40 41 42

/*
 * below this threshold, we consider thinktime immediate
 */
#define CFQ_MIN_TT		(2)

43 44 45 46 47 48
/*
 * Allow merged cfqqs to perform this amount of seeky I/O before
 * deciding to break the queues up again.
 */
#define CFQQ_COOP_TOUT		(HZ)

49
#define CFQ_SLICE_SCALE		(5)
50
#define CFQ_HW_QUEUE_MIN	(5)
51

52 53
#define RQ_CIC(rq)		\
	((struct cfq_io_context *) (rq)->elevator_private)
54
#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
L
Linus Torvalds 已提交
55

56 57
static struct kmem_cache *cfq_pool;
static struct kmem_cache *cfq_ioc_pool;
L
Linus Torvalds 已提交
58

59
static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
60
static struct completion *ioc_gone;
61
static DEFINE_SPINLOCK(ioc_gone_lock);
62

63 64 65 66
#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)

67 68
#define sample_valid(samples)	((samples) > 80)

69 70 71 72 73 74 75 76 77
/*
 * Most of our rbtree usage is for sorting with min extraction, so
 * if we cache the leftmost node we don't have to walk down the tree
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
 * move this into the elevator for the rq sorting as well.
 */
struct cfq_rb_root {
	struct rb_root rb;
	struct rb_node *left;
78
	unsigned count;
79
};
80
#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, }
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
/*
 * Per process-grouping structure
 */
struct cfq_queue {
	/* reference count */
	atomic_t ref;
	/* various state flags, see below */
	unsigned int flags;
	/* parent cfq_data */
	struct cfq_data *cfqd;
	/* service_tree member */
	struct rb_node rb_node;
	/* service_tree key */
	unsigned long rb_key;
	/* prio tree member */
	struct rb_node p_node;
	/* prio tree root we belong to, if any */
	struct rb_root *p_root;
	/* sorted list of pending requests */
	struct rb_root sort_list;
	/* if fifo isn't expired, next request to serve */
	struct request *next_rq;
	/* requests queued in sort_list */
	int queued[2];
	/* currently allocated requests */
	int allocated[2];
	/* fifo list of requests in sort_list */
	struct list_head fifo;

	unsigned long slice_end;
	long slice_resid;
	unsigned int slice_dispatch;

	/* pending metadata requests */
	int meta_pending;
	/* number of requests that are on the dispatch list or inside driver */
	int dispatched;

	/* io prio of this group */
	unsigned short ioprio, org_ioprio;
	unsigned short ioprio_class, org_ioprio_class;

124 125 126 127
	unsigned int seek_samples;
	u64 seek_total;
	sector_t seek_mean;
	sector_t last_request_pos;
128
	unsigned long seeky_start;
129

130
	pid_t pid;
J
Jeff Moyer 已提交
131

132
	struct cfq_rb_root *service_tree;
J
Jeff Moyer 已提交
133
	struct cfq_queue *new_cfqq;
134 135
};

136
/*
137
 * First index in the service_trees.
138 139 140 141 142 143 144 145
 * IDLE is handled separately, so it has negative index
 */
enum wl_prio_t {
	IDLE_WORKLOAD = -1,
	BE_WORKLOAD = 0,
	RT_WORKLOAD = 1
};

146 147 148 149 150 151 152 153 154 155
/*
 * Second index in the service_trees.
 */
enum wl_type_t {
	ASYNC_WORKLOAD = 0,
	SYNC_NOIDLE_WORKLOAD = 1,
	SYNC_WORKLOAD = 2
};


156 157 158
/*
 * Per block device queue structure
 */
L
Linus Torvalds 已提交
159
struct cfq_data {
160
	struct request_queue *queue;
161 162

	/*
163 164 165
	 * rr lists of queues with requests, onle rr for each priority class.
	 * Counts are embedded in the cfq_rb_root
	 */
166
	struct cfq_rb_root service_trees[2][3];
167 168 169
	struct cfq_rb_root service_tree_idle;
	/*
	 * The priority currently being served
170
	 */
171
	enum wl_prio_t serving_prio;
172 173
	enum wl_type_t serving_type;
	unsigned long workload_expires;
174 175 176 177 178 179 180 181

	/*
	 * Each priority tree is sorted by next_request position.  These
	 * trees are used when determining if two or more queues are
	 * interleaving requests (see cfq_close_cooperator).
	 */
	struct rb_root prio_trees[CFQ_PRIO_LISTS];

182
	unsigned int busy_queues;
183
	unsigned int busy_queues_avg[2];
184

185
	int rq_in_driver[2];
186
	int sync_flight;
187 188 189 190 191

	/*
	 * queue-depth detection
	 */
	int rq_queued;
192
	int hw_tag;
193 194
	int hw_tag_samples;
	int rq_in_driver_peak;
L
Linus Torvalds 已提交
195

196 197 198 199
	/*
	 * idle window management
	 */
	struct timer_list idle_slice_timer;
200
	struct work_struct unplug_work;
L
Linus Torvalds 已提交
201

202 203 204
	struct cfq_queue *active_queue;
	struct cfq_io_context *active_cic;

205 206 207 208 209
	/*
	 * async queue for each priority case
	 */
	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
	struct cfq_queue *async_idle_cfqq;
210

J
Jens Axboe 已提交
211
	sector_t last_position;
L
Linus Torvalds 已提交
212 213 214 215 216

	/*
	 * tunables, see top of file
	 */
	unsigned int cfq_quantum;
217
	unsigned int cfq_fifo_expire[2];
L
Linus Torvalds 已提交
218 219
	unsigned int cfq_back_penalty;
	unsigned int cfq_back_max;
220 221 222
	unsigned int cfq_slice[2];
	unsigned int cfq_slice_async_rq;
	unsigned int cfq_slice_idle;
223
	unsigned int cfq_latency;
224 225

	struct list_head cic_list;
L
Linus Torvalds 已提交
226

227 228 229 230
	/*
	 * Fallback dummy cfqq for extreme OOM conditions
	 */
	struct cfq_queue oom_cfqq;
231 232

	unsigned long last_end_sync_rq;
L
Linus Torvalds 已提交
233 234
};

235
static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
236
					    enum wl_type_t type,
237 238 239 240 241
					    struct cfq_data *cfqd)
{
	if (prio == IDLE_WORKLOAD)
		return &cfqd->service_tree_idle;

242
	return &cfqd->service_trees[prio][type];
243 244
}

J
Jens Axboe 已提交
245
enum cfqq_state_flags {
246 247
	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
248
	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
249 250 251 252
	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
253
	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
254
	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
255
	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
J
Jens Axboe 已提交
256 257 258 259 260
};

#define CFQ_CFQQ_FNS(name)						\
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
{									\
261
	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
262 263 264
}									\
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
{									\
265
	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
J
Jens Axboe 已提交
266 267 268
}									\
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
{									\
269
	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
J
Jens Axboe 已提交
270 271 272 273
}

CFQ_CFQQ_FNS(on_rr);
CFQ_CFQQ_FNS(wait_request);
274
CFQ_CFQQ_FNS(must_dispatch);
J
Jens Axboe 已提交
275 276 277 278
CFQ_CFQQ_FNS(must_alloc_slice);
CFQ_CFQQ_FNS(fifo_expire);
CFQ_CFQQ_FNS(idle_window);
CFQ_CFQQ_FNS(prio_changed);
279
CFQ_CFQQ_FNS(slice_new);
280
CFQ_CFQQ_FNS(sync);
281
CFQ_CFQQ_FNS(coop);
J
Jens Axboe 已提交
282 283
#undef CFQ_CFQQ_FNS

284 285 286 287 288
#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
#define cfq_log(cfqd, fmt, args...)	\
	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)

289 290 291 292 293 294 295 296 297
static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
{
	if (cfq_class_idle(cfqq))
		return IDLE_WORKLOAD;
	if (cfq_class_rt(cfqq))
		return RT_WORKLOAD;
	return BE_WORKLOAD;
}

298 299 300 301 302 303 304 305 306 307

static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
{
	if (!cfq_cfqq_sync(cfqq))
		return ASYNC_WORKLOAD;
	if (!cfq_cfqq_idle_window(cfqq))
		return SYNC_NOIDLE_WORKLOAD;
	return SYNC_WORKLOAD;
}

308 309 310 311 312
static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
{
	if (wl == IDLE_WORKLOAD)
		return cfqd->service_tree_idle.count;

313 314 315
	return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
		+ cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
		+ cfqd->service_trees[wl][SYNC_WORKLOAD].count;
316 317
}

318
static void cfq_dispatch_insert(struct request_queue *, struct request *);
319
static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
320
				       struct io_context *, gfp_t);
321
static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
322 323
						struct io_context *);

324 325 326 327 328
static inline int rq_in_driver(struct cfq_data *cfqd)
{
	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
}

329
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
330
					    bool is_sync)
331
{
332
	return cic->cfqq[is_sync];
333 334 335
}

static inline void cic_set_cfqq(struct cfq_io_context *cic,
336
				struct cfq_queue *cfqq, bool is_sync)
337
{
338
	cic->cfqq[is_sync] = cfqq;
339 340 341 342 343 344
}

/*
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
 * set (in which case it could also be direct WRITE).
 */
345
static inline bool cfq_bio_sync(struct bio *bio)
346
{
347
	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
348
}
L
Linus Torvalds 已提交
349

A
Andrew Morton 已提交
350 351 352 353
/*
 * scheduler run of queue, if there are requests pending and no one in the
 * driver that will restart queueing
 */
354
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
A
Andrew Morton 已提交
355
{
356 357
	if (cfqd->busy_queues) {
		cfq_log(cfqd, "schedule dispatch");
358
		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
359
	}
A
Andrew Morton 已提交
360 361
}

362
static int cfq_queue_empty(struct request_queue *q)
A
Andrew Morton 已提交
363 364 365
{
	struct cfq_data *cfqd = q->elevator->elevator_data;

366
	return !cfqd->busy_queues;
A
Andrew Morton 已提交
367 368
}

369 370 371 372 373
/*
 * Scale schedule slice based on io priority. Use the sync time slice only
 * if a queue is marked sync and has sync io queued. A sync queue with async
 * io only, should not get full sync slice length.
 */
374
static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
375
				 unsigned short prio)
376
{
377
	const int base_slice = cfqd->cfq_slice[sync];
378

379 380 381 382
	WARN_ON(prio >= IOPRIO_BE_NR);

	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
}
383

384 385 386 387
static inline int
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
388 389
}

390 391 392 393 394 395
/*
 * get averaged number of queues of RT/BE priority.
 * average is updated, with a formula that gives more weight to higher numbers,
 * to quickly follows sudden increases and decrease slowly
 */

396 397
static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
{
398 399 400
	unsigned min_q, max_q;
	unsigned mult  = cfq_hist_divisor - 1;
	unsigned round = cfq_hist_divisor / 2;
401
	unsigned busy = cfq_busy_queues_wl(rt, cfqd);
402 403 404 405 406 407 408 409

	min_q = min(cfqd->busy_queues_avg[rt], busy);
	max_q = max(cfqd->busy_queues_avg[rt], busy);
	cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
		cfq_hist_divisor;
	return cfqd->busy_queues_avg[rt];
}

410 411 412
static inline void
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
	if (cfqd->cfq_latency) {
		/* interested queues (we consider only the ones with the same
		 * priority class) */
		unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
		unsigned sync_slice = cfqd->cfq_slice[1];
		unsigned expect_latency = sync_slice * iq;
		if (expect_latency > cfq_target_latency) {
			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
			/* scale low_slice according to IO priority
			 * and sync vs async */
			unsigned low_slice =
				min(slice, base_low_slice * slice / sync_slice);
			/* the adapted slice value is scaled to fit all iqs
			 * into the target latency */
			slice = max(slice * cfq_target_latency / expect_latency,
				    low_slice);
		}
	}
	cfqq->slice_end = jiffies + slice;
433
	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
434 435 436 437 438 439 440
}

/*
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
 * isn't valid until the first request from the dispatch is activated
 * and the slice time set.
 */
441
static inline bool cfq_slice_used(struct cfq_queue *cfqq)
442 443 444 445 446 447 448 449 450
{
	if (cfq_cfqq_slice_new(cfqq))
		return 0;
	if (time_before(jiffies, cfqq->slice_end))
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
451
/*
J
Jens Axboe 已提交
452
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
L
Linus Torvalds 已提交
453
 * We choose the request that is closest to the head right now. Distance
454
 * behind the head is penalized and only allowed to a certain extent.
L
Linus Torvalds 已提交
455
 */
J
Jens Axboe 已提交
456 457
static struct request *
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
L
Linus Torvalds 已提交
458 459 460
{
	sector_t last, s1, s2, d1 = 0, d2 = 0;
	unsigned long back_max;
461 462 463
#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
L
Linus Torvalds 已提交
464

