bcmsysport.c 53.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/*
 * Broadcom BCM7xxx System Port Ethernet MAC driver
 *
 * Copyright (C) 2014 Broadcom Corporation
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/of_mdio.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <net/ip.h>
#include <net/ipv6.h>

#include "bcmsysport.h"

/* I/O accessors register helpers */
#define BCM_SYSPORT_IO_MACRO(name, offset) \
static inline u32 name##_readl(struct bcm_sysport_priv *priv, u32 off)	\
{									\
	u32 reg = __raw_readl(priv->base + offset + off);		\
	return reg;							\
}									\
static inline void name##_writel(struct bcm_sysport_priv *priv,		\
				  u32 val, u32 off)			\
{									\
	__raw_writel(val, priv->base + offset + off);			\
}									\

BCM_SYSPORT_IO_MACRO(intrl2_0, SYS_PORT_INTRL2_0_OFFSET);
BCM_SYSPORT_IO_MACRO(intrl2_1, SYS_PORT_INTRL2_1_OFFSET);
BCM_SYSPORT_IO_MACRO(umac, SYS_PORT_UMAC_OFFSET);
BCM_SYSPORT_IO_MACRO(tdma, SYS_PORT_TDMA_OFFSET);
BCM_SYSPORT_IO_MACRO(rdma, SYS_PORT_RDMA_OFFSET);
BCM_SYSPORT_IO_MACRO(rxchk, SYS_PORT_RXCHK_OFFSET);
BCM_SYSPORT_IO_MACRO(txchk, SYS_PORT_TXCHK_OFFSET);
BCM_SYSPORT_IO_MACRO(rbuf, SYS_PORT_RBUF_OFFSET);
BCM_SYSPORT_IO_MACRO(tbuf, SYS_PORT_TBUF_OFFSET);
BCM_SYSPORT_IO_MACRO(topctrl, SYS_PORT_TOPCTRL_OFFSET);

/* L2-interrupt masking/unmasking helpers, does automatic saving of the applied
 * mask in a software copy to avoid CPU_MASK_STATUS reads in hot-paths.
  */
#define BCM_SYSPORT_INTR_L2(which)	\
static inline void intrl2_##which##_mask_clear(struct bcm_sysport_priv *priv, \
						u32 mask)		\
{									\
	intrl2_##which##_writel(priv, mask, INTRL2_CPU_MASK_CLEAR);	\
	priv->irq##which##_mask &= ~(mask);				\
}									\
static inline void intrl2_##which##_mask_set(struct bcm_sysport_priv *priv, \
						u32 mask)		\
{									\
	intrl2_## which##_writel(priv, mask, INTRL2_CPU_MASK_SET);	\
	priv->irq##which##_mask |= (mask);				\
}									\

BCM_SYSPORT_INTR_L2(0)
BCM_SYSPORT_INTR_L2(1)

/* Register accesses to GISB/RBUS registers are expensive (few hundred
 * nanoseconds), so keep the check for 64-bits explicit here to save
 * one register write per-packet on 32-bits platforms.
 */
static inline void dma_desc_set_addr(struct bcm_sysport_priv *priv,
				     void __iomem *d,
				     dma_addr_t addr)
{
#ifdef CONFIG_PHYS_ADDR_T_64BIT
	__raw_writel(upper_32_bits(addr) & DESC_ADDR_HI_MASK,
84
		     d + DESC_ADDR_HI_STATUS_LEN);
85 86 87 88 89
#endif
	__raw_writel(lower_32_bits(addr), d + DESC_ADDR_LO);
}

static inline void tdma_port_write_desc_addr(struct bcm_sysport_priv *priv,
90 91
					     struct dma_desc *desc,
					     unsigned int port)
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
{
	/* Ports are latched, so write upper address first */
	tdma_writel(priv, desc->addr_status_len, TDMA_WRITE_PORT_HI(port));
	tdma_writel(priv, desc->addr_lo, TDMA_WRITE_PORT_LO(port));
}

/* Ethtool operations */
static int bcm_sysport_set_settings(struct net_device *dev,
				    struct ethtool_cmd *cmd)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);

	if (!netif_running(dev))
		return -EINVAL;

	return phy_ethtool_sset(priv->phydev, cmd);
}

static int bcm_sysport_get_settings(struct net_device *dev,
111
				    struct ethtool_cmd *cmd)
112 113 114 115 116 117 118 119 120 121
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);

	if (!netif_running(dev))
		return -EINVAL;

	return phy_ethtool_gset(priv->phydev, cmd);
}

static int bcm_sysport_set_rx_csum(struct net_device *dev,
122
				   netdev_features_t wanted)
123 124 125 126
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	u32 reg;

127
	priv->rx_chk_en = !!(wanted & NETIF_F_RXCSUM);
128
	reg = rxchk_readl(priv, RXCHK_CONTROL);
129
	if (priv->rx_chk_en)
130 131 132 133 134 135 136
		reg |= RXCHK_EN;
	else
		reg &= ~RXCHK_EN;

	/* If UniMAC forwards CRC, we need to skip over it to get
	 * a valid CHK bit to be set in the per-packet status word
	 */
137
	if (priv->rx_chk_en && priv->crc_fwd)
138 139 140 141
		reg |= RXCHK_SKIP_FCS;
	else
		reg &= ~RXCHK_SKIP_FCS;

142 143 144 145 146 147 148 149 150
	/* If Broadcom tags are enabled (e.g: using a switch), make
	 * sure we tell the RXCHK hardware to expect a 4-bytes Broadcom
	 * tag after the Ethernet MAC Source Address.
	 */
	if (netdev_uses_dsa(dev))
		reg |= RXCHK_BRCM_TAG_EN;
	else
		reg &= ~RXCHK_BRCM_TAG_EN;

151 152 153 154 155 156
	rxchk_writel(priv, reg, RXCHK_CONTROL);

	return 0;
}

static int bcm_sysport_set_tx_csum(struct net_device *dev,
157
				   netdev_features_t wanted)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	u32 reg;

	/* Hardware transmit checksum requires us to enable the Transmit status
	 * block prepended to the packet contents
	 */
	priv->tsb_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
	reg = tdma_readl(priv, TDMA_CONTROL);
	if (priv->tsb_en)
		reg |= TSB_EN;
	else
		reg &= ~TSB_EN;
	tdma_writel(priv, reg, TDMA_CONTROL);

	return 0;
}

static int bcm_sysport_set_features(struct net_device *dev,
177
				    netdev_features_t features)
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
{
	netdev_features_t changed = features ^ dev->features;
	netdev_features_t wanted = dev->wanted_features;
	int ret = 0;

	if (changed & NETIF_F_RXCSUM)
		ret = bcm_sysport_set_rx_csum(dev, wanted);
	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
		ret = bcm_sysport_set_tx_csum(dev, wanted);

	return ret;
}

/* Hardware counters must be kept in sync because the order/offset
 * is important here (order in structure declaration = order in hardware)
 */
static const struct bcm_sysport_stats bcm_sysport_gstrings_stats[] = {
	/* general stats */
	STAT_NETDEV(rx_packets),
	STAT_NETDEV(tx_packets),
	STAT_NETDEV(rx_bytes),
	STAT_NETDEV(tx_bytes),
	STAT_NETDEV(rx_errors),
	STAT_NETDEV(tx_errors),
	STAT_NETDEV(rx_dropped),
	STAT_NETDEV(tx_dropped),
	STAT_NETDEV(multicast),
	/* UniMAC RSV counters */
	STAT_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
	STAT_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
	STAT_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
	STAT_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
	STAT_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
	STAT_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
	STAT_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
	STAT_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
	STAT_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
	STAT_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
	STAT_MIB_RX("rx_pkts", mib.rx.pkt),
	STAT_MIB_RX("rx_bytes", mib.rx.bytes),
	STAT_MIB_RX("rx_multicast", mib.rx.mca),
	STAT_MIB_RX("rx_broadcast", mib.rx.bca),
	STAT_MIB_RX("rx_fcs", mib.rx.fcs),
	STAT_MIB_RX("rx_control", mib.rx.cf),
	STAT_MIB_RX("rx_pause", mib.rx.pf),
	STAT_MIB_RX("rx_unknown", mib.rx.uo),
	STAT_MIB_RX("rx_align", mib.rx.aln),
	STAT_MIB_RX("rx_outrange", mib.rx.flr),
	STAT_MIB_RX("rx_code", mib.rx.cde),
	STAT_MIB_RX("rx_carrier", mib.rx.fcr),
	STAT_MIB_RX("rx_oversize", mib.rx.ovr),
	STAT_MIB_RX("rx_jabber", mib.rx.jbr),
	STAT_MIB_RX("rx_mtu_err", mib.rx.mtue),
	STAT_MIB_RX("rx_good_pkts", mib.rx.pok),
	STAT_MIB_RX("rx_unicast", mib.rx.uc),
	STAT_MIB_RX("rx_ppp", mib.rx.ppp),
	STAT_MIB_RX("rx_crc", mib.rx.rcrc),
	/* UniMAC TSV counters */
	STAT_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
	STAT_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
	STAT_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
	STAT_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
	STAT_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
	STAT_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
	STAT_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
	STAT_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
	STAT_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
	STAT_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
	STAT_MIB_TX("tx_pkts", mib.tx.pkts),
	STAT_MIB_TX("tx_multicast", mib.tx.mca),
	STAT_MIB_TX("tx_broadcast", mib.tx.bca),
	STAT_MIB_TX("tx_pause", mib.tx.pf),
	STAT_MIB_TX("tx_control", mib.tx.cf),
	STAT_MIB_TX("tx_fcs_err", mib.tx.fcs),
	STAT_MIB_TX("tx_oversize", mib.tx.ovr),
	STAT_MIB_TX("tx_defer", mib.tx.drf),
	STAT_MIB_TX("tx_excess_defer", mib.tx.edf),
	STAT_MIB_TX("tx_single_col", mib.tx.scl),
	STAT_MIB_TX("tx_multi_col", mib.tx.mcl),
	STAT_MIB_TX("tx_late_col", mib.tx.lcl),
	STAT_MIB_TX("tx_excess_col", mib.tx.ecl),
	STAT_MIB_TX("tx_frags", mib.tx.frg),
	STAT_MIB_TX("tx_total_col", mib.tx.ncl),
	STAT_MIB_TX("tx_jabber", mib.tx.jbr),
	STAT_MIB_TX("tx_bytes", mib.tx.bytes),
	STAT_MIB_TX("tx_good_pkts", mib.tx.pok),
	STAT_MIB_TX("tx_unicast", mib.tx.uc),
	/* UniMAC RUNT counters */
	STAT_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
	STAT_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
	STAT_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
	STAT_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
	/* RXCHK misc statistics */
	STAT_RXCHK("rxchk_bad_csum", mib.rxchk_bad_csum, RXCHK_BAD_CSUM_CNTR),
	STAT_RXCHK("rxchk_other_pkt_disc", mib.rxchk_other_pkt_disc,
273
		   RXCHK_OTHER_DISC_CNTR),
274 275 276
	/* RBUF misc statistics */
	STAT_RBUF("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt, RBUF_OVFL_DISC_CNTR),
	STAT_RBUF("rbuf_err_cnt", mib.rbuf_err_cnt, RBUF_ERR_PKT_CNTR),
277 278 279
	STAT_MIB_SOFT("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
	STAT_MIB_SOFT("rx_dma_failed", mib.rx_dma_failed),
	STAT_MIB_SOFT("tx_dma_failed", mib.tx_dma_failed),
280 281 282 283 284
};

