file.c 43.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31 32 33 34

#include <asm/io.h>
#include <asm/semaphore.h>
#include <asm/spu.h>
35
#include <asm/spu_info.h>
36 37 38 39
#include <asm/uaccess.h>

#include "spufs.h"

40 41
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

42 43 44 45
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
46 47 48
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	ctx->local_store = inode->i_mapping;
49
	smp_wmb();
50 51 52
	return 0;
}

53 54 55 56 57 58 59 60 61
static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	char *local_store = ctx->ops->get_ls(ctx);
	return simple_read_from_buffer(buffer, size, pos, local_store,
					LS_SIZE);
}

62 63 64 65 66
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
	int ret;
67
	struct spu_context *ctx = file->private_data;
68

69
	spu_acquire(ctx);
70
	ret = __spufs_mem_read(ctx, buffer, size, pos);
71
	spu_release(ctx);
72 73 74 75 76 77 78 79
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
					size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
80 81
	char *local_store;
	int ret;
82 83 84 85 86

	size = min_t(ssize_t, LS_SIZE - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;
87 88 89 90 91 92 93 94 95

	spu_acquire(ctx);

	local_store = ctx->ops->get_ls(ctx);
	ret = copy_from_user(local_store + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
96 97
}

98 99
static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
100 101
{
	struct spu_context *ctx = vma->vm_file->private_data;
102 103
	unsigned long pfn, offset = address - vma->vm_start;

104 105
	offset += vma->vm_pgoff << PAGE_SHIFT;

106 107 108
	if (offset >= LS_SIZE)
		return NOPFN_SIGBUS;

109 110
	spu_acquire(ctx);

111 112
	if (ctx->state == SPU_STATE_SAVED) {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
113
							& ~_PAGE_NO_CACHE);
114
		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
115 116
	} else {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
117 118
					     | _PAGE_NO_CACHE);
		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
119
	}
120
	vm_insert_pfn(vma, address, pfn);
121

122
	spu_release(ctx);
123

124
	return NOPFN_REFAULT;
125 126
}

127

128
static struct vm_operations_struct spufs_mem_mmap_vmops = {
129
	.nopfn = spufs_mem_mmap_nopfn,
130 131
};

132 133 134
static int
spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
{
135 136
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
137

138
	vma->vm_flags |= VM_IO | VM_PFNMAP;
139 140 141 142
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE);

	vma->vm_ops = &spufs_mem_mmap_vmops;
143 144 145
	return 0;
}

146
static const struct file_operations spufs_mem_fops = {
147 148 149
	.open	 = spufs_mem_open,
	.read    = spufs_mem_read,
	.write   = spufs_mem_write,
150
	.llseek  = generic_file_llseek,
151
	.mmap    = spufs_mem_mmap,
152 153
};

154
static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
155
				    unsigned long address,
156
				    unsigned long ps_offs,
157
				    unsigned long ps_size)
158 159
{
	struct spu_context *ctx = vma->vm_file->private_data;
160
	unsigned long area, offset = address - vma->vm_start;
161 162 163
	int ret;

	offset += vma->vm_pgoff << PAGE_SHIFT;
164
	if (offset >= ps_size)
165
		return NOPFN_SIGBUS;
166

167 168 169
	/* error here usually means a signal.. we might want to test
	 * the error code more precisely though
	 */
170
	ret = spu_acquire_runnable(ctx, 0);
171
	if (ret)
172
		return NOPFN_REFAULT;
173 174

	area = ctx->spu->problem_phys + ps_offs;
175
	vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
176 177
	spu_release(ctx);

178
	return NOPFN_REFAULT;
179 180
}

181
#if SPUFS_MMAP_4K
182 183
static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
					   unsigned long address)
184
{
185
	return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
186 187 188
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
189
	.nopfn = spufs_cntl_mmap_nopfn,
190 191 192 193 194 195 196 197 198 199
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

200
	vma->vm_flags |= VM_IO | VM_PFNMAP;
201
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
202
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
203 204 205 206

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
207 208 209
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
210

211
static u64 spufs_cntl_get(void *data)
212
{
213 214
	struct spu_context *ctx = data;
	u64 val;
215

216 217 218 219 220
	spu_acquire(ctx);
	val = ctx->ops->status_read(ctx);
	spu_release(ctx);

	return val;
221 222
}

223
static void spufs_cntl_set(void *data, u64 val)
224
{
225 226 227 228 229
	struct spu_context *ctx = data;

	spu_acquire(ctx);
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
230 231
}

232
static int spufs_cntl_open(struct inode *inode, struct file *file)
233
{
234 235 236 237 238
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	file->private_data = ctx;
	ctx->cntl = inode->i_mapping;
239
	smp_wmb();
240 241
	return simple_attr_open(inode, file, spufs_cntl_get,
					spufs_cntl_set, "0x%08lx");
242 243
}

244
static const struct file_operations spufs_cntl_fops = {
245
	.open = spufs_cntl_open,
246
	.release = simple_attr_close,
247 248
	.read = simple_attr_read,
	.write = simple_attr_write,
249 250 251
	.mmap = spufs_cntl_mmap,
};

252 253 254 255 256 257 258 259
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

260 261 262 263 264 265 266 267 268
static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);
}

269 270 271 272 273
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	int ret;
274
	struct spu_context *ctx = file->private_data;
275 276

	spu_acquire_saved(ctx);
277
	ret = __spufs_regs_read(ctx, buffer, size, pos);
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
	spu_release(ctx);
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
}