J
Jens Axboe 已提交
465 466 467 468
	if (rq1 == NULL || rq1 == rq2)
		return rq2;
	if (rq2 == NULL)
		return rq1;
J
Jens Axboe 已提交
469

J
Jens Axboe 已提交
470 471 472 473
	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
		return rq1;
	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
		return rq2;
474 475 476 477
	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
		return rq1;
	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
		return rq2;
L
Linus Torvalds 已提交
478

479 480
	s1 = blk_rq_pos(rq1);
	s2 = blk_rq_pos(rq2);
L
Linus Torvalds 已提交
481

J
Jens Axboe 已提交
482
	last = cfqd->last_position;
L
Linus Torvalds 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498

	/*
	 * by definition, 1KiB is 2 sectors
	 */
	back_max = cfqd->cfq_back_max * 2;

	/*
	 * Strict one way elevator _except_ in the case where we allow
	 * short backward seeks which are biased as twice the cost of a
	 * similar forward seek.
	 */
	if (s1 >= last)
		d1 = s1 - last;
	else if (s1 + back_max >= last)
		d1 = (last - s1) * cfqd->cfq_back_penalty;
	else
499
		wrap |= CFQ_RQ1_WRAP;
L
Linus Torvalds 已提交
500 501 502 503 504 505

	if (s2 >= last)
		d2 = s2 - last;
	else if (s2 + back_max >= last)
		d2 = (last - s2) * cfqd->cfq_back_penalty;
	else
506
		wrap |= CFQ_RQ2_WRAP;
L
Linus Torvalds 已提交
507 508

	/* Found required data */
509 510 511 512 513 514

	/*
	 * By doing switch() on the bit mask "wrap" we avoid having to
	 * check two variables for all permutations: --> faster!
	 */
	switch (wrap) {
J
Jens Axboe 已提交
515
	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
516
		if (d1 < d2)
J
Jens Axboe 已提交
517
			return rq1;
518
		else if (d2 < d1)
J
Jens Axboe 已提交
519
			return rq2;
520 521
		else {
			if (s1 >= s2)
J
Jens Axboe 已提交
522
				return rq1;
523
			else
J
Jens Axboe 已提交
524
				return rq2;
525
		}
L
Linus Torvalds 已提交
526

527
	case CFQ_RQ2_WRAP:
J
Jens Axboe 已提交
528
		return rq1;
529
	case CFQ_RQ1_WRAP:
J
Jens Axboe 已提交
530 531
		return rq2;
	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
532 533 534 535 536 537 538 539
	default:
		/*
		 * Since both rqs are wrapped,
		 * start with the one that's further behind head
		 * (--> only *one* back seek required),
		 * since back seek takes more time than forward.
		 */
		if (s1 <= s2)
J
Jens Axboe 已提交
540
			return rq1;
L
Linus Torvalds 已提交
541
		else
J
Jens Axboe 已提交
542
			return rq2;
L
Linus Torvalds 已提交
543 544 545
	}
}

546 547 548
/*
 * The below is leftmost cache rbtree addon
 */
549
static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
550 551 552 553
{
	if (!root->left)
		root->left = rb_first(&root->rb);

554 555 556 557
	if (root->left)
		return rb_entry(root->left, struct cfq_queue, rb_node);

	return NULL;
558 559
}

560 561 562 563 564 565
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

566 567 568 569
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
570
	rb_erase_init(n, &root->rb);
571
	--root->count;
572 573
}

L
Linus Torvalds 已提交
574 575 576
/*
 * would be nice to take fifo expire time into account as well
 */
J
Jens Axboe 已提交
577 578 579
static struct request *
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		  struct request *last)
L
Linus Torvalds 已提交
580
{
581 582
	struct rb_node *rbnext = rb_next(&last->rb_node);
	struct rb_node *rbprev = rb_prev(&last->rb_node);
J
Jens Axboe 已提交
583
	struct request *next = NULL, *prev = NULL;
L
Linus Torvalds 已提交
584

585
	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
L
Linus Torvalds 已提交
586 587

	if (rbprev)
J
Jens Axboe 已提交
588
		prev = rb_entry_rq(rbprev);
L
Linus Torvalds 已提交
589

590
	if (rbnext)
J
Jens Axboe 已提交
591
		next = rb_entry_rq(rbnext);
592 593 594
	else {
		rbnext = rb_first(&cfqq->sort_list);
		if (rbnext && rbnext != &last->rb_node)
J
Jens Axboe 已提交
595
			next = rb_entry_rq(rbnext);
596
	}
L
Linus Torvalds 已提交
597

598
	return cfq_choose_req(cfqd, next, prev);
L
Linus Torvalds 已提交
599 600
}

601 602
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
				      struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
603
{
604 605 606
	/*
	 * just an approximation, should be ok.
	 */
607 608
	return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
609 610
}

611
/*
612
 * The cfqd->service_trees holds all pending cfq_queue's that have
613 614 615
 * requests waiting to be processed. It is sorted in the order that
 * we will service the queues.
 */
616
static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
617
				 bool add_front)
618
{
619 620
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;
621
	unsigned long rb_key;
622
	struct cfq_rb_root *service_tree;
623
	int left;
624

625
	service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
626 627
	if (cfq_class_idle(cfqq)) {
		rb_key = CFQ_IDLE_DELAY;
628
		parent = rb_last(&service_tree->rb);
629 630 631 632 633 634
		if (parent && parent != &cfqq->rb_node) {
			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
			rb_key += __cfqq->rb_key;
		} else
			rb_key += jiffies;
	} else if (!add_front) {
635 636 637 638 639 640
		/*
		 * Get our rb key offset. Subtract any residual slice
		 * value carried from last service. A negative resid
		 * count indicates slice overrun, and this should position
		 * the next service time further away in the tree.
		 */
641
		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
642
		rb_key -= cfqq->slice_resid;
643
		cfqq->slice_resid = 0;
644 645
	} else {
		rb_key = -HZ;
646
		__cfqq = cfq_rb_first(service_tree);
647 648
		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
	}
L
Linus Torvalds 已提交
649

650
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
651
		/*
652
		 * same position, nothing more to do
653
		 */
654 655
		if (rb_key == cfqq->rb_key &&
		    cfqq->service_tree == service_tree)
656
			return;
L
Linus Torvalds 已提交
657

658 659
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
L
Linus Torvalds 已提交
660
	}
661

662
	left = 1;
663
	parent = NULL;
664 665
	cfqq->service_tree = service_tree;
	p = &service_tree->rb.rb_node;
666
	while (*p) {
667
		struct rb_node **n;
668

669 670 671
		parent = *p;
		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);

672
		/*
673
		 * sort by key, that represents service time.
674
		 */
675
		if (time_before(rb_key, __cfqq->rb_key))
676
			n = &(*p)->rb_left;
677
		else {
678
			n = &(*p)->rb_right;
679
			left = 0;
680
		}
681 682

		p = n;
683 684
	}

685
	if (left)
686
		service_tree->left = &cfqq->rb_node;
687

688 689
	cfqq->rb_key = rb_key;
	rb_link_node(&cfqq->rb_node, parent, p);
690 691
	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
	service_tree->count++;
L
Linus Torvalds 已提交
692 693
}

694
static struct cfq_queue *
695 696 697
cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
		     sector_t sector, struct rb_node **ret_parent,
		     struct rb_node ***rb_link)
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
{
	struct rb_node **p, *parent;
	struct cfq_queue *cfqq = NULL;

	parent = NULL;
	p = &root->rb_node;
	while (*p) {
		struct rb_node **n;

		parent = *p;
		cfqq = rb_entry(parent, struct cfq_queue, p_node);

		/*
		 * Sort strictly based on sector.  Smallest to the left,
		 * largest to the right.
		 */
714
		if (sector > blk_rq_pos(cfqq->next_rq))
715
			n = &(*p)->rb_right;
716
		else if (sector < blk_rq_pos(cfqq->next_rq))
717 718 719 720
			n = &(*p)->rb_left;
		else
			break;
		p = n;
721
		cfqq = NULL;
722 723 724 725 726
	}

	*ret_parent = parent;
	if (rb_link)
		*rb_link = p;
727
	return cfqq;
728 729 730 731 732 733 734
}

static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct rb_node **p, *parent;
	struct cfq_queue *__cfqq;

735 736 737 738
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
739 740 741 742 743 744

	if (cfq_class_idle(cfqq))
		return;
	if (!cfqq->next_rq)
		return;

745
	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
746 747
	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
				      blk_rq_pos(cfqq->next_rq), &parent, &p);
748 749
	if (!__cfqq) {
		rb_link_node(&cfqq->p_node, parent, p);
750 751 752
		rb_insert_color(&cfqq->p_node, cfqq->p_root);
	} else
		cfqq->p_root = NULL;
753 754
}

755 756 757
/*
 * Update cfqq's position in the service tree.
 */
758
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
J
Jens Axboe 已提交
759 760 761 762
{
	/*
	 * Resorting requires the cfqq to be on the RR list already.
	 */
763
	if (cfq_cfqq_on_rr(cfqq)) {
764
		cfq_service_tree_add(cfqd, cfqq, 0);
765 766
		cfq_prio_tree_add(cfqd, cfqq);
	}
J
Jens Axboe 已提交
767 768
}

L
Linus Torvalds 已提交
769 770
/*
 * add to busy list of queues for service, trying to be fair in ordering
771
 * the pending list according to last request service
L
Linus Torvalds 已提交
772
 */
J
Jens Axboe 已提交
773
static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
774
{
775
	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
J
Jens Axboe 已提交
776 777
	BUG_ON(cfq_cfqq_on_rr(cfqq));
	cfq_mark_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
778 779
	cfqd->busy_queues++;

780
	cfq_resort_rr_list(cfqd, cfqq);
L
Linus Torvalds 已提交
781 782
}

783 784 785 786
/*
 * Called when the cfqq no longer has requests pending, remove it from
 * the service tree.
 */
J
Jens Axboe 已提交
787
static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
788
{
789
	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
J
Jens Axboe 已提交
790 791
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
	cfq_clear_cfqq_on_rr(cfqq);
L
Linus Torvalds 已提交
792

793 794 795 796
	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
		cfqq->service_tree = NULL;
	}
797 798 799 800
	if (cfqq->p_root) {
		rb_erase(&cfqq->p_node, cfqq->p_root);
		cfqq->p_root = NULL;
	}
801

L
Linus Torvalds 已提交
802 803 804 805 806 807 808
	BUG_ON(!cfqd->busy_queues);
	cfqd->busy_queues--;
}

/*
 * rb tree support functions
 */
J
Jens Axboe 已提交
809
static void cfq_del_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
810
{
J
Jens Axboe 已提交
811
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
812
	struct cfq_data *cfqd = cfqq->cfqd;
J
Jens Axboe 已提交
813
	const int sync = rq_is_sync(rq);
L
Linus Torvalds 已提交
814

815 816
	BUG_ON(!cfqq->queued[sync]);
	cfqq->queued[sync]--;
L
Linus Torvalds 已提交
817

J
Jens Axboe 已提交
818
	elv_rb_del(&cfqq->sort_list, rq);
L
Linus Torvalds 已提交
819

820
	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
821
		cfq_del_cfqq_rr(cfqd, cfqq);
L
Linus Torvalds 已提交
822 823
}

J
Jens Axboe 已提交
824
static void cfq_add_rq_rb(struct request *rq)
L
Linus Torvalds 已提交
825
{
J
Jens Axboe 已提交
826
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
827
	struct cfq_data *cfqd = cfqq->cfqd;
828
	struct request *__alias, *prev;
L
Linus Torvalds 已提交
829

830
	cfqq->queued[rq_is_sync(rq)]++;
L
Linus Torvalds 已提交
831 832 833 834 835

	/*
	 * looks a little odd, but the first insert might return an alias.
	 * if that happens, put the alias on the dispatch list
	 */
836
	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
J
Jens Axboe 已提交
837
		cfq_dispatch_insert(cfqd->queue, __alias);
838 839 840

	if (!cfq_cfqq_on_rr(cfqq))
		cfq_add_cfqq_rr(cfqd, cfqq);
841 842 843 844

	/*
	 * check if this request is a better next-serve candidate
	 */
845
	prev = cfqq->next_rq;
846
	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
847 848 849 850 851 852 853

	/*
	 * adjust priority tree position, if ->next_rq changes
	 */
	if (prev != cfqq->next_rq)
		cfq_prio_tree_add(cfqd, cfqq);