#define BCM_SYSPORT_STATS_LEN	ARRAY_SIZE(bcm_sysport_gstrings_stats)

static void bcm_sysport_get_drvinfo(struct net_device *dev,
285
				    struct ethtool_drvinfo *info)
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
{
	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
	strlcpy(info->version, "0.1", sizeof(info->version));
	strlcpy(info->bus_info, "platform", sizeof(info->bus_info));
	info->n_stats = BCM_SYSPORT_STATS_LEN;
}

static u32 bcm_sysport_get_msglvl(struct net_device *dev)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);

	return priv->msg_enable;
}

static void bcm_sysport_set_msglvl(struct net_device *dev, u32 enable)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);

	priv->msg_enable = enable;
}

static int bcm_sysport_get_sset_count(struct net_device *dev, int string_set)
{
	switch (string_set) {
	case ETH_SS_STATS:
		return BCM_SYSPORT_STATS_LEN;
	default:
		return -EOPNOTSUPP;
	}
}

static void bcm_sysport_get_strings(struct net_device *dev,
318
				    u32 stringset, u8 *data)
319 320 321 322 323 324 325
{
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
		for (i = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
			memcpy(data + i * ETH_GSTRING_LEN,
326 327
			       bcm_sysport_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
		}
		break;
	default:
		break;
	}
}

static void bcm_sysport_update_mib_counters(struct bcm_sysport_priv *priv)
{
	int i, j = 0;

	for (i = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
		const struct bcm_sysport_stats *s;
		u8 offset = 0;
		u32 val = 0;
		char *p;

		s = &bcm_sysport_gstrings_stats[i];
		switch (s->type) {
		case BCM_SYSPORT_STAT_NETDEV:
348
		case BCM_SYSPORT_STAT_SOFT:
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
			continue;
		case BCM_SYSPORT_STAT_MIB_RX:
		case BCM_SYSPORT_STAT_MIB_TX:
		case BCM_SYSPORT_STAT_RUNT:
			if (s->type != BCM_SYSPORT_STAT_MIB_RX)
				offset = UMAC_MIB_STAT_OFFSET;
			val = umac_readl(priv, UMAC_MIB_START + j + offset);
			break;
		case BCM_SYSPORT_STAT_RXCHK:
			val = rxchk_readl(priv, s->reg_offset);
			if (val == ~0)
				rxchk_writel(priv, 0, s->reg_offset);
			break;
		case BCM_SYSPORT_STAT_RBUF:
			val = rbuf_readl(priv, s->reg_offset);
			if (val == ~0)
				rbuf_writel(priv, 0, s->reg_offset);
			break;
		}

		j += s->stat_sizeof;
		p = (char *)priv + s->stat_offset;
		*(u32 *)p = val;
	}

	netif_dbg(priv, hw, priv->netdev, "updated MIB counters\n");
}

static void bcm_sysport_get_stats(struct net_device *dev,
378
				  struct ethtool_stats *stats, u64 *data)
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	int i;

	if (netif_running(dev))
		bcm_sysport_update_mib_counters(priv);

	for (i =  0; i < BCM_SYSPORT_STATS_LEN; i++) {
		const struct bcm_sysport_stats *s;
		char *p;

		s = &bcm_sysport_gstrings_stats[i];
		if (s->type == BCM_SYSPORT_STAT_NETDEV)
			p = (char *)&dev->stats;
		else
			p = (char *)priv;
		p += s->stat_offset;
		data[i] = *(u32 *)p;
	}
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
static void bcm_sysport_get_wol(struct net_device *dev,
				struct ethtool_wolinfo *wol)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	u32 reg;

	wol->supported = WAKE_MAGIC | WAKE_MAGICSECURE;
	wol->wolopts = priv->wolopts;

	if (!(priv->wolopts & WAKE_MAGICSECURE))
		return;

	/* Return the programmed SecureOn password */
	reg = umac_readl(priv, UMAC_PSW_MS);
	put_unaligned_be16(reg, &wol->sopass[0]);
	reg = umac_readl(priv, UMAC_PSW_LS);
	put_unaligned_be32(reg, &wol->sopass[2]);
}

static int bcm_sysport_set_wol(struct net_device *dev,
420
			       struct ethtool_wolinfo *wol)
421 422 423 424 425 426 427 428 429 430 431 432 433 434
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	struct device *kdev = &priv->pdev->dev;
	u32 supported = WAKE_MAGIC | WAKE_MAGICSECURE;

	if (!device_can_wakeup(kdev))
		return -ENOTSUPP;

	if (wol->wolopts & ~supported)
		return -EINVAL;

	/* Program the SecureOn password */
	if (wol->wolopts & WAKE_MAGICSECURE) {
		umac_writel(priv, get_unaligned_be16(&wol->sopass[0]),
435
			    UMAC_PSW_MS);
436
		umac_writel(priv, get_unaligned_be32(&wol->sopass[2]),
437
			    UMAC_PSW_LS);
438 439 440 441 442
	}

	/* Flag the device and relevant IRQ as wakeup capable */
	if (wol->wolopts) {
		device_set_wakeup_enable(kdev, 1);
443 444
		if (priv->wol_irq_disabled)
			enable_irq_wake(priv->wol_irq);
445 446 447 448 449 450 451 452 453 454 455 456 457 458
		priv->wol_irq_disabled = 0;
	} else {
		device_set_wakeup_enable(kdev, 0);
		/* Avoid unbalanced disable_irq_wake calls */
		if (!priv->wol_irq_disabled)
			disable_irq_wake(priv->wol_irq);
		priv->wol_irq_disabled = 1;
	}

	priv->wolopts = wol->wolopts;

	return 0;
}

459 460 461 462 463 464 465 466 467 468 469
static int bcm_sysport_get_coalesce(struct net_device *dev,
				    struct ethtool_coalesce *ec)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	u32 reg;

	reg = tdma_readl(priv, TDMA_DESC_RING_INTR_CONTROL(0));

	ec->tx_coalesce_usecs = (reg >> RING_TIMEOUT_SHIFT) * 8192 / 1000;
	ec->tx_max_coalesced_frames = reg & RING_INTR_THRESH_MASK;

470 471 472 473 474
	reg = rdma_readl(priv, RDMA_MBDONE_INTR);

	ec->rx_coalesce_usecs = (reg >> RDMA_TIMEOUT_SHIFT) * 8192 / 1000;
	ec->rx_max_coalesced_frames = reg & RDMA_INTR_THRESH_MASK;

475 476 477 478 479 480 481 482 483 484
	return 0;
}

static int bcm_sysport_set_coalesce(struct net_device *dev,
				    struct ethtool_coalesce *ec)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	unsigned int i;
	u32 reg;

485 486 487
	/* Base system clock is 125Mhz, DMA timeout is this reference clock
	 * divided by 1024, which yield roughly 8.192 us, our maximum value has
	 * to fit in the RING_TIMEOUT_MASK (16 bits).
488 489
	 */
	if (ec->tx_max_coalesced_frames > RING_INTR_THRESH_MASK ||
490 491 492
	    ec->tx_coalesce_usecs > (RING_TIMEOUT_MASK * 8) + 1 ||
	    ec->rx_max_coalesced_frames > RDMA_INTR_THRESH_MASK ||
	    ec->rx_coalesce_usecs > (RDMA_TIMEOUT_MASK * 8) + 1)
493 494
		return -EINVAL;

495 496
	if ((ec->tx_coalesce_usecs == 0 && ec->tx_max_coalesced_frames == 0) ||
	    (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0))
497 498 499 500 501 502 503 504 505 506 507 508
		return -EINVAL;

	for (i = 0; i < dev->num_tx_queues; i++) {
		reg = tdma_readl(priv, TDMA_DESC_RING_INTR_CONTROL(i));
		reg &= ~(RING_INTR_THRESH_MASK |
			 RING_TIMEOUT_MASK << RING_TIMEOUT_SHIFT);
		reg |= ec->tx_max_coalesced_frames;
		reg |= DIV_ROUND_UP(ec->tx_coalesce_usecs * 1000, 8192) <<
			 RING_TIMEOUT_SHIFT;
		tdma_writel(priv, reg, TDMA_DESC_RING_INTR_CONTROL(i));
	}

509 510 511 512 513 514 515 516
	reg = rdma_readl(priv, RDMA_MBDONE_INTR);
	reg &= ~(RDMA_INTR_THRESH_MASK |
		 RDMA_TIMEOUT_MASK << RDMA_TIMEOUT_SHIFT);
	reg |= ec->rx_max_coalesced_frames;
	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192) <<
			    RDMA_TIMEOUT_SHIFT;
	rdma_writel(priv, reg, RDMA_MBDONE_INTR);

517 518 519
	return 0;
}

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
static void bcm_sysport_free_cb(struct bcm_sysport_cb *cb)
{
	dev_kfree_skb_any(cb->skb);
	cb->skb = NULL;
	dma_unmap_addr_set(cb, dma_addr, 0);
}

static int bcm_sysport_rx_refill(struct bcm_sysport_priv *priv,
				 struct bcm_sysport_cb *cb)
{
	struct device *kdev = &priv->pdev->dev;
	struct net_device *ndev = priv->netdev;
	dma_addr_t mapping;
	int ret;

	cb->skb = netdev_alloc_skb(priv->netdev, RX_BUF_LENGTH);
	if (!cb->skb) {
		netif_err(priv, rx_err, ndev, "SKB alloc failed\n");
		return -ENOMEM;
	}

	mapping = dma_map_single(kdev, cb->skb->data,
542
				 RX_BUF_LENGTH, DMA_FROM_DEVICE);
543 544
	ret = dma_mapping_error(kdev, mapping);
	if (ret) {
545
		priv->mib.rx_dma_failed++;
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
		bcm_sysport_free_cb(cb);
		netif_err(priv, rx_err, ndev, "DMA mapping failure\n");
		return ret;
	}

	dma_unmap_addr_set(cb, dma_addr, mapping);
	dma_desc_set_addr(priv, priv->rx_bd_assign_ptr, mapping);

	priv->rx_bd_assign_index++;
	priv->rx_bd_assign_index &= (priv->num_rx_bds - 1);
	priv->rx_bd_assign_ptr = priv->rx_bds +
		(priv->rx_bd_assign_index * DESC_SIZE);

	netif_dbg(priv, rx_status, ndev, "RX refill\n");

	return 0;
}

static int bcm_sysport_alloc_rx_bufs(struct bcm_sysport_priv *priv)
{
	struct bcm_sysport_cb *cb;
	int ret = 0;
	unsigned int i;

	for (i = 0; i < priv->num_rx_bds; i++) {
		cb = &priv->rx_cbs[priv->rx_bd_assign_index];
		if (cb->skb)
			continue;

		ret = bcm_sysport_rx_refill(priv, cb);
		if (ret)
			break;
	}

	return ret;
}

/* Poll the hardware for up to budget packets to process */
static unsigned int bcm_sysport_desc_rx(struct bcm_sysport_priv *priv,
					unsigned int budget)
{
	struct device *kdev = &priv->pdev->dev;
	struct net_device *ndev = priv->netdev;
	unsigned int processed = 0, to_process;
	struct bcm_sysport_cb *cb;
	struct sk_buff *skb;
	unsigned int p_index;
	u16 len, status;
594
	struct bcm_rsb *rsb;
595
	int ret;
596 597 598 599 600 601 602 603 604 605 606 607

	/* Determine how much we should process since last call */
	p_index = rdma_readl(priv, RDMA_PROD_INDEX);
	p_index &= RDMA_PROD_INDEX_MASK;

	if (p_index < priv->rx_c_index)
		to_process = (RDMA_CONS_INDEX_MASK + 1) -
			priv->rx_c_index + p_index;
	else
		to_process = p_index - priv->rx_c_index;

	netif_dbg(priv, rx_status, ndev,
608 609
		  "p_index=%d rx_c_index=%d to_process=%d\n",
		  p_index, priv->rx_c_index, to_process);
610

611
	while ((processed < to_process) && (processed < budget)) {
612 613
		cb = &priv->rx_cbs[priv->rx_read_ptr];
		skb = cb->skb;
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

		processed++;
		priv->rx_read_ptr++;

		if (priv->rx_read_ptr == priv->num_rx_bds)
			priv->rx_read_ptr = 0;

		/* We do not have a backing SKB, so we do not a corresponding
		 * DMA mapping for this incoming packet since
		 * bcm_sysport_rx_refill always either has both skb and mapping
		 * or none.
		 */
		if (unlikely(!skb)) {
			netif_err(priv, rx_err, ndev, "out of memory!\n");
			ndev->stats.rx_dropped++;
			ndev->stats.rx_errors++;
			goto refill;
		}

633
		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
634
				 RX_BUF_LENGTH, DMA_FROM_DEVICE);
635 636

		/* Extract the Receive Status Block prepended */
637
		rsb = (struct bcm_rsb *)skb->data;
638 639
		len = (rsb->rx_status_len >> DESC_LEN_SHIFT) & DESC_LEN_MASK;
		status = (rsb->rx_status_len >> DESC_STATUS_SHIFT) &
640
			  DESC_STATUS_MASK;
641 642

		netif_dbg(priv, rx_status, ndev,
643 644 645
			  "p=%d, c=%d, rd_ptr=%d, len=%d, flag=0x%04x\n",
			  p_index, priv->rx_c_index, priv->rx_read_ptr,
			  len, status);
646 647 648 649 650 651 652 653 654 655 656

		if (unlikely(!(status & DESC_EOP) || !(status & DESC_SOP))) {
			netif_err(priv, rx_status, ndev, "fragmented packet!\n");
			ndev->stats.rx_dropped++;
			ndev->stats.rx_errors++;
			bcm_sysport_free_cb(cb);
			goto refill;
		}

		if (unlikely(status & (RX_STATUS_ERR | RX_STATUS_OVFLOW))) {
			netif_err(priv, rx_err, ndev, "error packet\n");
657
			if (status & RX_STATUS_OVFLOW)
658 659 660 661 662 663 664 665 666 667 668 669 670
				ndev->stats.rx_over_errors++;
			ndev->stats.rx_dropped++;
			ndev->stats.rx_errors++;
			bcm_sysport_free_cb(cb);
			goto refill;
		}

		skb_put(skb, len);

		/* Hardware validated our checksum */
		if (likely(status & DESC_L4_CSUM))
			skb->ip_summed = CHECKSUM_UNNECESSARY;

671 672 673
		/* Hardware pre-pends packets with 2bytes before Ethernet
		 * header plus we have the Receive Status Block, strip off all
		 * of this from the SKB.
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
		 */
		skb_pull(skb, sizeof(*rsb) + 2);
		len -= (sizeof(*rsb) + 2);

		/* UniMAC may forward CRC */
		if (priv->crc_fwd) {
			skb_trim(skb, len - ETH_FCS_LEN);
			len -= ETH_FCS_LEN;
		}

		skb->protocol = eth_type_trans(skb, ndev);
		ndev->stats.rx_packets++;
		ndev->stats.rx_bytes += len;

		napi_gro_receive(&priv->napi, skb);
refill:
690 691 692
		ret = bcm_sysport_rx_refill(priv, cb);
		if (ret)
			priv->mib.alloc_rx_buff_failed++;
693 694 695 696 697 698
	}

	return processed;
}

static void bcm_sysport_tx_reclaim_one(struct bcm_sysport_priv *priv,
699 700 701
				       struct bcm_sysport_cb *cb,
				       unsigned int *bytes_compl,
				       unsigned int *pkts_compl)
702 703 704 705 706 707 708 709
{
	struct device *kdev = &priv->pdev->dev;
	struct net_device *ndev = priv->netdev;

	if (cb->skb) {
		ndev->stats.tx_bytes += cb->skb->len;
		*bytes_compl += cb->skb->len;
		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
710 711
				 dma_unmap_len(cb, dma_len),
				 DMA_TO_DEVICE);
712 713 714 715 716 717 718
		ndev->stats.tx_packets++;
		(*pkts_compl)++;
		bcm_sysport_free_cb(cb);
	/* SKB fragment */
	} else if (dma_unmap_addr(cb, dma_addr)) {
		ndev->stats.tx_bytes += dma_unmap_len(cb, dma_len);
		dma_unmap_page(kdev, dma_unmap_addr(cb, dma_addr),
719
			       dma_unmap_len(cb, dma_len), DMA_TO_DEVICE);
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
		dma_unmap_addr_set(cb, dma_addr, 0);
	}
}

/* Reclaim queued SKBs for transmission completion, lockless version */
static unsigned int __bcm_sysport_tx_reclaim(struct bcm_sysport_priv *priv,
					     struct bcm_sysport_tx_ring *ring)
{
	struct net_device *ndev = priv->netdev;
	unsigned int c_index, last_c_index, last_tx_cn, num_tx_cbs;
	unsigned int pkts_compl = 0, bytes_compl = 0;
	struct bcm_sysport_cb *cb;
	struct netdev_queue *txq;
	u32 hw_ind;

	txq = netdev_get_tx_queue(ndev, ring->index);