854
	BUG_ON(!cfqq->next_rq);
L
Linus Torvalds 已提交
855 856
}

J
Jens Axboe 已提交
857
static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
L
Linus Torvalds 已提交
858
{
859 860
	elv_rb_del(&cfqq->sort_list, rq);
	cfqq->queued[rq_is_sync(rq)]--;
J
Jens Axboe 已提交
861
	cfq_add_rq_rb(rq);
L
Linus Torvalds 已提交
862 863
}

864 865
static struct request *
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
L
Linus Torvalds 已提交
866
{
867
	struct task_struct *tsk = current;
868
	struct cfq_io_context *cic;
869
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
870

871
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
872 873 874 875
	if (!cic)
		return NULL;

	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
876 877 878
	if (cfqq) {
		sector_t sector = bio->bi_sector + bio_sectors(bio);

879
		return elv_rb_find(&cfqq->sort_list, sector);
880
	}
L
Linus Torvalds 已提交
881 882 883 884

	return NULL;
}

885
static void cfq_activate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
886
{
887
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
888

889
	cfqd->rq_in_driver[rq_is_sync(rq)]++;
890
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
891
						rq_in_driver(cfqd));
892

893
	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
L
Linus Torvalds 已提交
894 895
}

896
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
897
{
898
	struct cfq_data *cfqd = q->elevator->elevator_data;
899
	const int sync = rq_is_sync(rq);
900

901 902
	WARN_ON(!cfqd->rq_in_driver[sync]);
	cfqd->rq_in_driver[sync]--;
903
	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
904
						rq_in_driver(cfqd));
L
Linus Torvalds 已提交
905 906
}

907
static void cfq_remove_request(struct request *rq)
L
Linus Torvalds 已提交
908
{
J
Jens Axboe 已提交
909
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
910

J
Jens Axboe 已提交
911 912
	if (cfqq->next_rq == rq)
		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
L
Linus Torvalds 已提交
913

914
	list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
915
	cfq_del_rq_rb(rq);
916

917
	cfqq->cfqd->rq_queued--;
918 919 920 921
	if (rq_is_meta(rq)) {
		WARN_ON(!cfqq->meta_pending);
		cfqq->meta_pending--;
	}
L
Linus Torvalds 已提交
922 923
}

924 925
static int cfq_merge(struct request_queue *q, struct request **req,
		     struct bio *bio)
L
Linus Torvalds 已提交
926 927 928 929
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct request *__rq;

930
	__rq = cfq_find_rq_fmerge(cfqd, bio);
931
	if (__rq && elv_rq_merge_ok(__rq, bio)) {
932 933
		*req = __rq;
		return ELEVATOR_FRONT_MERGE;
L
Linus Torvalds 已提交
934 935 936 937 938
	}

	return ELEVATOR_NO_MERGE;
}

939
static void cfq_merged_request(struct request_queue *q, struct request *req,
940
			       int type)
L
Linus Torvalds 已提交
941
{
942
	if (type == ELEVATOR_FRONT_MERGE) {
J
Jens Axboe 已提交
943
		struct cfq_queue *cfqq = RQ_CFQQ(req);
L
Linus Torvalds 已提交
944

J
Jens Axboe 已提交
945
		cfq_reposition_rq_rb(cfqq, req);
L
Linus Torvalds 已提交
946 947 948 949
	}
}

static void
950
cfq_merged_requests(struct request_queue *q, struct request *rq,
L
Linus Torvalds 已提交
951 952
		    struct request *next)
{
953 954 955 956
	/*
	 * reposition in fifo if next is older than rq
	 */
	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
957
	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
958
		list_move(&rq->queuelist, &next->queuelist);
959 960
		rq_set_fifo_time(rq, rq_fifo_time(next));
	}
961

962
	cfq_remove_request(next);
963 964
}

965
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
966 967 968
			   struct bio *bio)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
969
	struct cfq_io_context *cic;
970 971 972
	struct cfq_queue *cfqq;

	/*
973
	 * Disallow merge of a sync bio into an async request.
974
	 */
975
	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
976
		return false;
977 978

	/*
979 980
	 * Lookup the cfqq that this bio will be queued with. Allow
	 * merge only if rq is queued there.
981
	 */
982
	cic = cfq_cic_lookup(cfqd, current->io_context);
983
	if (!cic)
984
		return false;
985

986
	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
987
	return cfqq == RQ_CFQQ(rq);
988 989
}

J
Jens Axboe 已提交
990 991
static void __cfq_set_active_queue(struct cfq_data *cfqd,
				   struct cfq_queue *cfqq)
992 993
{
	if (cfqq) {
994
		cfq_log_cfqq(cfqd, cfqq, "set_active");
995
		cfqq->slice_end = 0;
996 997 998
		cfqq->slice_dispatch = 0;

		cfq_clear_cfqq_wait_request(cfqq);
999
		cfq_clear_cfqq_must_dispatch(cfqq);
J
Jens Axboe 已提交
1000 1001
		cfq_clear_cfqq_must_alloc_slice(cfqq);
		cfq_clear_cfqq_fifo_expire(cfqq);
1002
		cfq_mark_cfqq_slice_new(cfqq);
1003 1004

		del_timer(&cfqd->idle_slice_timer);
1005 1006 1007 1008 1009
	}

	cfqd->active_queue = cfqq;
}

1010 1011 1012 1013 1014
/*
 * current cfqq expired its slice (or was too idle), select new one
 */
static void
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1015
		    bool timed_out)
1016
{
1017 1018
	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);

1019 1020 1021 1022 1023 1024
	if (cfq_cfqq_wait_request(cfqq))
		del_timer(&cfqd->idle_slice_timer);

	cfq_clear_cfqq_wait_request(cfqq);

	/*
1025
	 * store what was left of this slice, if the queue idled/timed out
1026
	 */
1027
	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1028
		cfqq->slice_resid = cfqq->slice_end - jiffies;
1029 1030
		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
	}
1031

1032
	cfq_resort_rr_list(cfqd, cfqq);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

	if (cfqq == cfqd->active_queue)
		cfqd->active_queue = NULL;

	if (cfqd->active_cic) {
		put_io_context(cfqd->active_cic->ioc);
		cfqd->active_cic = NULL;
	}
}

1043
static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1044 1045 1046 1047
{
	struct cfq_queue *cfqq = cfqd->active_queue;

	if (cfqq)
1048
		__cfq_slice_expired(cfqd, cfqq, timed_out);
1049 1050
}

1051 1052 1053 1054
/*
 * Get next queue for service. Unless we have a queue preemption,
 * we'll simply select the first cfqq in the service tree.
 */
J
Jens Axboe 已提交
1055
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1056
{
1057
	struct cfq_rb_root *service_tree =
1058
		service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
1059

1060 1061 1062
	if (RB_EMPTY_ROOT(&service_tree->rb))
		return NULL;
	return cfq_rb_first(service_tree);
J
Jens Axboe 已提交
1063 1064
}

1065 1066 1067
/*
 * Get and set a new active queue for service.
 */
1068 1069
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
					      struct cfq_queue *cfqq)
J
Jens Axboe 已提交
1070
{
1071
	if (!cfqq)
1072
		cfqq = cfq_get_next_queue(cfqd);
J
Jens Axboe 已提交
1073

1074
	__cfq_set_active_queue(cfqd, cfqq);
J
Jens Axboe 已提交
1075
	return cfqq;
1076 1077
}

1078 1079 1080
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
					  struct request *rq)
{
1081 1082
	if (blk_rq_pos(rq) >= cfqd->last_position)
		return blk_rq_pos(rq) - cfqd->last_position;
1083
	else
1084
		return cfqd->last_position - blk_rq_pos(rq);
1085 1086
}

1087 1088
#define CFQQ_SEEK_THR		8 * 1024
#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1089

1090 1091
static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
			       struct request *rq)
J
Jens Axboe 已提交
1092
{
1093
	sector_t sdist = cfqq->seek_mean;
J
Jens Axboe 已提交
1094

1095 1096
	if (!sample_valid(cfqq->seek_samples))
		sdist = CFQQ_SEEK_THR;
J
Jens Axboe 已提交
1097

1098
	return cfq_dist_from_last(cfqd, rq) <= sdist;
J
Jens Axboe 已提交
1099 1100
}

1101 1102 1103
static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
				    struct cfq_queue *cur_cfqq)
{
1104
	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	struct rb_node *parent, *node;
	struct cfq_queue *__cfqq;
	sector_t sector = cfqd->last_position;

	if (RB_EMPTY_ROOT(root))
		return NULL;

	/*
	 * First, if we find a request starting at the end of the last
	 * request, choose it.
	 */
1116
	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1117 1118 1119 1120 1121 1122 1123 1124
	if (__cfqq)
		return __cfqq;

	/*
	 * If the exact sector wasn't found, the parent of the NULL leaf
	 * will contain the closest sector.
	 */
	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1125
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1126 1127
		return __cfqq;

1128
	if (blk_rq_pos(__cfqq->next_rq) < sector)
1129 1130 1131 1132 1133 1134 1135
		node = rb_next(&__cfqq->p_node);
	else
		node = rb_prev(&__cfqq->p_node);
	if (!node)
		return NULL;

	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1136
	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		return __cfqq;

	return NULL;
}

/*
 * cfqd - obvious
 * cur_cfqq - passed in so that we don't decide that the current queue is
 * 	      closely cooperating with itself.
 *
 * So, basically we're assuming that that cur_cfqq has dispatched at least
 * one request, and that cfqd->last_position reflects a position on the disk
 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
 * assumption.
 */
static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1153
					      struct cfq_queue *cur_cfqq)
J
Jens Axboe 已提交
1154
{
1155 1156
	struct cfq_queue *cfqq;

1157 1158 1159 1160 1161
	if (!cfq_cfqq_sync(cur_cfqq))
		return NULL;
	if (CFQQ_SEEKY(cur_cfqq))
		return NULL;

J
Jens Axboe 已提交
1162
	/*
1163 1164 1165
	 * We should notice if some of the queues are cooperating, eg
	 * working closely on the same area of the disk. In that case,
	 * we can group them together and don't waste time idling.
J
Jens Axboe 已提交
1166
	 */
1167 1168 1169 1170
	cfqq = cfqq_close(cfqd, cur_cfqq);
	if (!cfqq)
		return NULL;

J
Jeff Moyer 已提交
1171 1172 1173 1174 1175
	/*
	 * It only makes sense to merge sync queues.
	 */
	if (!cfq_cfqq_sync(cfqq))
		return NULL;
1176 1177
	if (CFQQ_SEEKY(cfqq))
		return NULL;
J
Jeff Moyer 已提交
1178

1179 1180 1181 1182 1183 1184
	/*
	 * Do not merge queues of different priority classes
	 */
	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
		return NULL;

1185
	return cfqq;
J
Jens Axboe 已提交
1186 1187
}

1188 1189 1190 1191 1192 1193 1194
/*
 * Determine whether we should enforce idle window for this queue.
 */

static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	enum wl_prio_t prio = cfqq_prio(cfqq);
1195
	struct cfq_rb_root *service_tree = cfqq->service_tree;
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

	/* We never do for idle class queues. */
	if (prio == IDLE_WORKLOAD)
		return false;

	/* We do for queues that were marked with idle window flag. */
	if (cfq_cfqq_idle_window(cfqq))
		return true;

	/*
	 * Otherwise, we do only if they are the last ones
	 * in their service tree.
	 */
1209 1210 1211
	if (!service_tree)
		service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);

1212 1213 1214 1215 1216 1217
	if (service_tree->count == 0)
		return true;

	return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
}

J
Jens Axboe 已提交
1218
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1219
{
1220
	struct cfq_queue *cfqq = cfqd->active_queue;
1221
	struct cfq_io_context *cic;
1222 1223
	unsigned long sl;

1224
	/*
J
Jens Axboe 已提交
1225 1226 1227
	 * SSD device without seek penalty, disable idling. But only do so
	 * for devices that support queuing, otherwise we still have a problem
	 * with sync vs async workloads.
1228
	 */
J
Jens Axboe 已提交
1229
	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1230 1231
		return;

1232
	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
J
Jens Axboe 已提交
1233
	WARN_ON(cfq_cfqq_slice_new(cfqq));
1234 1235 1236 1237

	/*
	 * idle is disabled, either manually or by past process history
	 */
1238
	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
J
Jens Axboe 已提交
1239 1240
		return;

1241 1242 1243
	/*
	 * still requests with the driver, don't idle
	 */
1244
	if (rq_in_driver(cfqd))
1245 1246
		return;

1247 1248 1249
	/*
	 * task has exited, don't wait
	 */
1250
	cic = cfqd->active_cic;
1251
	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
J
Jens Axboe 已提交
1252 1253
		return;

1254 1255 1256 1257 1258 1259 1260 1261 1262
	/*
	 * If our average think time is larger than the remaining time
	 * slice, then don't idle. This avoids overrunning the allotted
	 * time slice.
	 */
	if (sample_valid(cic->ttime_samples) &&
	    (cfqq->slice_end - jiffies < cic->ttime_mean))
		return;

J
Jens Axboe 已提交
1263
	cfq_mark_cfqq_wait_request(cfqq);
1264

J
Jens Axboe 已提交
1265
	sl = cfqd->cfq_slice_idle;
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	/* are we servicing noidle tree, and there are more queues?
	 * non-rotational or NCQ: no idle
	 * non-NCQ rotational : very small idle, to allow
	 *     fair distribution of slice time for a process doing back-to-back
	 *     seeks.
	 */
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
	    service_tree_for(cfqd->serving_prio, SYNC_NOIDLE_WORKLOAD, cfqd)
		->count > 0) {
		if (blk_queue_nonrot(cfqd->queue) || cfqd->hw_tag)
			return;
1277
		sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1278
	}
1279

1280
	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1281
	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
L
Linus Torvalds 已提交
1282 1283
}

1284 1285 1286
/*
 * Move request from internal lists to the request queue dispatch list.
 */
1287
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
1288
{
1289
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
1290
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1291

1292 1293
	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");

1294
	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1295
	cfq_remove_request(rq);
J
Jens Axboe 已提交
1296
	cfqq->dispatched++;
1297
	elv_dispatch_sort(q, rq);
1298 1299 1300

	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight++;
L
Linus Torvalds 已提交
1301 1302 1303 1304 1305
}

/*
 * return expired entry, or NULL to just start from scratch in rbtree
 */
J
Jens Axboe 已提交
1306
static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1307
{
1308
	struct request *rq = NULL;
L
Linus Torvalds 已提交
1309

J
Jens Axboe 已提交
1310
	if (cfq_cfqq_fifo_expire(cfqq))
L
Linus Torvalds 已提交
1311
		return NULL;
1312 1313 1314

	cfq_mark_cfqq_fifo_expire(cfqq);

1315 1316
	if (list_empty(&cfqq->fifo))
		return NULL;
L
Linus Torvalds 已提交
1317

1318
	rq = rq_entry_fifo(cfqq->fifo.next);
1319
	if (time_before(jiffies, rq_fifo_time(rq)))
1320
		rq = NULL;
L
Linus Torvalds 已提交
1321

1322
	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
J
Jens Axboe 已提交
1323
	return rq;
L
Linus Torvalds 已提交
1324 1325
}

1326 1327 1328 1329
static inline int
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	const int base_rq = cfqd->cfq_slice_async_rq;
L
Linus Torvalds 已提交
1330

1331
	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
L
Linus Torvalds 已提交
1332

1333
	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
L
Linus Torvalds 已提交
1334 1335
}

J
Jeff Moyer 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
/*
 * Must be called with the queue_lock held.
 */
static int cfqq_process_refs(struct cfq_queue *cfqq)
{
	int process_refs, io_refs;

	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
	process_refs = atomic_read(&cfqq->ref) - io_refs;
	BUG_ON(process_refs < 0);
	return process_refs;
}

static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
{
1351
	int process_refs, new_process_refs;
J
Jeff Moyer 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	struct cfq_queue *__cfqq;

	/* Avoid a circular list and skip interim queue merges */
	while ((__cfqq = new_cfqq->new_cfqq)) {
		if (__cfqq == cfqq)
			return;
		new_cfqq = __cfqq;
	}

	process_refs = cfqq_process_refs(cfqq);
	/*
	 * If the process for the cfqq has gone away, there is no
	 * sense in merging the queues.
	 */
	if (process_refs == 0)
		return;

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	/*
	 * Merge in the direction of the lesser amount of work.
	 */
	new_process_refs = cfqq_process_refs(new_cfqq);
	if (new_process_refs >= process_refs) {
		cfqq->new_cfqq = new_cfqq;
		atomic_add(process_refs, &new_cfqq->ref);
	} else {
		new_cfqq->new_cfqq = cfqq;
		atomic_add(new_process_refs, &cfqq->ref);
	}
J
Jeff Moyer 已提交
1380 1381
}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
				    bool prio_changed)
{
	struct cfq_queue *queue;
	int i;
	bool key_valid = false;
	unsigned long lowest_key = 0;
	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;

	if (prio_changed) {
		/*
		 * When priorities switched, we prefer starting
		 * from SYNC_NOIDLE (first choice), or just SYNC
		 * over ASYNC
		 */
		if (service_tree_for(prio, cur_best, cfqd)->count)
			return cur_best;
		cur_best = SYNC_WORKLOAD;
		if (service_tree_for(prio, cur_best, cfqd)->count)
			return cur_best;

		return ASYNC_WORKLOAD;
	}

	for (i = 0; i < 3; ++i) {
		/* otherwise, select the one with lowest rb_key */
		queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
		if (queue &&
		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
			lowest_key = queue->rb_key;
			cur_best = i;
			key_valid = true;
		}
	}

	return cur_best;
}

static void choose_service_tree(struct cfq_data *cfqd)
{
	enum wl_prio_t previous_prio = cfqd->serving_prio;
	bool prio_changed;
	unsigned slice;
	unsigned count;

	/* Choose next priority. RT > BE > IDLE */
	if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
		cfqd->serving_prio = RT_WORKLOAD;
	else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
		cfqd->serving_prio = BE_WORKLOAD;
	else {
		cfqd->serving_prio = IDLE_WORKLOAD;
		cfqd->workload_expires = jiffies + 1;
		return;
	}

	/*
	 * For RT and BE, we have to choose also the type
	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
	 * expiration time
	 */
	prio_changed = (cfqd->serving_prio != previous_prio);
	count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
		->count;

	/*
	 * If priority didn't change, check workload expiration,
	 * and that we still have other queues ready
	 */
	if (!prio_changed && count &&
	    !time_after(jiffies, cfqd->workload_expires))
		return;

	/* otherwise select new workload type */
	cfqd->serving_type =
		cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
	count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
		->count;

	/*
	 * the workload slice is computed as a fraction of target latency
	 * proportional to the number of queues in that workload, over
	 * all the queues in the same priority class
	 */
	slice = cfq_target_latency * count /
		max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
		      cfq_busy_queues_wl(cfqd->serving_prio, cfqd));

	if (cfqd->serving_type == ASYNC_WORKLOAD)
		/* async workload slice is scaled down according to
		 * the sync/async slice ratio. */
		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
	else
		/* sync workload slice is at least 2 * cfq_slice_idle */
		slice = max(slice, 2 * cfqd->cfq_slice_idle);

	slice = max_t(unsigned, slice, CFQ_MIN_TT);
	cfqd->workload_expires = jiffies + slice;
}

1482
/*
1483 1484
 * Select a queue for service. If we have a current active queue,
 * check whether to continue servicing it, or retrieve and set a new one.
1485
 */
1486
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
L
Linus Torvalds 已提交
1487
{
1488
	struct cfq_queue *cfqq, *new_cfqq = NULL;
L
Linus Torvalds 已提交
1489

1490 1491 1492
	cfqq = cfqd->active_queue;
	if (!cfqq)
		goto new_queue;
L
Linus Torvalds 已提交
1493

1494
	/*
J
Jens Axboe 已提交
1495
	 * The active queue has run out of time, expire it and select new.
1496
	 */
1497
	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
J
Jens Axboe 已提交
1498
		goto expire;
L
Linus Torvalds 已提交
1499

1500
	/*
J
Jens Axboe 已提交
1501 1502
	 * The active queue has requests and isn't expired, allow it to
	 * dispatch.
1503
	 */
1504
	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1505
		goto keep_queue;
J
Jens Axboe 已提交
1506

1507 1508 1509 1510
	/*
	 * If another queue has a request waiting within our mean seek
	 * distance, let it run.  The expire code will check for close
	 * cooperators and put the close queue at the front of the service
J
Jeff Moyer 已提交
1511
	 * tree.  If possible, merge the expiring queue with the new cfqq.
1512
	 */
1513
	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
J
Jeff Moyer 已提交
1514 1515 1516
	if (new_cfqq) {
		if (!cfqq->new_cfqq)
			cfq_setup_merge(cfqq, new_cfqq);
1517
		goto expire;
J
Jeff Moyer 已提交
1518
	}
1519

J
Jens Axboe 已提交
1520 1521 1522 1523 1524
	/*
	 * No requests pending. If the active queue still has requests in
	 * flight or is idling for a new request, allow either of these
	 * conditions to happen (or time out) before selecting a new queue.
	 */
1525
	if (timer_pending(&cfqd->idle_slice_timer) ||
1526
	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1527 1528
		cfqq = NULL;
		goto keep_queue;
1529 1530
	}

J
Jens Axboe 已提交
1531
expire:
1532
	cfq_slice_expired(cfqd, 0);
J
Jens Axboe 已提交
1533
new_queue:
1534 1535 1536 1537 1538 1539 1540
	/*
	 * Current queue expired. Check if we have to switch to a new
	 * service tree
	 */
	if (!new_cfqq)
		choose_service_tree(cfqd);

1541
	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1542
keep_queue:
J
Jens Axboe 已提交
1543
	return cfqq;
1544 1545
}

J
Jens Axboe 已提交
1546
static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
{
	int dispatched = 0;

	while (cfqq->next_rq) {
		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
		dispatched++;
	}

	BUG_ON(!list_empty(&cfqq->fifo));
	return dispatched;
}

1559 1560 1561 1562
/*
 * Drain our current requests. Used for barriers and when switching
 * io schedulers on-the-fly.
 */
1563
static int cfq_forced_dispatch(struct cfq_data *cfqd)
1564
{
1565
	struct cfq_queue *cfqq;
1566
	int dispatched = 0;
1567
	int i, j;
1568
	for (i = 0; i < 2; ++i)
1569 1570 1571 1572
		for (j = 0; j < 3; ++j)
			while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
				!= NULL)
				dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1573

1574
	while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
1575
		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1576

1577
	cfq_slice_expired(cfqd, 0);
1578 1579 1580

	BUG_ON(cfqd->busy_queues);

1581
	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1582 1583 1584
	return dispatched;
}

1585
static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1586 1587
{
	unsigned int max_dispatch;
1588

1589 1590 1591
	/*
	 * Drain async requests before we start sync IO
	 */
1592
	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1593
		return false;
1594

1595 1596 1597 1598
	/*
	 * If this is an async queue and we have sync IO in flight, let it wait
	 */
	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1599
		return false;
1600 1601 1602 1603

	max_dispatch = cfqd->cfq_quantum;
	if (cfq_class_idle(cfqq))
		max_dispatch = 1;
1604

1605 1606 1607 1608 1609 1610 1611
	/*
	 * Does this cfqq already have too much IO in flight?
	 */
	if (cfqq->dispatched >= max_dispatch) {
		/*
		 * idle queue must always only have a single IO in flight
		 */
1612
		if (cfq_class_idle(cfqq))
1613
			return false;
1614

1615 1616 1617 1618
		/*
		 * We have other queues, don't allow more IO from this one
		 */
		if (cfqd->busy_queues > 1)
1619
			return false;
1620

1621
		/*
1622
		 * Sole queue user, allow bigger slice
1623
		 */
1624 1625 1626 1627 1628 1629 1630 1631
		max_dispatch *= 4;
	}

	/*
	 * Async queues must wait a bit before being allowed dispatch.
	 * We also ramp up the dispatch depth gradually for async IO,
	 * based on the last sync IO we serviced
	 */
1632
	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1633 1634
		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
		unsigned int depth;
1635

1636
		depth = last_sync / cfqd->cfq_slice[1];
1637 1638
		if (!depth && !cfqq->dispatched)
			depth = 1;
1639 1640
		if (depth < max_dispatch)
			max_dispatch = depth;
1641
	}
1642

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	/*
	 * If we're below the current max, allow a dispatch
	 */
	return cfqq->dispatched < max_dispatch;
}

/*
 * Dispatch a request from cfqq, moving them to the request queue
 * dispatch list.
 */
static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
	struct request *rq;

	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));

	if (!cfq_may_dispatch(cfqd, cfqq))
		return false;

	/*
	 * follow expired path, else get first next available
	 */
	rq = cfq_check_fifo(cfqq);
	if (!rq)
		rq = cfqq->next_rq;

	/*
	 * insert request into driver dispatch list
	 */
	cfq_dispatch_insert(cfqd->queue, rq);

	if (!cfqd->active_cic) {
		struct cfq_io_context *cic = RQ_CIC(rq);

		atomic_long_inc(&cic->ioc->refcount);
		cfqd->active_cic = cic;
	}

	return true;
}

/*
 * Find the cfqq that we need to service and move a request from that to the
 * dispatch list
 */
static int cfq_dispatch_requests(struct request_queue *q, int force)
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_queue *cfqq;

	if (!cfqd->busy_queues)
		return 0;

	if (unlikely(force))
		return cfq_forced_dispatch(cfqd);

	cfqq = cfq_select_queue(cfqd);
	if (!cfqq)
1701 1702
		return 0;