	/* Compute how many descriptors have been processed since last call */
	hw_ind = tdma_readl(priv, TDMA_DESC_RING_PROD_CONS_INDEX(ring->index));
	c_index = (hw_ind >> RING_CONS_INDEX_SHIFT) & RING_CONS_INDEX_MASK;
	ring->p_index = (hw_ind & RING_PROD_INDEX_MASK);

	last_c_index = ring->c_index;
	num_tx_cbs = ring->size;

	c_index &= (num_tx_cbs - 1);

	if (c_index >= last_c_index)
		last_tx_cn = c_index - last_c_index;
	else
		last_tx_cn = num_tx_cbs - last_c_index + c_index;

	netif_dbg(priv, tx_done, ndev,
753 754
		  "ring=%d c_index=%d last_tx_cn=%d last_c_index=%d\n",
		  ring->index, c_index, last_tx_cn, last_c_index);
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

	while (last_tx_cn-- > 0) {
		cb = ring->cbs + last_c_index;
		bcm_sysport_tx_reclaim_one(priv, cb, &bytes_compl, &pkts_compl);

		ring->desc_count++;
		last_c_index++;
		last_c_index &= (num_tx_cbs - 1);
	}

	ring->c_index = c_index;

	if (netif_tx_queue_stopped(txq) && pkts_compl)
		netif_tx_wake_queue(txq);

	netif_dbg(priv, tx_done, ndev,
771 772
		  "ring=%d c_index=%d pkts_compl=%d, bytes_compl=%d\n",
		  ring->index, ring->c_index, pkts_compl, bytes_compl);
773 774 775 776 777 778 779 780 781

	return pkts_compl;
}

/* Locked version of the per-ring TX reclaim routine */
static unsigned int bcm_sysport_tx_reclaim(struct bcm_sysport_priv *priv,
					   struct bcm_sysport_tx_ring *ring)
{
	unsigned int released;
782
	unsigned long flags;
783

784
	spin_lock_irqsave(&ring->lock, flags);
785
	released = __bcm_sysport_tx_reclaim(priv, ring);
786
	spin_unlock_irqrestore(&ring->lock, flags);
787 788 789 790 791 792 793 794 795 796 797 798

	return released;
}

static int bcm_sysport_tx_poll(struct napi_struct *napi, int budget)
{
	struct bcm_sysport_tx_ring *ring =
		container_of(napi, struct bcm_sysport_tx_ring, napi);
	unsigned int work_done = 0;

	work_done = bcm_sysport_tx_reclaim(ring->priv, ring);

799
	if (work_done == 0) {
800 801 802
		napi_complete(napi);
		/* re-enable TX interrupt */
		intrl2_1_mask_clear(ring->priv, BIT(ring->index));
803 804

		return 0;
805 806
	}

807
	return budget;
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
}

static void bcm_sysport_tx_reclaim_all(struct bcm_sysport_priv *priv)
{
	unsigned int q;

	for (q = 0; q < priv->netdev->num_tx_queues; q++)
		bcm_sysport_tx_reclaim(priv, &priv->tx_rings[q]);
}

static int bcm_sysport_poll(struct napi_struct *napi, int budget)
{
	struct bcm_sysport_priv *priv =
		container_of(napi, struct bcm_sysport_priv, napi);
	unsigned int work_done = 0;

	work_done = bcm_sysport_desc_rx(priv, budget);

	priv->rx_c_index += work_done;
	priv->rx_c_index &= RDMA_CONS_INDEX_MASK;
	rdma_writel(priv, priv->rx_c_index, RDMA_CONS_INDEX);

	if (work_done < budget) {
		napi_complete(napi);
		/* re-enable RX interrupts */
		intrl2_0_mask_clear(priv, INTRL2_0_RDMA_MBDONE);
	}

	return work_done;
}

839 840 841 842 843 844 845 846 847 848 849 850 851 852
static void bcm_sysport_resume_from_wol(struct bcm_sysport_priv *priv)
{
	u32 reg;

	/* Stop monitoring MPD interrupt */
	intrl2_0_mask_set(priv, INTRL2_0_MPD);

	/* Clear the MagicPacket detection logic */
	reg = umac_readl(priv, UMAC_MPD_CTRL);
	reg &= ~MPD_EN;
	umac_writel(priv, reg, UMAC_MPD_CTRL);

	netif_dbg(priv, wol, priv->netdev, "resumed from WOL\n");
}
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882

/* RX and misc interrupt routine */
static irqreturn_t bcm_sysport_rx_isr(int irq, void *dev_id)
{
	struct net_device *dev = dev_id;
	struct bcm_sysport_priv *priv = netdev_priv(dev);

	priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
			  ~intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
	intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);

	if (unlikely(priv->irq0_stat == 0)) {
		netdev_warn(priv->netdev, "spurious RX interrupt\n");
		return IRQ_NONE;
	}

	if (priv->irq0_stat & INTRL2_0_RDMA_MBDONE) {
		if (likely(napi_schedule_prep(&priv->napi))) {
			/* disable RX interrupts */
			intrl2_0_mask_set(priv, INTRL2_0_RDMA_MBDONE);
			__napi_schedule(&priv->napi);
		}
	}

	/* TX ring is full, perform a full reclaim since we do not know
	 * which one would trigger this interrupt
	 */
	if (priv->irq0_stat & INTRL2_0_TX_RING_FULL)
		bcm_sysport_tx_reclaim_all(priv);

883 884 885 886 887
	if (priv->irq0_stat & INTRL2_0_MPD) {
		netdev_info(priv->netdev, "Wake-on-LAN interrupt!\n");
		bcm_sysport_resume_from_wol(priv);
	}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
	return IRQ_HANDLED;
}

/* TX interrupt service routine */
static irqreturn_t bcm_sysport_tx_isr(int irq, void *dev_id)
{
	struct net_device *dev = dev_id;
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	struct bcm_sysport_tx_ring *txr;
	unsigned int ring;

	priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
				~intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);

	if (unlikely(priv->irq1_stat == 0)) {
		netdev_warn(priv->netdev, "spurious TX interrupt\n");
		return IRQ_NONE;
	}

	for (ring = 0; ring < dev->num_tx_queues; ring++) {
		if (!(priv->irq1_stat & BIT(ring)))
			continue;

		txr = &priv->tx_rings[ring];

		if (likely(napi_schedule_prep(&txr->napi))) {
			intrl2_1_mask_set(priv, BIT(ring));
			__napi_schedule(&txr->napi);
		}
	}

	return IRQ_HANDLED;
}

923 924 925 926 927 928 929 930 931
static irqreturn_t bcm_sysport_wol_isr(int irq, void *dev_id)
{
	struct bcm_sysport_priv *priv = dev_id;

	pm_wakeup_event(&priv->pdev->dev, 0);

	return IRQ_HANDLED;
}

932 933
static struct sk_buff *bcm_sysport_insert_tsb(struct sk_buff *skb,
					      struct net_device *dev)
934 935
{
	struct sk_buff *nskb;
936
	struct bcm_tsb *tsb;
937 938 939 940 941 942 943 944 945 946 947 948
	u32 csum_info;
	u8 ip_proto;
	u16 csum_start;
	u16 ip_ver;

	/* Re-allocate SKB if needed */
	if (unlikely(skb_headroom(skb) < sizeof(*tsb))) {
		nskb = skb_realloc_headroom(skb, sizeof(*tsb));
		dev_kfree_skb(skb);
		if (!nskb) {
			dev->stats.tx_errors++;
			dev->stats.tx_dropped++;
949
			return NULL;
950 951 952 953
		}
		skb = nskb;
	}

954
	tsb = (struct bcm_tsb *)skb_push(skb, sizeof(*tsb));
955 956 957 958 959 960 961 962 963 964 965 966 967
	/* Zero-out TSB by default */
	memset(tsb, 0, sizeof(*tsb));

	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		ip_ver = htons(skb->protocol);
		switch (ip_ver) {
		case ETH_P_IP:
			ip_proto = ip_hdr(skb)->protocol;
			break;
		case ETH_P_IPV6:
			ip_proto = ipv6_hdr(skb)->nexthdr;
			break;
		default:
968
			return skb;
969 970 971 972 973 974 975 976 977 978 979
		}

		/* Get the checksum offset and the L4 (transport) offset */
		csum_start = skb_checksum_start_offset(skb) - sizeof(*tsb);
		csum_info = (csum_start + skb->csum_offset) & L4_CSUM_PTR_MASK;
		csum_info |= (csum_start << L4_PTR_SHIFT);

		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
			csum_info |= L4_LENGTH_VALID;
			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
				csum_info |= L4_UDP;
980
		} else {
981
			csum_info = 0;
982
		}
983 984 985 986

		tsb->l4_ptr_dest_map = csum_info;
	}

987
	return skb;
988 989 990 991 992 993 994 995 996 997 998
}

static netdev_tx_t bcm_sysport_xmit(struct sk_buff *skb,
				    struct net_device *dev)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	struct device *kdev = &priv->pdev->dev;
	struct bcm_sysport_tx_ring *ring;
	struct bcm_sysport_cb *cb;
	struct netdev_queue *txq;
	struct dma_desc *desc;
999
	unsigned int skb_len;
1000
	unsigned long flags;
1001 1002 1003 1004 1005 1006 1007 1008 1009
	dma_addr_t mapping;
	u32 len_status;
	u16 queue;
	int ret;

	queue = skb_get_queue_mapping(skb);
	txq = netdev_get_tx_queue(dev, queue);
	ring = &priv->tx_rings[queue];