1703
	/*
1704
	 * Dispatch a request from this cfqq, if it is allowed
1705
	 */
1706 1707 1708
	if (!cfq_dispatch_request(cfqd, cfqq))
		return 0;

1709
	cfqq->slice_dispatch++;
1710
	cfq_clear_cfqq_must_dispatch(cfqq);
1711

1712 1713 1714 1715 1716 1717 1718 1719 1720
	/*
	 * expire an async queue immediately if it has used up its slice. idle
	 * queue always expire after 1 dispatch round.
	 */
	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
	    cfq_class_idle(cfqq))) {
		cfqq->slice_end = jiffies + 1;
		cfq_slice_expired(cfqd, 0);
L
Linus Torvalds 已提交
1721 1722
	}

1723
	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1724
	return 1;
L
Linus Torvalds 已提交
1725 1726 1727
}

/*
J
Jens Axboe 已提交
1728 1729
 * task holds one reference to the queue, dropped when task exits. each rq
 * in-flight on this queue also holds a reference, dropped when rq is freed.
L
Linus Torvalds 已提交
1730 1731 1732 1733 1734
 *
 * queue lock must be held here.
 */
static void cfq_put_queue(struct cfq_queue *cfqq)
{
1735 1736 1737
	struct cfq_data *cfqd = cfqq->cfqd;

	BUG_ON(atomic_read(&cfqq->ref) <= 0);
L
Linus Torvalds 已提交
1738 1739 1740 1741

	if (!atomic_dec_and_test(&cfqq->ref))
		return;

1742
	cfq_log_cfqq(cfqd, cfqq, "put_queue");
L
Linus Torvalds 已提交
1743
	BUG_ON(rb_first(&cfqq->sort_list));
1744
	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
J
Jens Axboe 已提交
1745
	BUG_ON(cfq_cfqq_on_rr(cfqq));
L
Linus Torvalds 已提交
1746

1747
	if (unlikely(cfqd->active_queue == cfqq)) {
1748
		__cfq_slice_expired(cfqd, cfqq, 0);
1749
		cfq_schedule_dispatch(cfqd);
1750
	}
1751

L
Linus Torvalds 已提交
1752 1753 1754
	kmem_cache_free(cfq_pool, cfqq);
}

1755 1756 1757
/*
 * Must always be called with the rcu_read_lock() held
 */
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
static void
__call_for_each_cic(struct io_context *ioc,
		    void (*func)(struct io_context *, struct cfq_io_context *))
{
	struct cfq_io_context *cic;
	struct hlist_node *n;

	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
		func(ioc, cic);
}

1769
/*
1770
 * Call func for each cic attached to this ioc.
1771
 */
1772
static void
1773 1774
call_for_each_cic(struct io_context *ioc,
		  void (*func)(struct io_context *, struct cfq_io_context *))
L
Linus Torvalds 已提交
1775
{
1776
	rcu_read_lock();
1777
	__call_for_each_cic(ioc, func);
1778
	rcu_read_unlock();
1779 1780 1781 1782 1783 1784 1785 1786 1787
}

static void cfq_cic_free_rcu(struct rcu_head *head)
{
	struct cfq_io_context *cic;

	cic = container_of(head, struct cfq_io_context, rcu_head);

	kmem_cache_free(cfq_ioc_pool, cic);
1788
	elv_ioc_count_dec(cfq_ioc_count);
1789

1790 1791 1792 1793 1794 1795 1796
	if (ioc_gone) {
		/*
		 * CFQ scheduler is exiting, grab exit lock and check
		 * the pending io context count. If it hits zero,
		 * complete ioc_gone and set it back to NULL
		 */
		spin_lock(&ioc_gone_lock);
1797
		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1798 1799 1800 1801 1802
			complete(ioc_gone);
			ioc_gone = NULL;
		}
		spin_unlock(&ioc_gone_lock);
	}
1803
}
1804

1805 1806 1807
static void cfq_cic_free(struct cfq_io_context *cic)
{
	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
}

static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
{
	unsigned long flags;

	BUG_ON(!cic->dead_key);

	spin_lock_irqsave(&ioc->lock, flags);
	radix_tree_delete(&ioc->radix_root, cic->dead_key);
1818
	hlist_del_rcu(&cic->cic_list);
1819 1820
	spin_unlock_irqrestore(&ioc->lock, flags);

1821
	cfq_cic_free(cic);
1822 1823
}

1824 1825 1826 1827 1828
/*
 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
 * and ->trim() which is called with the task lock held
 */
1829 1830 1831
static void cfq_free_io_context(struct io_context *ioc)
{
	/*
1832 1833 1834 1835
	 * ioc->refcount is zero here, or we are called from elv_unregister(),
	 * so no more cic's are allowed to be linked into this ioc.  So it
	 * should be ok to iterate over the known list, we will see all cic's
	 * since no new ones are added.
1836
	 */
1837
	__call_for_each_cic(ioc, cic_free_func);
L
Linus Torvalds 已提交
1838 1839
}

1840
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
1841
{
J
Jeff Moyer 已提交
1842 1843
	struct cfq_queue *__cfqq, *next;

1844
	if (unlikely(cfqq == cfqd->active_queue)) {
1845
		__cfq_slice_expired(cfqd, cfqq, 0);
1846
		cfq_schedule_dispatch(cfqd);
1847
	}
1848

J
Jeff Moyer 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	/*
	 * If this queue was scheduled to merge with another queue, be
	 * sure to drop the reference taken on that queue (and others in
	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
	 */
	__cfqq = cfqq->new_cfqq;
	while (__cfqq) {
		if (__cfqq == cfqq) {
			WARN(1, "cfqq->new_cfqq loop detected\n");
			break;
		}
		next = __cfqq->new_cfqq;
		cfq_put_queue(__cfqq);
		__cfqq = next;
	}

1865 1866
	cfq_put_queue(cfqq);
}
1867

1868 1869 1870
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
					 struct cfq_io_context *cic)
{
1871 1872
	struct io_context *ioc = cic->ioc;

1873
	list_del_init(&cic->queue_list);
1874 1875 1876 1877

	/*
	 * Make sure key == NULL is seen for dead queues
	 */
1878
	smp_wmb();
1879
	cic->dead_key = (unsigned long) cic->key;
1880 1881
	cic->key = NULL;

1882 1883 1884
	if (ioc->ioc_data == cic)
		rcu_assign_pointer(ioc->ioc_data, NULL);

1885 1886 1887
	if (cic->cfqq[BLK_RW_ASYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
		cic->cfqq[BLK_RW_ASYNC] = NULL;
1888 1889
	}

1890 1891 1892
	if (cic->cfqq[BLK_RW_SYNC]) {
		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
		cic->cfqq[BLK_RW_SYNC] = NULL;
1893
	}
1894 1895
}

1896 1897
static void cfq_exit_single_io_context(struct io_context *ioc,
				       struct cfq_io_context *cic)
1898 1899 1900 1901
{
	struct cfq_data *cfqd = cic->key;

	if (cfqd) {
1902
		struct request_queue *q = cfqd->queue;
1903
		unsigned long flags;
1904

1905
		spin_lock_irqsave(q->queue_lock, flags);
1906 1907 1908 1909 1910 1911 1912 1913 1914

		/*
		 * Ensure we get a fresh copy of the ->key to prevent
		 * race between exiting task and queue
		 */
		smp_read_barrier_depends();
		if (cic->key)
			__cfq_exit_single_io_context(cfqd, cic);

1915
		spin_unlock_irqrestore(q->queue_lock, flags);
1916
	}
L
Linus Torvalds 已提交
1917 1918
}

1919 1920 1921 1922
/*
 * The process that ioc belongs to has exited, we need to clean up
 * and put the internal structures we have that belongs to that process.
 */
1923
static void cfq_exit_io_context(struct io_context *ioc)
L
Linus Torvalds 已提交
1924
{
1925
	call_for_each_cic(ioc, cfq_exit_single_io_context);
L
Linus Torvalds 已提交
1926 1927
}

1928
static struct cfq_io_context *
A
Al Viro 已提交
1929
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1930
{
1931
	struct cfq_io_context *cic;
L
Linus Torvalds 已提交
1932

1933 1934
	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
							cfqd->queue->node);
L
Linus Torvalds 已提交
1935
	if (cic) {
1936
		cic->last_end_request = jiffies;
1937
		INIT_LIST_HEAD(&cic->queue_list);
1938
		INIT_HLIST_NODE(&cic->cic_list);
1939 1940
		cic->dtor = cfq_free_io_context;
		cic->exit = cfq_exit_io_context;
1941
		elv_ioc_count_inc(cfq_ioc_count);
L
Linus Torvalds 已提交
1942 1943 1944 1945 1946
	}

	return cic;
}

1947
static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1948 1949 1950 1951
{
	struct task_struct *tsk = current;
	int ioprio_class;

J
Jens Axboe 已提交
1952
	if (!cfq_cfqq_prio_changed(cfqq))
1953 1954
		return;

1955
	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1956
	switch (ioprio_class) {
1957 1958 1959 1960
	default:
		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
	case IOPRIO_CLASS_NONE:
		/*
1961
		 * no prio set, inherit CPU scheduling settings
1962 1963
		 */
		cfqq->ioprio = task_nice_ioprio(tsk);
1964
		cfqq->ioprio_class = task_nice_ioclass(tsk);
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
		break;
	case IOPRIO_CLASS_RT:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_RT;
		break;
	case IOPRIO_CLASS_BE:
		cfqq->ioprio = task_ioprio(ioc);
		cfqq->ioprio_class = IOPRIO_CLASS_BE;
		break;
	case IOPRIO_CLASS_IDLE:
		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
		cfqq->ioprio = 7;
		cfq_clear_cfqq_idle_window(cfqq);
		break;
1979 1980 1981 1982 1983 1984 1985 1986
	}

	/*
	 * keep track of original prio settings in case we have to temporarily
	 * elevate the priority of this queue
	 */
	cfqq->org_ioprio = cfqq->ioprio;
	cfqq->org_ioprio_class = cfqq->ioprio_class;
J
Jens Axboe 已提交
1987
	cfq_clear_cfqq_prio_changed(cfqq);
1988 1989
}

J
Jens Axboe 已提交
1990
static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1991
{
1992 1993
	struct cfq_data *cfqd = cic->key;
	struct cfq_queue *cfqq;
1994
	unsigned long flags;
1995

1996 1997 1998
	if (unlikely(!cfqd))
		return;

1999
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2000

2001
	cfqq = cic->cfqq[BLK_RW_ASYNC];
2002 2003
	if (cfqq) {
		struct cfq_queue *new_cfqq;
2004 2005
		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
						GFP_ATOMIC);
2006
		if (new_cfqq) {
2007
			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2008 2009
			cfq_put_queue(cfqq);
		}
2010
	}
2011

2012
	cfqq = cic->cfqq[BLK_RW_SYNC];
2013 2014 2015
	if (cfqq)
		cfq_mark_cfqq_prio_changed(cfqq);

2016
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2017 2018
}

2019
static void cfq_ioc_set_ioprio(struct io_context *ioc)
2020
{
2021
	call_for_each_cic(ioc, changed_ioprio);
2022
	ioc->ioprio_changed = 0;
2023 2024
}

2025
static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2026
			  pid_t pid, bool is_sync)
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
{
	RB_CLEAR_NODE(&cfqq->rb_node);
	RB_CLEAR_NODE(&cfqq->p_node);
	INIT_LIST_HEAD(&cfqq->fifo);

	atomic_set(&cfqq->ref, 0);
	cfqq->cfqd = cfqd;

	cfq_mark_cfqq_prio_changed(cfqq);

	if (is_sync) {
		if (!cfq_class_idle(cfqq))
			cfq_mark_cfqq_idle_window(cfqq);
		cfq_mark_cfqq_sync(cfqq);
	}
	cfqq->pid = pid;
}

2045
static struct cfq_queue *
2046
cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2047
		     struct io_context *ioc, gfp_t gfp_mask)
2048 2049
{
	struct cfq_queue *cfqq, *new_cfqq = NULL;
2050
	struct cfq_io_context *cic;
2051 2052

retry:
2053
	cic = cfq_cic_lookup(cfqd, ioc);
2054 2055
	/* cic always exists here */
	cfqq = cic_to_cfqq(cic, is_sync);
2056

2057 2058 2059 2060 2061 2062
	/*
	 * Always try a new alloc if we fell back to the OOM cfqq
	 * originally, since it should just be a temporary situation.
	 */
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
		cfqq = NULL;
2063 2064 2065 2066 2067
		if (new_cfqq) {
			cfqq = new_cfqq;
			new_cfqq = NULL;
		} else if (gfp_mask & __GFP_WAIT) {
			spin_unlock_irq(cfqd->queue->queue_lock);
2068
			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2069
					gfp_mask | __GFP_ZERO,
2070
					cfqd->queue->node);
2071
			spin_lock_irq(cfqd->queue->queue_lock);
2072 2073
			if (new_cfqq)
				goto retry;
2074
		} else {
2075 2076 2077
			cfqq = kmem_cache_alloc_node(cfq_pool,
					gfp_mask | __GFP_ZERO,
					cfqd->queue->node);
2078 2079
		}

2080 2081 2082 2083 2084 2085
		if (cfqq) {
			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
			cfq_init_prio_data(cfqq, ioc);
			cfq_log_cfqq(cfqd, cfqq, "alloced");
		} else
			cfqq = &cfqd->oom_cfqq;
2086 2087 2088 2089 2090 2091 2092 2093
	}

	if (new_cfqq)
		kmem_cache_free(cfq_pool, new_cfqq);

	return cfqq;
}

2094 2095 2096
static struct cfq_queue **
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
{
2097
	switch (ioprio_class) {
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
	case IOPRIO_CLASS_RT:
		return &cfqd->async_cfqq[0][ioprio];
	case IOPRIO_CLASS_BE:
		return &cfqd->async_cfqq[1][ioprio];
	case IOPRIO_CLASS_IDLE:
		return &cfqd->async_idle_cfqq;
	default:
		BUG();
	}
}

2109
static struct cfq_queue *
2110
cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2111 2112
	      gfp_t gfp_mask)
{
2113 2114
	const int ioprio = task_ioprio(ioc);
	const int ioprio_class = task_ioprio_class(ioc);
2115
	struct cfq_queue **async_cfqq = NULL;
2116 2117
	struct cfq_queue *cfqq = NULL;

2118 2119 2120 2121 2122
	if (!is_sync) {
		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
		cfqq = *async_cfqq;
	}

2123
	if (!cfqq)
2124
		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2125 2126 2127 2128

	/*
	 * pin the queue now that it's allocated, scheduler exit will prune it
	 */
2129
	if (!is_sync && !(*async_cfqq)) {
2130
		atomic_inc(&cfqq->ref);
2131
		*async_cfqq = cfqq;
2132 2133 2134 2135 2136 2137
	}

	atomic_inc(&cfqq->ref);
	return cfqq;
}

2138 2139 2140
/*
 * We drop cfq io contexts lazily, so we may find a dead one.
 */
2141
static void
2142 2143
cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
		  struct cfq_io_context *cic)
2144
{
2145 2146
	unsigned long flags;

2147
	WARN_ON(!list_empty(&cic->queue_list));
J
Jens Axboe 已提交
2148

2149 2150
	spin_lock_irqsave(&ioc->lock, flags);

2151
	BUG_ON(ioc->ioc_data == cic);
J
Jens Axboe 已提交
2152

2153
	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2154
	hlist_del_rcu(&cic->cic_list);
2155 2156 2157
	spin_unlock_irqrestore(&ioc->lock, flags);

	cfq_cic_free(cic);
2158 2159
}

2160
static struct cfq_io_context *
2161
cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2162 2163
{
	struct cfq_io_context *cic;
2164
	unsigned long flags;
2165
	void *k;
2166

2167 2168 2169
	if (unlikely(!ioc))
		return NULL;

2170 2171
	rcu_read_lock();

J
Jens Axboe 已提交
2172 2173 2174
	/*
	 * we maintain a last-hit cache, to avoid browsing over the tree
	 */
2175
	cic = rcu_dereference(ioc->ioc_data);
2176 2177
	if (cic && cic->key == cfqd) {
		rcu_read_unlock();
J
Jens Axboe 已提交
2178
		return cic;
2179
	}
J
Jens Axboe 已提交
2180

2181 2182 2183 2184 2185
	do {
		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
		rcu_read_unlock();
		if (!cic)
			break;
2186 2187 2188
		/* ->key must be copied to avoid race with cfq_exit_queue() */
		k = cic->key;
		if (unlikely(!k)) {
2189
			cfq_drop_dead_cic(cfqd, ioc, cic);
2190
			rcu_read_lock();
2191
			continue;
2192
		}
2193

2194
		spin_lock_irqsave(&ioc->lock, flags);
2195
		rcu_assign_pointer(ioc->ioc_data, cic);
2196
		spin_unlock_irqrestore(&ioc->lock, flags);
2197 2198
		break;
	} while (1);
2199

2200
	return cic;
2201 2202
}

2203 2204 2205 2206 2207
/*
 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
 * the process specific cfq io context when entered from the block layer.
 * Also adds the cic to a per-cfqd list, used when this queue is removed.
 */
J
Jens Axboe 已提交
2208 2209
static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
			struct cfq_io_context *cic, gfp_t gfp_mask)
2210
{
2211
	unsigned long flags;
2212
	int ret;
2213

2214 2215 2216 2217
	ret = radix_tree_preload(gfp_mask);
	if (!ret) {
		cic->ioc = ioc;
		cic->key = cfqd;
2218

2219 2220 2221
		spin_lock_irqsave(&ioc->lock, flags);
		ret = radix_tree_insert(&ioc->radix_root,
						(unsigned long) cfqd, cic);
2222 2223
		if (!ret)
			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2224
		spin_unlock_irqrestore(&ioc->lock, flags);
2225

2226 2227 2228 2229 2230 2231 2232
		radix_tree_preload_end();

		if (!ret) {
			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
			list_add(&cic->queue_list, &cfqd->cic_list);
			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
		}
2233 2234
	}

2235 2236
	if (ret)
		printk(KERN_ERR "cfq: cic link failed!\n");
2237

2238
	return ret;
2239 2240
}

L
Linus Torvalds 已提交
2241 2242 2243
/*
 * Setup general io context and cfq io context. There can be several cfq
 * io contexts per general io context, if this process is doing io to more
2244
 * than one device managed by cfq.
L
Linus Torvalds 已提交
2245 2246
 */
static struct cfq_io_context *
2247
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2248
{
2249
	struct io_context *ioc = NULL;
L
Linus Torvalds 已提交
2250 2251
	struct cfq_io_context *cic;

2252
	might_sleep_if(gfp_mask & __GFP_WAIT);
L
Linus Torvalds 已提交
2253

2254
	ioc = get_io_context(gfp_mask, cfqd->queue->node);
L
Linus Torvalds 已提交
2255 2256 2257
	if (!ioc)
		return NULL;

2258
	cic = cfq_cic_lookup(cfqd, ioc);
2259 2260
	if (cic)
		goto out;
L
Linus Torvalds 已提交
2261

2262 2263 2264
	cic = cfq_alloc_io_context(cfqd, gfp_mask);
	if (cic == NULL)
		goto err;
L
Linus Torvalds 已提交
2265

2266 2267 2268
	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
		goto err_free;

L
Linus Torvalds 已提交
2269
out:
2270 2271 2272 2273
	smp_read_barrier_depends();
	if (unlikely(ioc->ioprio_changed))
		cfq_ioc_set_ioprio(ioc);

L
Linus Torvalds 已提交
2274
	return cic;
2275 2276
err_free:
	cfq_cic_free(cic);
L
Linus Torvalds 已提交
2277 2278 2279 2280 2281
err:
	put_io_context(ioc);
	return NULL;
}

2282 2283
static void
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
L
Linus Torvalds 已提交
2284
{
2285 2286
	unsigned long elapsed = jiffies - cic->last_end_request;
	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2287

2288 2289 2290 2291
	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
}
L
Linus Torvalds 已提交
2292

2293
static void
2294
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
J
Jens Axboe 已提交
2295
		       struct request *rq)
2296 2297 2298 2299
{
	sector_t sdist;
	u64 total;

2300
	if (!cfqq->last_request_pos)
2301
		sdist = 0;
2302 2303
	else if (cfqq->last_request_pos < blk_rq_pos(rq))
		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2304
	else
2305
		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2306 2307 2308 2309 2310

	/*
	 * Don't allow the seek distance to get too large from the
	 * odd fragment, pagein, etc
	 */
2311 2312
	if (cfqq->seek_samples <= 60) /* second&third seek */
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2313
	else
2314
		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2315

2316 2317 2318 2319 2320
	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
	total = cfqq->seek_total + (cfqq->seek_samples/2);
	do_div(total, cfqq->seek_samples);
	cfqq->seek_mean = (sector_t)total;
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333

	/*
	 * If this cfqq is shared between multiple processes, check to
	 * make sure that those processes are still issuing I/Os within
	 * the mean seek distance.  If not, it may be time to break the
	 * queues apart again.
	 */
	if (cfq_cfqq_coop(cfqq)) {
		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
			cfqq->seeky_start = jiffies;
		else if (!CFQQ_SEEKY(cfqq))
			cfqq->seeky_start = 0;
	}
2334
}
L
Linus Torvalds 已提交
2335

2336 2337 2338 2339 2340 2341 2342 2343
/*
 * Disable idle window if the process thinks too long or seeks so much that
 * it doesn't matter
 */
static void
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		       struct cfq_io_context *cic)
{
2344
	int old_idle, enable_idle;
2345

2346 2347 2348 2349
	/*
	 * Don't idle for async or idle io prio class
	 */
	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2350 2351
		return;

2352
	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
L
Linus Torvalds 已提交
2353

2354
	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2355
	    (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq)))
2356 2357
		enable_idle = 0;
	else if (sample_valid(cic->ttime_samples)) {
2358
		if (cic->ttime_mean > cfqd->cfq_slice_idle)
2359 2360 2361
			enable_idle = 0;
		else
			enable_idle = 1;
L
Linus Torvalds 已提交
2362 2363
	}

2364 2365 2366 2367 2368 2369 2370
	if (old_idle != enable_idle) {
		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
		if (enable_idle)
			cfq_mark_cfqq_idle_window(cfqq);
		else
			cfq_clear_cfqq_idle_window(cfqq);
	}
2371
}
L
Linus Torvalds 已提交
2372

2373 2374 2375 2376
/*
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
 * no or if we aren't sure, a 1 will cause a preempt.
 */
2377
static bool
2378
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
J
Jens Axboe 已提交
2379
		   struct request *rq)
2380
{
J
Jens Axboe 已提交
2381
	struct cfq_queue *cfqq;
2382

J
Jens Axboe 已提交
2383 2384
	cfqq = cfqd->active_queue;
	if (!cfqq)
2385
		return false;
2386

J
Jens Axboe 已提交
2387
	if (cfq_slice_used(cfqq))
2388
		return true;
J
Jens Axboe 已提交
2389 2390

	if (cfq_class_idle(new_cfqq))
2391
		return false;
2392 2393

	if (cfq_class_idle(cfqq))
2394
		return true;
2395

2396 2397 2398 2399
	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD
	    && new_cfqq->service_tree == cfqq->service_tree)
		return true;

2400 2401 2402 2403
	/*
	 * if the new request is sync, but the currently running queue is
	 * not, let the sync request have priority.
	 */
J
Jens Axboe 已提交
2404
	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2405
		return true;
2406

2407 2408 2409 2410 2411
	/*
	 * So both queues are sync. Let the new request get disk time if
	 * it's a metadata request and the current queue is doing regular IO.
	 */
	if (rq_is_meta(rq) && !cfqq->meta_pending)
2412
		return false;
2413

2414 2415 2416 2417
	/*
	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
	 */
	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2418
		return true;
2419

2420
	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2421
		return false;
2422 2423 2424 2425 2426

	/*
	 * if this request is as-good as one we would expect from the
	 * current cfqq, let it preempt
	 */
2427
	if (cfq_rq_close(cfqd, cfqq, rq))
2428
		return true;
2429

2430
	return false;
2431 2432 2433 2434 2435 2436 2437 2438
}

/*
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
 * let it have half of its nominal slice.
 */
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
{
2439
	cfq_log_cfqq(cfqd, cfqq, "preempt");
2440
	cfq_slice_expired(cfqd, 1);
2441

2442 2443 2444 2445 2446
	/*
	 * Put the new queue at the front of the of the current list,
	 * so we know that it will be selected next.
	 */
	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2447 2448

	cfq_service_tree_add(cfqd, cfqq, 1);
2449

2450 2451
	cfqq->slice_end = 0;
	cfq_mark_cfqq_slice_new(cfqq);
2452 2453 2454
}

/*
J
Jens Axboe 已提交
2455
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2456 2457 2458
 * something we should do about it
 */
static void
J
Jens Axboe 已提交
2459 2460
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
		struct request *rq)
2461
{
J
Jens Axboe 已提交
2462
	struct cfq_io_context *cic = RQ_CIC(rq);
2463