1010 1011
	/* lock against tx reclaim in BH context and TX ring full interrupt */
	spin_lock_irqsave(&ring->lock, flags);
1012 1013 1014 1015 1016 1017 1018 1019 1020
	if (unlikely(ring->desc_count == 0)) {
		netif_tx_stop_queue(txq);
		netdev_err(dev, "queue %d awake and ring full!\n", queue);
		ret = NETDEV_TX_BUSY;
		goto out;
	}

	/* Insert TSB and checksum infos */
	if (priv->tsb_en) {
1021 1022
		skb = bcm_sysport_insert_tsb(skb, dev);
		if (!skb) {
1023 1024 1025 1026 1027
			ret = NETDEV_TX_OK;
			goto out;
		}
	}

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	/* The Ethernet switch we are interfaced with needs packets to be at
	 * least 64 bytes (including FCS) otherwise they will be discarded when
	 * they enter the switch port logic. When Broadcom tags are enabled, we
	 * need to make sure that packets are at least 68 bytes
	 * (including FCS and tag) because the length verification is done after
	 * the Broadcom tag is stripped off the ingress packet.
	 */
	if (skb_padto(skb, ETH_ZLEN + ENET_BRCM_TAG_LEN)) {
		ret = NETDEV_TX_OK;
		goto out;
	}

	skb_len = skb->len < ETH_ZLEN + ENET_BRCM_TAG_LEN ?
			ETH_ZLEN + ENET_BRCM_TAG_LEN : skb->len;

	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1044
	if (dma_mapping_error(kdev, mapping)) {
1045
		priv->mib.tx_dma_failed++;
1046
		netif_err(priv, tx_err, dev, "DMA map failed at %p (len=%d)\n",
1047
			  skb->data, skb_len);
1048 1049 1050 1051 1052 1053 1054 1055
		ret = NETDEV_TX_OK;
		goto out;
	}

	/* Remember the SKB for future freeing */
	cb = &ring->cbs[ring->curr_desc];
	cb->skb = skb;
	dma_unmap_addr_set(cb, dma_addr, mapping);
1056
	dma_unmap_len_set(cb, dma_len, skb_len);
1057 1058 1059 1060 1061 1062

	/* Fetch a descriptor entry from our pool */
	desc = ring->desc_cpu;

	desc->addr_lo = lower_32_bits(mapping);
	len_status = upper_32_bits(mapping) & DESC_ADDR_HI_MASK;
1063
	len_status |= (skb_len << DESC_LEN_SHIFT);
1064
	len_status |= (DESC_SOP | DESC_EOP | TX_STATUS_APP_CRC) <<
1065
		       DESC_STATUS_SHIFT;
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	if (skb->ip_summed == CHECKSUM_PARTIAL)
		len_status |= (DESC_L4_CSUM << DESC_STATUS_SHIFT);

	ring->curr_desc++;
	if (ring->curr_desc == ring->size)
		ring->curr_desc = 0;
	ring->desc_count--;

	/* Ensure write completion of the descriptor status/length
	 * in DRAM before the System Port WRITE_PORT register latches
	 * the value
	 */
	wmb();
	desc->addr_status_len = len_status;
	wmb();

	/* Write this descriptor address to the RING write port */
	tdma_port_write_desc_addr(priv, desc, ring->index);

	/* Check ring space and update SW control flow */
	if (ring->desc_count == 0)
		netif_tx_stop_queue(txq);

	netif_dbg(priv, tx_queued, dev, "ring=%d desc_count=%d, curr_desc=%d\n",
1090
		  ring->index, ring->desc_count, ring->curr_desc);
1091 1092 1093

	ret = NETDEV_TX_OK;
out:
1094
	spin_unlock_irqrestore(&ring->lock, flags);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
	return ret;
}

static void bcm_sysport_tx_timeout(struct net_device *dev)
{
	netdev_warn(dev, "transmit timeout!\n");

	dev->trans_start = jiffies;
	dev->stats.tx_errors++;

	netif_tx_wake_all_queues(dev);
}

/* phylib adjust link callback */
static void bcm_sysport_adj_link(struct net_device *dev)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	struct phy_device *phydev = priv->phydev;
	unsigned int changed = 0;
	u32 cmd_bits = 0, reg;

	if (priv->old_link != phydev->link) {
		changed = 1;
		priv->old_link = phydev->link;
	}

	if (priv->old_duplex != phydev->duplex) {
		changed = 1;
		priv->old_duplex = phydev->duplex;
	}

	switch (phydev->speed) {
	case SPEED_2500:
		cmd_bits = CMD_SPEED_2500;
		break;
	case SPEED_1000:
		cmd_bits = CMD_SPEED_1000;
		break;
	case SPEED_100:
		cmd_bits = CMD_SPEED_100;
		break;
	case SPEED_10:
		cmd_bits = CMD_SPEED_10;
		break;
	default:
		break;
	}
	cmd_bits <<= CMD_SPEED_SHIFT;

	if (phydev->duplex == DUPLEX_HALF)
		cmd_bits |= CMD_HD_EN;

	if (priv->old_pause != phydev->pause) {
		changed = 1;
		priv->old_pause = phydev->pause;
	}

	if (!phydev->pause)
		cmd_bits |= CMD_RX_PAUSE_IGNORE | CMD_TX_PAUSE_IGNORE;

1155 1156 1157 1158
	if (!changed)
		return;

	if (phydev->link) {
1159 1160
		reg = umac_readl(priv, UMAC_CMD);
		reg &= ~((CMD_SPEED_MASK << CMD_SPEED_SHIFT) |
1161 1162
			CMD_HD_EN | CMD_RX_PAUSE_IGNORE |
			CMD_TX_PAUSE_IGNORE);
1163 1164 1165
		reg |= cmd_bits;
		umac_writel(priv, reg, UMAC_CMD);
	}
1166 1167

	phy_print_status(priv->phydev);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
}

static int bcm_sysport_init_tx_ring(struct bcm_sysport_priv *priv,
				    unsigned int index)
{
	struct bcm_sysport_tx_ring *ring = &priv->tx_rings[index];
	struct device *kdev = &priv->pdev->dev;
	size_t size;
	void *p;
	u32 reg;

	/* Simple descriptors partitioning for now */
	size = 256;

	/* We just need one DMA descriptor which is DMA-able, since writing to
	 * the port will allocate a new descriptor in its internal linked-list
	 */
1185 1186
	p = dma_zalloc_coherent(kdev, sizeof(struct dma_desc), &ring->desc_dma,
				GFP_KERNEL);
1187 1188 1189 1190 1191
	if (!p) {
		netif_err(priv, hw, priv->netdev, "DMA alloc failed\n");
		return -ENOMEM;
	}

1192
	ring->cbs = kcalloc(size, sizeof(struct bcm_sysport_cb), GFP_KERNEL);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	if (!ring->cbs) {
		netif_err(priv, hw, priv->netdev, "CB allocation failed\n");
		return -ENOMEM;
	}

	/* Initialize SW view of the ring */
	spin_lock_init(&ring->lock);
	ring->priv = priv;
	netif_napi_add(priv->netdev, &ring->napi, bcm_sysport_tx_poll, 64);
	ring->index = index;
	ring->size = size;
	ring->alloc_size = ring->size;
	ring->desc_cpu = p;
	ring->desc_count = ring->size;
	ring->curr_desc = 0;

	/* Initialize HW ring */
	tdma_writel(priv, RING_EN, TDMA_DESC_RING_HEAD_TAIL_PTR(index));
	tdma_writel(priv, 0, TDMA_DESC_RING_COUNT(index));
	tdma_writel(priv, 1, TDMA_DESC_RING_INTR_CONTROL(index));
	tdma_writel(priv, 0, TDMA_DESC_RING_PROD_CONS_INDEX(index));
	tdma_writel(priv, RING_IGNORE_STATUS, TDMA_DESC_RING_MAPPING(index));
	tdma_writel(priv, 0, TDMA_DESC_RING_PCP_DEI_VID(index));

	/* Program the number of descriptors as MAX_THRESHOLD and half of
	 * its size for the hysteresis trigger
	 */
	tdma_writel(priv, ring->size |
			1 << RING_HYST_THRESH_SHIFT,
			TDMA_DESC_RING_MAX_HYST(index));

	/* Enable the ring queue in the arbiter */
	reg = tdma_readl(priv, TDMA_TIER1_ARB_0_QUEUE_EN);
	reg |= (1 << index);
	tdma_writel(priv, reg, TDMA_TIER1_ARB_0_QUEUE_EN);

	napi_enable(&ring->napi);

	netif_dbg(priv, hw, priv->netdev,
1232 1233
		  "TDMA cfg, size=%d, desc_cpu=%p\n",
		  ring->size, ring->desc_cpu);
1234 1235 1236 1237 1238

	return 0;
}

static void bcm_sysport_fini_tx_ring(struct bcm_sysport_priv *priv,
1239
				     unsigned int index)
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
{
	struct bcm_sysport_tx_ring *ring = &priv->tx_rings[index];
	struct device *kdev = &priv->pdev->dev;
	u32 reg;

	/* Caller should stop the TDMA engine */
	reg = tdma_readl(priv, TDMA_STATUS);
	if (!(reg & TDMA_DISABLED))
		netdev_warn(priv->netdev, "TDMA not stopped!\n");

1250 1251 1252 1253 1254 1255 1256
	/* ring->cbs is the last part in bcm_sysport_init_tx_ring which could
	 * fail, so by checking this pointer we know whether the TX ring was
	 * fully initialized or not.
	 */
	if (!ring->cbs)
		return;

1257 1258 1259 1260 1261 1262 1263 1264 1265
	napi_disable(&ring->napi);
	netif_napi_del(&ring->napi);

	bcm_sysport_tx_reclaim(priv, ring);

	kfree(ring->cbs);
	ring->cbs = NULL;

	if (ring->desc_dma) {
1266 1267
		dma_free_coherent(kdev, sizeof(struct dma_desc),
				  ring->desc_cpu, ring->desc_dma);
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
		ring->desc_dma = 0;
	}
	ring->size = 0;
	ring->alloc_size = 0;

	netif_dbg(priv, hw, priv->netdev, "TDMA fini done\n");
}

/* RDMA helper */
static inline int rdma_enable_set(struct bcm_sysport_priv *priv,
1278
				  unsigned int enable)
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
{
	unsigned int timeout = 1000;
	u32 reg;

	reg = rdma_readl(priv, RDMA_CONTROL);
	if (enable)
		reg |= RDMA_EN;
	else
		reg &= ~RDMA_EN;
	rdma_writel(priv, reg, RDMA_CONTROL);

	/* Poll for RMDA disabling completion */
	do {
		reg = rdma_readl(priv, RDMA_STATUS);
		if (!!(reg & RDMA_DISABLED) == !enable)
			return 0;
		usleep_range(1000, 2000);
	} while (timeout-- > 0);

	netdev_err(priv->netdev, "timeout waiting for RDMA to finish\n");

	return -ETIMEDOUT;
}

/* TDMA helper */
static inline int tdma_enable_set(struct bcm_sysport_priv *priv,
1305
				  unsigned int enable)
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
{
	unsigned int timeout = 1000;
	u32 reg;

	reg = tdma_readl(priv, TDMA_CONTROL);
	if (enable)
		reg |= TDMA_EN;
	else
		reg &= ~TDMA_EN;
	tdma_writel(priv, reg, TDMA_CONTROL);

	/* Poll for TMDA disabling completion */
	do {
		reg = tdma_readl(priv, TDMA_STATUS);
		if (!!(reg & TDMA_DISABLED) == !enable)
			return 0;

		usleep_range(1000, 2000);
	} while (timeout-- > 0);

	netdev_err(priv->netdev, "timeout waiting for TDMA to finish\n");

	return -ETIMEDOUT;
}

static int bcm_sysport_init_rx_ring(struct bcm_sysport_priv *priv)
{
	u32 reg;
	int ret;

	/* Initialize SW view of the RX ring */
	priv->num_rx_bds = NUM_RX_DESC;
	priv->rx_bds = priv->base + SYS_PORT_RDMA_OFFSET;
	priv->rx_bd_assign_ptr = priv->rx_bds;
	priv->rx_bd_assign_index = 0;
	priv->rx_c_index = 0;
	priv->rx_read_ptr = 0;
1343 1344
	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct bcm_sysport_cb),
				GFP_KERNEL);
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	if (!priv->rx_cbs) {
		netif_err(priv, hw, priv->netdev, "CB allocation failed\n");
		return -ENOMEM;
	}

	ret = bcm_sysport_alloc_rx_bufs(priv);
	if (ret) {
		netif_err(priv, hw, priv->netdev, "SKB allocation failed\n");
		return ret;
	}

	/* Initialize HW, ensure RDMA is disabled */
	reg = rdma_readl(priv, RDMA_STATUS);
	if (!(reg & RDMA_DISABLED))
		rdma_enable_set(priv, 0);

	rdma_writel(priv, 0, RDMA_WRITE_PTR_LO);
	rdma_writel(priv, 0, RDMA_WRITE_PTR_HI);
	rdma_writel(priv, 0, RDMA_PROD_INDEX);
	rdma_writel(priv, 0, RDMA_CONS_INDEX);
	rdma_writel(priv, priv->num_rx_bds << RDMA_RING_SIZE_SHIFT |
			  RX_BUF_LENGTH, RDMA_RING_BUF_SIZE);
	/* Operate the queue in ring mode */
	rdma_writel(priv, 0, RDMA_START_ADDR_HI);
	rdma_writel(priv, 0, RDMA_START_ADDR_LO);
	rdma_writel(priv, 0, RDMA_END_ADDR_HI);
	rdma_writel(priv, NUM_HW_RX_DESC_WORDS - 1, RDMA_END_ADDR_LO);

	rdma_writel(priv, 1, RDMA_MBDONE_INTR);

	netif_dbg(priv, hw, priv->netdev,
1376 1377
		  "RDMA cfg, num_rx_bds=%d, rx_bds=%p\n",
		  priv->num_rx_bds, priv->rx_bds);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396

	return 0;
}

static void bcm_sysport_fini_rx_ring(struct bcm_sysport_priv *priv)
{
	struct bcm_sysport_cb *cb;
	unsigned int i;
	u32 reg;

	/* Caller should ensure RDMA is disabled */
	reg = rdma_readl(priv, RDMA_STATUS);
	if (!(reg & RDMA_DISABLED))
		netdev_warn(priv->netdev, "RDMA not stopped!\n");

	for (i = 0; i < priv->num_rx_bds; i++) {
		cb = &priv->rx_cbs[i];
		if (dma_unmap_addr(cb, dma_addr))
			dma_unmap_single(&priv->pdev->dev,
1397 1398
					 dma_unmap_addr(cb, dma_addr),
					 RX_BUF_LENGTH, DMA_FROM_DEVICE);
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
		bcm_sysport_free_cb(cb);
	}

	kfree(priv->rx_cbs);
	priv->rx_cbs = NULL;

	netif_dbg(priv, hw, priv->netdev, "RDMA fini done\n");
}

static void bcm_sysport_set_rx_mode(struct net_device *dev)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	u32 reg;

	reg = umac_readl(priv, UMAC_CMD);
	if (dev->flags & IFF_PROMISC)
		reg |= CMD_PROMISC;
	else
		reg &= ~CMD_PROMISC;
	umac_writel(priv, reg, UMAC_CMD);

	/* No support for ALLMULTI */
	if (dev->flags & IFF_ALLMULTI)
		return;
}

static inline void umac_enable_set(struct bcm_sysport_priv *priv,
1426
				   u32 mask, unsigned int enable)
1427 1428 1429 1430 1431
{
	u32 reg;

	reg = umac_readl(priv, UMAC_CMD);
	if (enable)
1432
		reg |= mask;
1433
	else
1434
		reg &= ~mask;
1435
	umac_writel(priv, reg, UMAC_CMD);
1436 1437 1438 1439 1440 1441

	/* UniMAC stops on a packet boundary, wait for a full-sized packet
	 * to be processed (1 msec).
	 */
	if (enable == 0)
		usleep_range(1000, 2000);
1442 1443
}

1444
static inline void umac_reset(struct bcm_sysport_priv *priv)
1445 1446 1447
{
	u32 reg;

1448 1449 1450 1451 1452 1453 1454
	reg = umac_readl(priv, UMAC_CMD);
	reg |= CMD_SW_RESET;
	umac_writel(priv, reg, UMAC_CMD);
	udelay(10);
	reg = umac_readl(priv, UMAC_CMD);
	reg &= ~CMD_SW_RESET;
	umac_writel(priv, reg, UMAC_CMD);
1455 1456 1457
}

static void umac_set_hw_addr(struct bcm_sysport_priv *priv,
1458
			     unsigned char *addr)
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
{
	umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
			(addr[2] << 8) | addr[3], UMAC_MAC0);
	umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
}

static void topctrl_flush(struct bcm_sysport_priv *priv)
{
	topctrl_writel(priv, RX_FLUSH, RX_FLUSH_CNTL);
	topctrl_writel(priv, TX_FLUSH, TX_FLUSH_CNTL);
	mdelay(1);
	topctrl_writel(priv, 0, RX_FLUSH_CNTL);
	topctrl_writel(priv, 0, TX_FLUSH_CNTL);
}

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
static int bcm_sysport_change_mac(struct net_device *dev, void *p)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EINVAL;

	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);

	/* interface is disabled, changes to MAC will be reflected on next
	 * open call
	 */
	if (!netif_running(dev))
		return 0;

	umac_set_hw_addr(priv, dev->dev_addr);

	return 0;
}

1495 1496 1497 1498 1499 1500 1501
static void bcm_sysport_netif_start(struct net_device *dev)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);

	/* Enable NAPI */
	napi_enable(&priv->napi);

1502 1503 1504
	/* Enable RX interrupt and TX ring full interrupt */
	intrl2_0_mask_clear(priv, INTRL2_0_RDMA_MBDONE | INTRL2_0_TX_RING_FULL);

1505 1506 1507 1508 1509 1510 1511 1512 1513
	phy_start(priv->phydev);

	/* Enable TX interrupts for the 32 TXQs */
	intrl2_1_mask_clear(priv, 0xffffffff);

	/* Last call before we start the real business */
	netif_tx_start_all_queues(dev);
}

1514 1515 1516 1517 1518 1519 1520 1521 1522
static void rbuf_init(struct bcm_sysport_priv *priv)
{
	u32 reg;

	reg = rbuf_readl(priv, RBUF_CONTROL);
	reg |= RBUF_4B_ALGN | RBUF_RSB_EN;
	rbuf_writel(priv, reg, RBUF_CONTROL);
}