2464
	cfqd->rq_queued++;
2465 2466 2467
	if (rq_is_meta(rq))
		cfqq->meta_pending++;

J
Jens Axboe 已提交
2468
	cfq_update_io_thinktime(cfqd, cic);
2469
	cfq_update_io_seektime(cfqd, cfqq, rq);
J
Jens Axboe 已提交
2470 2471
	cfq_update_idle_window(cfqd, cfqq, cic);

2472
	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2473 2474 2475

	if (cfqq == cfqd->active_queue) {
		/*
2476 2477 2478
		 * Remember that we saw a request from this process, but
		 * don't start queuing just yet. Otherwise we risk seeing lots
		 * of tiny requests, because we disrupt the normal plugging
2479 2480
		 * and merging. If the request is already larger than a single
		 * page, let it rip immediately. For that case we assume that
2481 2482 2483
		 * merging is already done. Ditto for a busy system that
		 * has other work pending, don't risk delaying until the
		 * idle timer unplug to continue working.
2484
		 */
2485
		if (cfq_cfqq_wait_request(cfqq)) {
2486 2487
			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
			    cfqd->busy_queues > 1) {
2488
				del_timer(&cfqd->idle_slice_timer);
T
Tejun Heo 已提交
2489
			__blk_run_queue(cfqd->queue);
2490
			}
2491
			cfq_mark_cfqq_must_dispatch(cfqq);
2492
		}
J
Jens Axboe 已提交
2493
	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2494 2495 2496
		/*
		 * not the active queue - expire current slice if it is
		 * idle and has expired it's mean thinktime or this new queue
2497 2498
		 * has some old slice time left and is of higher priority or
		 * this new queue is RT and the current one is BE
2499 2500
		 */
		cfq_preempt_queue(cfqd, cfqq);
T
Tejun Heo 已提交
2501
		__blk_run_queue(cfqd->queue);
2502
	}
L
Linus Torvalds 已提交
2503 2504
}

2505
static void cfq_insert_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2506
{
2507
	struct cfq_data *cfqd = q->elevator->elevator_data;
J
Jens Axboe 已提交
2508
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2509

2510
	cfq_log_cfqq(cfqd, cfqq, "insert_request");
2511
	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2512

2513
	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2514
	list_add_tail(&rq->queuelist, &cfqq->fifo);
2515
	cfq_add_rq_rb(rq);
2516

J
Jens Axboe 已提交
2517
	cfq_rq_enqueued(cfqd, cfqq, rq);
L
Linus Torvalds 已提交
2518 2519
}

2520 2521 2522 2523 2524 2525
/*
 * Update hw_tag based on peak queue depth over 50 samples under
 * sufficient load.
 */
static void cfq_update_hw_tag(struct cfq_data *cfqd)
{
S
Shaohua Li 已提交
2526 2527
	struct cfq_queue *cfqq = cfqd->active_queue;

2528 2529
	if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
		cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2530 2531

	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2532
	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2533 2534
		return;

S
Shaohua Li 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
	/*
	 * If active queue hasn't enough requests and can idle, cfq might not
	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
	 * case
	 */
	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
		return;

2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
	if (cfqd->hw_tag_samples++ < 50)
		return;

	if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
		cfqd->hw_tag = 1;
	else
		cfqd->hw_tag = 0;

	cfqd->hw_tag_samples = 0;
	cfqd->rq_in_driver_peak = 0;
}

2557
static void cfq_completed_request(struct request_queue *q, struct request *rq)
L
Linus Torvalds 已提交
2558
{
J
Jens Axboe 已提交
2559
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2560
	struct cfq_data *cfqd = cfqq->cfqd;
2561
	const int sync = rq_is_sync(rq);
2562
	unsigned long now;
L
Linus Torvalds 已提交
2563

2564
	now = jiffies;
2565
	cfq_log_cfqq(cfqd, cfqq, "complete");
L
Linus Torvalds 已提交
2566

2567 2568
	cfq_update_hw_tag(cfqd);

2569
	WARN_ON(!cfqd->rq_in_driver[sync]);
J
Jens Axboe 已提交
2570
	WARN_ON(!cfqq->dispatched);
2571
	cfqd->rq_in_driver[sync]--;
J
Jens Axboe 已提交
2572
	cfqq->dispatched--;
L
Linus Torvalds 已提交
2573

2574 2575 2576
	if (cfq_cfqq_sync(cfqq))
		cfqd->sync_flight--;

2577
	if (sync) {
J
Jens Axboe 已提交
2578
		RQ_CIC(rq)->last_end_request = now;
2579 2580
		cfqd->last_end_sync_rq = now;
	}
2581 2582 2583 2584 2585 2586

	/*
	 * If this is the active queue, check if it needs to be expired,
	 * or if we want to idle in case it has no pending requests.
	 */
	if (cfqd->active_queue == cfqq) {
2587 2588
		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);

2589 2590 2591 2592
		if (cfq_cfqq_slice_new(cfqq)) {
			cfq_set_prio_slice(cfqd, cfqq);
			cfq_clear_cfqq_slice_new(cfqq);
		}
2593 2594 2595 2596 2597 2598 2599
		/*
		 * If there are no requests waiting in this queue, and
		 * there are other queues ready to issue requests, AND
		 * those other queues are issuing requests within our
		 * mean seek distance, give them a chance to run instead
		 * of idling.
		 */
2600
		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2601
			cfq_slice_expired(cfqd, 1);
2602
		else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
2603
			 sync && !rq_noidle(rq))
J
Jens Axboe 已提交
2604
			cfq_arm_slice_timer(cfqd);
2605
	}
J
Jens Axboe 已提交
2606

2607
	if (!rq_in_driver(cfqd))
2608
		cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2609 2610
}

2611 2612 2613 2614 2615
/*
 * we temporarily boost lower priority queues if they are holding fs exclusive
 * resources. they are boosted to normal prio (CLASS_BE/4)
 */
static void cfq_prio_boost(struct cfq_queue *cfqq)
L
Linus Torvalds 已提交
2616
{
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
	if (has_fs_excl()) {
		/*
		 * boost idle prio on transactions that would lock out other
		 * users of the filesystem
		 */
		if (cfq_class_idle(cfqq))
			cfqq->ioprio_class = IOPRIO_CLASS_BE;
		if (cfqq->ioprio > IOPRIO_NORM)
			cfqq->ioprio = IOPRIO_NORM;
	} else {
		/*
2628
		 * unboost the queue (if needed)
2629
		 */
2630 2631
		cfqq->ioprio_class = cfqq->org_ioprio_class;
		cfqq->ioprio = cfqq->org_ioprio;
2632 2633
	}
}
L
Linus Torvalds 已提交
2634

2635
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2636
{
2637
	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
J
Jens Axboe 已提交
2638
		cfq_mark_cfqq_must_alloc_slice(cfqq);
2639
		return ELV_MQUEUE_MUST;
J
Jens Axboe 已提交
2640
	}
L
Linus Torvalds 已提交
2641

2642 2643 2644
	return ELV_MQUEUE_MAY;
}

2645
static int cfq_may_queue(struct request_queue *q, int rw)
2646 2647 2648
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct task_struct *tsk = current;
2649
	struct cfq_io_context *cic;
2650 2651 2652 2653 2654 2655 2656 2657
	struct cfq_queue *cfqq;

	/*
	 * don't force setup of a queue from here, as a call to may_queue
	 * does not necessarily imply that a request actually will be queued.
	 * so just lookup a possibly existing queue, or return 'may queue'
	 * if that fails
	 */
2658
	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2659 2660 2661
	if (!cic)
		return ELV_MQUEUE_MAY;

2662
	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2663
	if (cfqq) {
2664
		cfq_init_prio_data(cfqq, cic->ioc);
2665 2666
		cfq_prio_boost(cfqq);

2667
		return __cfq_may_queue(cfqq);
2668 2669 2670
	}

	return ELV_MQUEUE_MAY;
L
Linus Torvalds 已提交
2671 2672 2673 2674 2675
}

/*
 * queue lock held here
 */
2676
static void cfq_put_request(struct request *rq)
L
Linus Torvalds 已提交
2677
{
J
Jens Axboe 已提交
2678
	struct cfq_queue *cfqq = RQ_CFQQ(rq);
L
Linus Torvalds 已提交
2679

J
Jens Axboe 已提交
2680
	if (cfqq) {
2681
		const int rw = rq_data_dir(rq);
L
Linus Torvalds 已提交
2682

2683 2684
		BUG_ON(!cfqq->allocated[rw]);
		cfqq->allocated[rw]--;
L
Linus Torvalds 已提交
2685

J
Jens Axboe 已提交
2686
		put_io_context(RQ_CIC(rq)->ioc);
L
Linus Torvalds 已提交
2687 2688

		rq->elevator_private = NULL;
J
Jens Axboe 已提交
2689
		rq->elevator_private2 = NULL;
L
Linus Torvalds 已提交
2690 2691 2692 2693 2694

		cfq_put_queue(cfqq);
	}
}

J
Jeff Moyer 已提交
2695 2696 2697 2698 2699 2700
static struct cfq_queue *
cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
		struct cfq_queue *cfqq)
{
	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2701
	cfq_mark_cfqq_coop(cfqq->new_cfqq);
J
Jeff Moyer 已提交
2702 2703 2704 2705
	cfq_put_queue(cfqq);
	return cic_to_cfqq(cic, 1);
}

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
static int should_split_cfqq(struct cfq_queue *cfqq)
{
	if (cfqq->seeky_start &&
	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
		return 1;
	return 0;
}

/*
 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
 * was the last process referring to said cfqq.
 */
static struct cfq_queue *
split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
{
	if (cfqq_process_refs(cfqq) == 1) {
		cfqq->seeky_start = 0;
		cfqq->pid = current->pid;
		cfq_clear_cfqq_coop(cfqq);
		return cfqq;
	}

	cic_set_cfqq(cic, NULL, 1);
	cfq_put_queue(cfqq);
	return NULL;
}
L
Linus Torvalds 已提交
2732
/*
2733
 * Allocate cfq data structures associated with this request.
L
Linus Torvalds 已提交
2734
 */
2735
static int
2736
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2737 2738 2739 2740
{
	struct cfq_data *cfqd = q->elevator->elevator_data;
	struct cfq_io_context *cic;
	const int rw = rq_data_dir(rq);
2741
	const bool is_sync = rq_is_sync(rq);
2742
	struct cfq_queue *cfqq;
L
Linus Torvalds 已提交
2743 2744 2745 2746
	unsigned long flags;

	might_sleep_if(gfp_mask & __GFP_WAIT);

2747
	cic = cfq_get_io_context(cfqd, gfp_mask);
2748

L
Linus Torvalds 已提交
2749 2750
	spin_lock_irqsave(q->queue_lock, flags);

2751 2752 2753
	if (!cic)
		goto queue_fail;

2754
new_queue:
2755
	cfqq = cic_to_cfqq(cic, is_sync);
2756
	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2757
		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2758
		cic_set_cfqq(cic, cfqq, is_sync);
J
Jeff Moyer 已提交
2759
	} else {
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
		/*
		 * If the queue was seeky for too long, break it apart.
		 */
		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
			cfqq = split_cfqq(cic, cfqq);
			if (!cfqq)
				goto new_queue;
		}

J
Jeff Moyer 已提交
2770 2771 2772 2773 2774 2775 2776 2777
		/*
		 * Check to see if this queue is scheduled to merge with
		 * another, closely cooperating queue.  The merging of
		 * queues happens here as it must be done in process context.
		 * The reference on new_cfqq was taken in merge_cfqqs.
		 */
		if (cfqq->new_cfqq)
			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2778
	}
L
Linus Torvalds 已提交
2779 2780

	cfqq->allocated[rw]++;
2781
	atomic_inc(&cfqq->ref);
L
Linus Torvalds 已提交
2782

J
Jens Axboe 已提交
2783
	spin_unlock_irqrestore(q->queue_lock, flags);
J
Jens Axboe 已提交
2784

J
Jens Axboe 已提交
2785 2786 2787
	rq->elevator_private = cic;
	rq->elevator_private2 = cfqq;
	return 0;
L
Linus Torvalds 已提交
2788

2789 2790 2791
queue_fail:
	if (cic)
		put_io_context(cic->ioc);
2792

2793
	cfq_schedule_dispatch(cfqd);
L
Linus Torvalds 已提交
2794
	spin_unlock_irqrestore(q->queue_lock, flags);
2795
	cfq_log(cfqd, "set_request fail");
L
Linus Torvalds 已提交
2796 2797 2798
	return 1;
}