1523 1524 1525 1526 1527 1528 1529
static int bcm_sysport_open(struct net_device *dev)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	unsigned int i;
	int ret;

	/* Reset UniMAC */
1530
	umac_reset(priv);
1531 1532 1533 1534 1535

	/* Flush TX and RX FIFOs at TOPCTRL level */
	topctrl_flush(priv);

	/* Disable the UniMAC RX/TX */
1536
	umac_enable_set(priv, CMD_RX_EN | CMD_TX_EN, 0);
1537 1538

	/* Enable RBUF 2bytes alignment and Receive Status Block */
1539
	rbuf_init(priv);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549

	/* Set maximum frame length */
	umac_writel(priv, UMAC_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);

	/* Set MAC address */
	umac_set_hw_addr(priv, dev->dev_addr);

	/* Read CRC forward */
	priv->crc_fwd = !!(umac_readl(priv, UMAC_CMD) & CMD_CRC_FWD);

1550 1551
	priv->phydev = of_phy_connect(dev, priv->phy_dn, bcm_sysport_adj_link,
					0, priv->phy_interface);
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	if (!priv->phydev) {
		netdev_err(dev, "could not attach to PHY\n");
		return -ENODEV;
	}

	/* Reset house keeping link status */
	priv->old_duplex = -1;
	priv->old_link = -1;
	priv->old_pause = -1;

	/* mask all interrupts and request them */
	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
	intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
	intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);

	ret = request_irq(priv->irq0, bcm_sysport_rx_isr, 0, dev->name, dev);
	if (ret) {
		netdev_err(dev, "failed to request RX interrupt\n");
		goto out_phy_disconnect;
	}

	ret = request_irq(priv->irq1, bcm_sysport_tx_isr, 0, dev->name, dev);
	if (ret) {
		netdev_err(dev, "failed to request TX interrupt\n");
		goto out_free_irq0;
	}

	/* Initialize both hardware and software ring */
	for (i = 0; i < dev->num_tx_queues; i++) {
		ret = bcm_sysport_init_tx_ring(priv, i);
		if (ret) {
			netdev_err(dev, "failed to initialize TX ring %d\n",
1587
				   i);
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
			goto out_free_tx_ring;
		}
	}

	/* Initialize linked-list */
	tdma_writel(priv, TDMA_LL_RAM_INIT_BUSY, TDMA_STATUS);

	/* Initialize RX ring */
	ret = bcm_sysport_init_rx_ring(priv);
	if (ret) {
		netdev_err(dev, "failed to initialize RX ring\n");
		goto out_free_rx_ring;
	}

	/* Turn on RDMA */
	ret = rdma_enable_set(priv, 1);
	if (ret)
		goto out_free_rx_ring;

	/* Turn on TDMA */
	ret = tdma_enable_set(priv, 1);
	if (ret)
		goto out_clear_rx_int;

	/* Turn on UniMAC TX/RX */
1613
	umac_enable_set(priv, CMD_RX_EN | CMD_TX_EN, 1);
1614

1615
	bcm_sysport_netif_start(dev);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

	return 0;

out_clear_rx_int:
	intrl2_0_mask_set(priv, INTRL2_0_RDMA_MBDONE | INTRL2_0_TX_RING_FULL);
out_free_rx_ring:
	bcm_sysport_fini_rx_ring(priv);
out_free_tx_ring:
	for (i = 0; i < dev->num_tx_queues; i++)
		bcm_sysport_fini_tx_ring(priv, i);
	free_irq(priv->irq1, dev);
out_free_irq0:
	free_irq(priv->irq0, dev);
out_phy_disconnect:
	phy_disconnect(priv->phydev);
	return ret;
}

1634
static void bcm_sysport_netif_stop(struct net_device *dev)
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);

	/* stop all software from updating hardware */
	netif_tx_stop_all_queues(dev);
	napi_disable(&priv->napi);
	phy_stop(priv->phydev);

	/* mask all interrupts */
	intrl2_0_mask_set(priv, 0xffffffff);
	intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
	intrl2_1_mask_set(priv, 0xffffffff);
	intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
1648 1649 1650 1651 1652 1653 1654 1655 1656
}

static int bcm_sysport_stop(struct net_device *dev)
{
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	unsigned int i;
	int ret;

	bcm_sysport_netif_stop(dev);
1657 1658

	/* Disable UniMAC RX */
1659
	umac_enable_set(priv, CMD_RX_EN, 0);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676

	ret = tdma_enable_set(priv, 0);
	if (ret) {
		netdev_err(dev, "timeout disabling RDMA\n");
		return ret;
	}

	/* Wait for a maximum packet size to be drained */
	usleep_range(2000, 3000);

	ret = rdma_enable_set(priv, 0);
	if (ret) {
		netdev_err(dev, "timeout disabling TDMA\n");
		return ret;
	}

	/* Disable UniMAC TX */
1677
	umac_enable_set(priv, CMD_TX_EN, 0);
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702

	/* Free RX/TX rings SW structures */
	for (i = 0; i < dev->num_tx_queues; i++)
		bcm_sysport_fini_tx_ring(priv, i);
	bcm_sysport_fini_rx_ring(priv);

	free_irq(priv->irq0, dev);
	free_irq(priv->irq1, dev);

	/* Disconnect from PHY */
	phy_disconnect(priv->phydev);

	return 0;
}

static struct ethtool_ops bcm_sysport_ethtool_ops = {
	.get_settings		= bcm_sysport_get_settings,
	.set_settings		= bcm_sysport_set_settings,
	.get_drvinfo		= bcm_sysport_get_drvinfo,
	.get_msglevel		= bcm_sysport_get_msglvl,
	.set_msglevel		= bcm_sysport_set_msglvl,
	.get_link		= ethtool_op_get_link,
	.get_strings		= bcm_sysport_get_strings,
	.get_ethtool_stats	= bcm_sysport_get_stats,
	.get_sset_count		= bcm_sysport_get_sset_count,
1703 1704
	.get_wol		= bcm_sysport_get_wol,
	.set_wol		= bcm_sysport_set_wol,
1705 1706
	.get_coalesce		= bcm_sysport_get_coalesce,
	.set_coalesce		= bcm_sysport_set_coalesce,
1707 1708 1709 1710 1711 1712 1713 1714 1715
};

static const struct net_device_ops bcm_sysport_netdev_ops = {
	.ndo_start_xmit		= bcm_sysport_xmit,
	.ndo_tx_timeout		= bcm_sysport_tx_timeout,
	.ndo_open		= bcm_sysport_open,
	.ndo_stop		= bcm_sysport_stop,
	.ndo_set_features	= bcm_sysport_set_features,
	.ndo_set_rx_mode	= bcm_sysport_set_rx_mode,
1716
	.ndo_set_mac_address	= bcm_sysport_change_mac,
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
};

#define REV_FMT	"v%2x.%02x"

static int bcm_sysport_probe(struct platform_device *pdev)
{
	struct bcm_sysport_priv *priv;
	struct device_node *dn;
	struct net_device *dev;
	const void *macaddr;
	struct resource *r;
	u32 txq, rxq;
	int ret;

	dn = pdev->dev.of_node;
	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);

	/* Read the Transmit/Receive Queue properties */
	if (of_property_read_u32(dn, "systemport,num-txq", &txq))
		txq = TDMA_NUM_RINGS;
	if (of_property_read_u32(dn, "systemport,num-rxq", &rxq))
		rxq = 1;

	dev = alloc_etherdev_mqs(sizeof(*priv), txq, rxq);
	if (!dev)
		return -ENOMEM;

	/* Initialize private members */
	priv = netdev_priv(dev);

	priv->irq0 = platform_get_irq(pdev, 0);
	priv->irq1 = platform_get_irq(pdev, 1);
1749
	priv->wol_irq = platform_get_irq(pdev, 2);
1750 1751 1752 1753 1754 1755
	if (priv->irq0 <= 0 || priv->irq1 <= 0) {
		dev_err(&pdev->dev, "invalid interrupts\n");
		ret = -EINVAL;
		goto err;
	}

1756 1757 1758
	priv->base = devm_ioremap_resource(&pdev->dev, r);
	if (IS_ERR(priv->base)) {
		ret = PTR_ERR(priv->base);
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
		goto err;
	}

	priv->netdev = dev;
	priv->pdev = pdev;

	priv->phy_interface = of_get_phy_mode(dn);
	/* Default to GMII interface mode */
	if (priv->phy_interface < 0)
		priv->phy_interface = PHY_INTERFACE_MODE_GMII;

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	/* In the case of a fixed PHY, the DT node associated
	 * to the PHY is the Ethernet MAC DT node.
	 */
	if (of_phy_is_fixed_link(dn)) {
		ret = of_phy_register_fixed_link(dn);
		if (ret) {
			dev_err(&pdev->dev, "failed to register fixed PHY\n");
			goto err;
		}

		priv->phy_dn = dn;
	}

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	/* Initialize netdevice members */
	macaddr = of_get_mac_address(dn);
	if (!macaddr || !is_valid_ether_addr(macaddr)) {
		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
		random_ether_addr(dev->dev_addr);
	} else {
		ether_addr_copy(dev->dev_addr, macaddr);
	}

	SET_NETDEV_DEV(dev, &pdev->dev);
	dev_set_drvdata(&pdev->dev, dev);
1794
	dev->ethtool_ops = &bcm_sysport_ethtool_ops;
1795 1796 1797 1798 1799 1800 1801
	dev->netdev_ops = &bcm_sysport_netdev_ops;
	netif_napi_add(dev, &priv->napi, bcm_sysport_poll, 64);

	/* HW supported features, none enabled by default */
	dev->hw_features |= NETIF_F_RXCSUM | NETIF_F_HIGHDMA |
				NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;

1802 1803 1804
	/* Request the WOL interrupt and advertise suspend if available */
	priv->wol_irq_disabled = 1;
	ret = devm_request_irq(&pdev->dev, priv->wol_irq,
1805
			       bcm_sysport_wol_isr, 0, dev->name, priv);
1806 1807 1808
	if (!ret)
		device_set_wakeup_capable(&pdev->dev, 1);

1809
	/* Set the needed headroom once and for all */
1810 1811
	BUILD_BUG_ON(sizeof(struct bcm_tsb) != 8);
	dev->needed_headroom += sizeof(struct bcm_tsb);
1812

1813 1814 1815
	/* libphy will adjust the link state accordingly */
	netif_carrier_off(dev);

1816 1817 1818 1819 1820 1821 1822 1823
	ret = register_netdev(dev);
	if (ret) {
		dev_err(&pdev->dev, "failed to register net_device\n");
		goto err;
	}

	priv->rev = topctrl_readl(priv, REV_CNTL) & REV_MASK;
	dev_info(&pdev->dev,
1824 1825 1826 1827
		 "Broadcom SYSTEMPORT" REV_FMT
		 " at 0x%p (irqs: %d, %d, TXQs: %d, RXQs: %d)\n",
		 (priv->rev >> 8) & 0xff, priv->rev & 0xff,
		 priv->base, priv->irq0, priv->irq1, txq, rxq);
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848

	return 0;
err:
	free_netdev(dev);
	return ret;
}

static int bcm_sysport_remove(struct platform_device *pdev)
{
	struct net_device *dev = dev_get_drvdata(&pdev->dev);

	/* Not much to do, ndo_close has been called
	 * and we use managed allocations
	 */
	unregister_netdev(dev);
	free_netdev(dev);
	dev_set_drvdata(&pdev->dev, NULL);

	return 0;
}

1849
#ifdef CONFIG_PM_SLEEP
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
static int bcm_sysport_suspend_to_wol(struct bcm_sysport_priv *priv)
{
	struct net_device *ndev = priv->netdev;
	unsigned int timeout = 1000;
	u32 reg;

	/* Password has already been programmed */
	reg = umac_readl(priv, UMAC_MPD_CTRL);
	reg |= MPD_EN;
	reg &= ~PSW_EN;
	if (priv->wolopts & WAKE_MAGICSECURE)
		reg |= PSW_EN;
	umac_writel(priv, reg, UMAC_MPD_CTRL);

	/* Make sure RBUF entered WoL mode as result */
	do {
		reg = rbuf_readl(priv, RBUF_STATUS);
		if (reg & RBUF_WOL_MODE)
			break;

		udelay(10);
	} while (timeout-- > 0);

	/* Do not leave the UniMAC RBUF matching only MPD packets */
	if (!timeout) {
		reg = umac_readl(priv, UMAC_MPD_CTRL);
		reg &= ~MPD_EN;
		umac_writel(priv, reg, UMAC_MPD_CTRL);
		netif_err(priv, wol, ndev, "failed to enter WOL mode\n");
		return -ETIMEDOUT;
	}

	/* UniMAC receive needs to be turned on */
	umac_enable_set(priv, CMD_RX_EN, 1);

	/* Enable the interrupt wake-up source */
	intrl2_0_mask_clear(priv, INTRL2_0_MPD);

	netif_dbg(priv, wol, ndev, "entered WOL mode\n");

	return 0;
}

1893 1894 1895 1896 1897
static int bcm_sysport_suspend(struct device *d)
{
	struct net_device *dev = dev_get_drvdata(d);
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	unsigned int i;
1898
	int ret = 0;
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	u32 reg;

	if (!netif_running(dev))
		return 0;

	bcm_sysport_netif_stop(dev);

	phy_suspend(priv->phydev);

	netif_device_detach(dev);

	/* Disable UniMAC RX */
	umac_enable_set(priv, CMD_RX_EN, 0);

	ret = rdma_enable_set(priv, 0);
	if (ret) {
		netdev_err(dev, "RDMA timeout!\n");
		return ret;
	}

	/* Disable RXCHK if enabled */
1920
	if (priv->rx_chk_en) {
1921 1922 1923 1924 1925 1926
		reg = rxchk_readl(priv, RXCHK_CONTROL);
		reg &= ~RXCHK_EN;
		rxchk_writel(priv, reg, RXCHK_CONTROL);
	}

	/* Flush RX pipe */
1927 1928
	if (!priv->wolopts)
		topctrl_writel(priv, RX_FLUSH, RX_FLUSH_CNTL);
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947

	ret = tdma_enable_set(priv, 0);
	if (ret) {
		netdev_err(dev, "TDMA timeout!\n");
		return ret;
	}

	/* Wait for a packet boundary */
	usleep_range(2000, 3000);

	umac_enable_set(priv, CMD_TX_EN, 0);

	topctrl_writel(priv, TX_FLUSH, TX_FLUSH_CNTL);

	/* Free RX/TX rings SW structures */
	for (i = 0; i < dev->num_tx_queues; i++)
		bcm_sysport_fini_tx_ring(priv, i);
	bcm_sysport_fini_rx_ring(priv);

1948 1949 1950 1951 1952
	/* Get prepared for Wake-on-LAN */
	if (device_may_wakeup(d) && priv->wolopts)
		ret = bcm_sysport_suspend_to_wol(priv);

	return ret;
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
}

static int bcm_sysport_resume(struct device *d)
{
	struct net_device *dev = dev_get_drvdata(d);
	struct bcm_sysport_priv *priv = netdev_priv(dev);
	unsigned int i;
	u32 reg;
	int ret;

	if (!netif_running(dev))
		return 0;

1966 1967
	umac_reset(priv);

1968 1969 1970 1971 1972
	/* We may have been suspended and never received a WOL event that
	 * would turn off MPD detection, take care of that now
	 */
	bcm_sysport_resume_from_wol(priv);

1973 1974 1975 1976 1977
	/* Initialize both hardware and software ring */
	for (i = 0; i < dev->num_tx_queues; i++) {
		ret = bcm_sysport_init_tx_ring(priv, i);
		if (ret) {
			netdev_err(dev, "failed to initialize TX ring %d\n",
1978
				   i);
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
			goto out_free_tx_rings;
		}
	}

	/* Initialize linked-list */
	tdma_writel(priv, TDMA_LL_RAM_INIT_BUSY, TDMA_STATUS);

	/* Initialize RX ring */
	ret = bcm_sysport_init_rx_ring(priv);
	if (ret) {
		netdev_err(dev, "failed to initialize RX ring\n");
		goto out_free_rx_ring;
	}

	netif_device_attach(dev);

	/* RX pipe enable */
	topctrl_writel(priv, 0, RX_FLUSH_CNTL);

	ret = rdma_enable_set(priv, 1);
	if (ret) {
		netdev_err(dev, "failed to enable RDMA\n");
		goto out_free_rx_ring;
	}

	/* Enable rxhck */
2005
	if (priv->rx_chk_en) {
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
		reg = rxchk_readl(priv, RXCHK_CONTROL);
		reg |= RXCHK_EN;
		rxchk_writel(priv, reg, RXCHK_CONTROL);
	}

	rbuf_init(priv);

	/* Set maximum frame length */
	umac_writel(priv, UMAC_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);

	/* Set MAC address */
	umac_set_hw_addr(priv, dev->dev_addr);

	umac_enable_set(priv, CMD_RX_EN, 1);

	/* TX pipe enable */
	topctrl_writel(priv, 0, TX_FLUSH_CNTL);

	umac_enable_set(priv, CMD_TX_EN, 1);

	ret = tdma_enable_set(priv, 1);
	if (ret) {
		netdev_err(dev, "TDMA timeout!\n");
		goto out_free_rx_ring;
	}

	phy_resume(priv->phydev);

	bcm_sysport_netif_start(dev);

	return 0;

out_free_rx_ring:
	bcm_sysport_fini_rx_ring(priv);
out_free_tx_rings:
	for (i = 0; i < dev->num_tx_queues; i++)
		bcm_sysport_fini_tx_ring(priv, i);
	return ret;
}
#endif

static SIMPLE_DEV_PM_OPS(bcm_sysport_pm_ops,
		bcm_sysport_suspend, bcm_sysport_resume);

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
static const struct of_device_id bcm_sysport_of_match[] = {
	{ .compatible = "brcm,systemport-v1.00" },
	{ .compatible = "brcm,systemport" },
	{ /* sentinel */ }
};

static struct platform_driver bcm_sysport_driver = {
	.probe	= bcm_sysport_probe,
	.remove	= bcm_sysport_remove,
	.driver =  {
		.name = "brcm-systemport",
		.of_match_table = bcm_sysport_of_match,
2062
		.pm = &bcm_sysport_pm_ops,
2063 2064 2065 2066 2067 2068 2069 2070
	},
};
module_platform_driver(bcm_sysport_driver);

MODULE_AUTHOR("Broadcom Corporation");
MODULE_DESCRIPTION("Broadcom System Port Ethernet MAC driver");
MODULE_ALIAS("platform:brcm-systemport");
MODULE_LICENSE("GPL");