2799
static void cfq_kick_queue(struct work_struct *work)
2800
{
2801
	struct cfq_data *cfqd =
2802
		container_of(work, struct cfq_data, unplug_work);
2803
	struct request_queue *q = cfqd->queue;
2804

2805
	spin_lock_irq(q->queue_lock);
T
Tejun Heo 已提交
2806
	__blk_run_queue(cfqd->queue);
2807
	spin_unlock_irq(q->queue_lock);
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
}

/*
 * Timer running if the active_queue is currently idling inside its time slice
 */
static void cfq_idle_slice_timer(unsigned long data)
{
	struct cfq_data *cfqd = (struct cfq_data *) data;
	struct cfq_queue *cfqq;
	unsigned long flags;
2818
	int timed_out = 1;
2819

2820 2821
	cfq_log(cfqd, "idle timer fired");

2822 2823
	spin_lock_irqsave(cfqd->queue->queue_lock, flags);

2824 2825
	cfqq = cfqd->active_queue;
	if (cfqq) {
2826 2827
		timed_out = 0;

2828 2829 2830 2831 2832 2833
		/*
		 * We saw a request before the queue expired, let it through
		 */
		if (cfq_cfqq_must_dispatch(cfqq))
			goto out_kick;

2834 2835 2836
		/*
		 * expired
		 */
2837
		if (cfq_slice_used(cfqq))
2838 2839 2840 2841 2842 2843
			goto expire;

		/*
		 * only expire and reinvoke request handler, if there are
		 * other queues with pending requests
		 */
2844
		if (!cfqd->busy_queues)
2845 2846 2847 2848 2849
			goto out_cont;

		/*
		 * not expired and it has a request pending, let it dispatch
		 */
2850
		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2851 2852 2853
			goto out_kick;
	}
expire:
2854
	cfq_slice_expired(cfqd, timed_out);
2855
out_kick:
2856
	cfq_schedule_dispatch(cfqd);
2857 2858 2859 2860
out_cont:
	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
}

J
Jens Axboe 已提交
2861 2862 2863
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
{
	del_timer_sync(&cfqd->idle_slice_timer);
2864
	cancel_work_sync(&cfqd->unplug_work);
J
Jens Axboe 已提交
2865
}
2866

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
static void cfq_put_async_queues(struct cfq_data *cfqd)
{
	int i;

	for (i = 0; i < IOPRIO_BE_NR; i++) {
		if (cfqd->async_cfqq[0][i])
			cfq_put_queue(cfqd->async_cfqq[0][i]);
		if (cfqd->async_cfqq[1][i])
			cfq_put_queue(cfqd->async_cfqq[1][i]);
	}
2877 2878 2879

	if (cfqd->async_idle_cfqq)
		cfq_put_queue(cfqd->async_idle_cfqq);
2880 2881
}

J
Jens Axboe 已提交
2882
static void cfq_exit_queue(struct elevator_queue *e)
L
Linus Torvalds 已提交
2883
{
2884
	struct cfq_data *cfqd = e->elevator_data;
2885
	struct request_queue *q = cfqd->queue;
2886

J
Jens Axboe 已提交
2887
	cfq_shutdown_timer_wq(cfqd);
2888

2889
	spin_lock_irq(q->queue_lock);
2890

2891
	if (cfqd->active_queue)
2892
		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2893 2894

	while (!list_empty(&cfqd->cic_list)) {
2895 2896 2897
		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
							struct cfq_io_context,
							queue_list);
2898 2899

		__cfq_exit_single_io_context(cfqd, cic);
2900
	}
2901

2902
	cfq_put_async_queues(cfqd);
2903

2904
	spin_unlock_irq(q->queue_lock);
2905 2906 2907 2908

	cfq_shutdown_timer_wq(cfqd);

	kfree(cfqd);
L
Linus Torvalds 已提交
2909 2910
}

2911
static void *cfq_init_queue(struct request_queue *q)
L
Linus Torvalds 已提交
2912 2913
{
	struct cfq_data *cfqd;
2914
	int i, j;
L
Linus Torvalds 已提交
2915

2916
	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
L
Linus Torvalds 已提交
2917
	if (!cfqd)
J
Jens Axboe 已提交
2918
		return NULL;
L
Linus Torvalds 已提交
2919

2920
	for (i = 0; i < 2; ++i)
2921 2922
		for (j = 0; j < 3; ++j)
			cfqd->service_trees[i][j] = CFQ_RB_ROOT;
2923
	cfqd->service_tree_idle = CFQ_RB_ROOT;
2924 2925 2926 2927 2928 2929 2930 2931 2932

	/*
	 * Not strictly needed (since RB_ROOT just clears the node and we
	 * zeroed cfqd on alloc), but better be safe in case someone decides
	 * to add magic to the rb code
	 */
	for (i = 0; i < CFQ_PRIO_LISTS; i++)
		cfqd->prio_trees[i] = RB_ROOT;

2933 2934 2935 2936 2937 2938 2939 2940
	/*
	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
	 * Grab a permanent reference to it, so that the normal code flow
	 * will not attempt to free it.
	 */
	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
	atomic_inc(&cfqd->oom_cfqq.ref);

2941
	INIT_LIST_HEAD(&cfqd->cic_list);
L
Linus Torvalds 已提交
2942 2943 2944

	cfqd->queue = q;

2945 2946 2947 2948
	init_timer(&cfqd->idle_slice_timer);
	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
	cfqd->idle_slice_timer.data = (unsigned long) cfqd;

2949
	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2950

L
Linus Torvalds 已提交
2951
	cfqd->cfq_quantum = cfq_quantum;
2952 2953
	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
L
Linus Torvalds 已提交
2954 2955
	cfqd->cfq_back_max = cfq_back_max;
	cfqd->cfq_back_penalty = cfq_back_penalty;
2956 2957 2958 2959
	cfqd->cfq_slice[0] = cfq_slice_async;
	cfqd->cfq_slice[1] = cfq_slice_sync;
	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
	cfqd->cfq_slice_idle = cfq_slice_idle;
2960
	cfqd->cfq_latency = 1;
2961
	cfqd->hw_tag = 1;
2962
	cfqd->last_end_sync_rq = jiffies;
J
Jens Axboe 已提交
2963
	return cfqd;
L
Linus Torvalds 已提交
2964 2965 2966 2967
}

static void cfq_slab_kill(void)
{
2968 2969 2970 2971
	/*
	 * Caller already ensured that pending RCU callbacks are completed,
	 * so we should have no busy allocations at this point.
	 */
L
Linus Torvalds 已提交
2972 2973 2974 2975 2976 2977 2978 2979
	if (cfq_pool)
		kmem_cache_destroy(cfq_pool);
	if (cfq_ioc_pool)
		kmem_cache_destroy(cfq_ioc_pool);
}

static int __init cfq_slab_setup(void)
{
2980
	cfq_pool = KMEM_CACHE(cfq_queue, 0);
L
Linus Torvalds 已提交
2981 2982 2983
	if (!cfq_pool)
		goto fail;

2984
	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
L
Linus Torvalds 已提交
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
	if (!cfq_ioc_pool)
		goto fail;

	return 0;
fail:
	cfq_slab_kill();
	return -ENOMEM;
}

/*
 * sysfs parts below -->
 */
static ssize_t
cfq_var_show(unsigned int var, char *page)
{
	return sprintf(page, "%d\n", var);
}

static ssize_t
cfq_var_store(unsigned int *var, const char *page, size_t count)
{
	char *p = (char *) page;

	*var = simple_strtoul(p, &p, 10);
	return count;
}

#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
J
Jens Axboe 已提交
3013
static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
L
Linus Torvalds 已提交
3014
{									\
3015
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3016 3017 3018 3019 3020 3021
	unsigned int __data = __VAR;					\
	if (__CONV)							\
		__data = jiffies_to_msecs(__data);			\
	return cfq_var_show(__data, (page));				\
}
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3022 3023
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3024 3025
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3026 3027 3028 3029
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3030
SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
L
Linus Torvalds 已提交
3031 3032 3033
#undef SHOW_FUNCTION

#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
J
Jens Axboe 已提交
3034
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
L
Linus Torvalds 已提交
3035
{									\
3036
	struct cfq_data *cfqd = e->elevator_data;			\
L
Linus Torvalds 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
	unsigned int __data;						\
	int ret = cfq_var_store(&__data, (page), count);		\
	if (__data < (MIN))						\
		__data = (MIN);						\
	else if (__data > (MAX))					\
		__data = (MAX);						\
	if (__CONV)							\
		*(__PTR) = msecs_to_jiffies(__data);			\
	else								\
		*(__PTR) = __data;					\
	return ret;							\
}
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3050 3051 3052 3053
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
		UINT_MAX, 1);
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
		UINT_MAX, 1);
3054
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3055 3056
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
		UINT_MAX, 0);
3057 3058 3059
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3060 3061
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
		UINT_MAX, 0);
3062
STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
L
Linus Torvalds 已提交
3063 3064
#undef STORE_FUNCTION

3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
#define CFQ_ATTR(name) \
	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)

static struct elv_fs_entry cfq_attrs[] = {
	CFQ_ATTR(quantum),
	CFQ_ATTR(fifo_expire_sync),
	CFQ_ATTR(fifo_expire_async),
	CFQ_ATTR(back_seek_max),
	CFQ_ATTR(back_seek_penalty),
	CFQ_ATTR(slice_sync),
	CFQ_ATTR(slice_async),
	CFQ_ATTR(slice_async_rq),
	CFQ_ATTR(slice_idle),
3078
	CFQ_ATTR(low_latency),
3079
	__ATTR_NULL
L
Linus Torvalds 已提交
3080 3081 3082 3083 3084 3085 3086
};

static struct elevator_type iosched_cfq = {
	.ops = {
		.elevator_merge_fn = 		cfq_merge,
		.elevator_merged_fn =		cfq_merged_request,
		.elevator_merge_req_fn =	cfq_merged_requests,
3087
		.elevator_allow_merge_fn =	cfq_allow_merge,
3088
		.elevator_dispatch_fn =		cfq_dispatch_requests,
L
Linus Torvalds 已提交
3089
		.elevator_add_req_fn =		cfq_insert_request,
3090
		.elevator_activate_req_fn =	cfq_activate_request,
L
Linus Torvalds 已提交
3091 3092 3093
		.elevator_deactivate_req_fn =	cfq_deactivate_request,
		.elevator_queue_empty_fn =	cfq_queue_empty,
		.elevator_completed_req_fn =	cfq_completed_request,
3094 3095
		.elevator_former_req_fn =	elv_rb_former_request,
		.elevator_latter_req_fn =	elv_rb_latter_request,
L
Linus Torvalds 已提交
3096 3097 3098 3099 3100
		.elevator_set_req_fn =		cfq_set_request,
		.elevator_put_req_fn =		cfq_put_request,
		.elevator_may_queue_fn =	cfq_may_queue,
		.elevator_init_fn =		cfq_init_queue,
		.elevator_exit_fn =		cfq_exit_queue,
3101
		.trim =				cfq_free_io_context,
L
Linus Torvalds 已提交
3102
	},
3103
	.elevator_attrs =	cfq_attrs,
L
Linus Torvalds 已提交
3104 3105 3106 3107 3108 3109
	.elevator_name =	"cfq",
	.elevator_owner =	THIS_MODULE,
};

static int __init cfq_init(void)
{
3110 3111 3112 3113 3114 3115 3116 3117
	/*
	 * could be 0 on HZ < 1000 setups
	 */
	if (!cfq_slice_async)
		cfq_slice_async = 1;
	if (!cfq_slice_idle)
		cfq_slice_idle = 1;

L
Linus Torvalds 已提交
3118 3119 3120
	if (cfq_slab_setup())
		return -ENOMEM;

3121
	elv_register(&iosched_cfq);
L
Linus Torvalds 已提交
3122

3123
	return 0;
L
Linus Torvalds 已提交
3124 3125 3126 3127
}

static void __exit cfq_exit(void)
{
3128
	DECLARE_COMPLETION_ONSTACK(all_gone);
L
Linus Torvalds 已提交
3129
	elv_unregister(&iosched_cfq);
3130
	ioc_gone = &all_gone;
3131 3132
	/* ioc_gone's update must be visible before reading ioc_count */
	smp_wmb();
3133 3134 3135 3136 3137

	/*
	 * this also protects us from entering cfq_slab_kill() with
	 * pending RCU callbacks
	 */
3138
	if (elv_ioc_count_read(cfq_ioc_count))
3139
		wait_for_completion(&all_gone);
3140
	cfq_slab_kill();
L
Linus Torvalds 已提交
3141 3142 3143 3144 3145 3146 3147 3148
}

module_init(cfq_init);
module_exit(cfq_exit);

MODULE_AUTHOR("Jens Axboe");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");