304
static const struct file_operations spufs_regs_fops = {
305 306 307
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
308 309 310
	.llseek  = generic_file_llseek,
};

311 312 313 314 315 316 317 318 319
static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
			size_t size, loff_t * pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));
}

320 321 322 323 324
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	int ret;
325
	struct spu_context *ctx = file->private_data;
326 327

	spu_acquire_saved(ctx);
328
	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	spu_release(ctx);
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
}

355
static const struct file_operations spufs_fpcr_fops = {
356 357 358 359 360 361
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

362 363 364 365 366 367 368 369 370
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

371 372 373 374 375 376 377 378
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
379 380 381
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
382
	struct spu_context *ctx = file->private_data;
383 384
	u32 mbox_data, __user *udata;
	ssize_t count;
385 386 387 388

	if (len < 4)
		return -EINVAL;

389 390 391 392 393
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

394
	spu_acquire(ctx);
395
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
413
	spu_release(ctx);
414

415 416
	if (!count)
		count = -EAGAIN;
417

418
	return count;
419 420
}

421
static const struct file_operations spufs_mbox_fops = {
422 423 424 425 426 427 428
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
429
	struct spu_context *ctx = file->private_data;
430 431 432 433 434
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

435 436 437 438 439
	spu_acquire(ctx);

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
440 441 442 443 444 445 446

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

447
static const struct file_operations spufs_mbox_stat_fops = {
448 449 450 451 452
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
453
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
454
{
455 456
	return ctx->ops->ibox_read(ctx, data);
}
457

458 459 460
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
461

462
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
463 464
}

465 466
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
467
{
468 469 470 471
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
472 473
}

474 475 476 477 478 479 480 481 482 483 484 485
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
486 487 488
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
489
	struct spu_context *ctx = file->private_data;
490 491
	u32 ibox_data, __user *udata;
	ssize_t count;
492 493 494 495

	if (len < 4)
		return -EINVAL;

496 497 498 499 500
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

501
	spu_acquire(ctx);
502

503 504
	/* wait only for the first element */
	count = 0;
505
	if (file->f_flags & O_NONBLOCK) {
506
		if (!spu_ibox_read(ctx, &ibox_data))
507
			count = -EAGAIN;
508
	} else {
509
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
510
	}
511 512
	if (count)
		goto out;
513

514 515 516 517
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
		goto out;
518

519 520 521 522 523 524 525 526 527 528 529 530 531 532
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
533

534 535
out:
	spu_release(ctx);
536

537
	return count;
538 539 540 541
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
542
	struct spu_context *ctx = file->private_data;
543 544
	unsigned int mask;

545
	poll_wait(file, &ctx->ibox_wq, wait);
546

547 548 549
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
550 551 552 553

	return mask;
}

554
static const struct file_operations spufs_ibox_fops = {
555 556 557 558 559 560 561 562 563
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
564
	struct spu_context *ctx = file->private_data;
565 566 567 568 569
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

570 571 572
	spu_acquire(ctx);
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
573 574 575 576 577 578 579

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

580
static const struct file_operations spufs_ibox_stat_fops = {
581 582 583 584 585
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
586
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
587
{
588 589
	return ctx->ops->wbox_write(ctx, data);
}
590

591 592 593 594
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
595

596
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
597 598 599 600

	return ret;
}

601 602
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
603
{
604 605 606 607
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
608 609
}

610 611 612 613 614 615 616 617 618 619 620 621
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
622 623 624
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
625
	struct spu_context *ctx = file->private_data;
626 627
	u32 wbox_data, __user *udata;
	ssize_t count;
628 629 630 631

	if (len < 4)
		return -EINVAL;

632 633 634 635 636
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
637 638
		return -EFAULT;

639 640
	spu_acquire(ctx);

641 642 643 644 645
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
646
	if (file->f_flags & O_NONBLOCK) {
647
		if (!spu_wbox_write(ctx, wbox_data))
648
			count = -EAGAIN;
649
	} else {
650
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
651 652
	}

653 654
	if (count)
		goto out;
655

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
	/* write aѕ much as possible */
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

out:
	spu_release(ctx);
	return count;
671 672 673 674
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
675
	struct spu_context *ctx = file->private_data;
676 677
	unsigned int mask;

678
	poll_wait(file, &ctx->wbox_wq, wait);
679

680 681 682
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
683 684 685 686

	return mask;
}

687
static const struct file_operations spufs_wbox_fops = {
688 689 690 691 692 693 694 695 696
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
697
	struct spu_context *ctx = file->private_data;
698 699 700 701 702
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

703 704 705
	spu_acquire(ctx);
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
706 707 708 709 710 711 712

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

713
static const struct file_operations spufs_wbox_stat_fops = {
714 715 716 717
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

718 719 720 721 722 723
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	ctx->signal1 = inode->i_mapping;
724
	smp_wmb();
725 726 727
	return nonseekable_open(inode, file);
}

728
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
729 730
			size_t len, loff_t *pos)
{
731
	int ret = 0;
732 733 734 735 736
	u32 data;

	if (len < 4)
		return -EINVAL;

737 738 739 740
	if (ctx->csa.spu_chnlcnt_RW[3]) {
		data = ctx->csa.spu_chnldata_RW[3];
		ret = 4;
	}
741

742 743 744
	if (!ret)
		goto out;

745 746 747
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

748 749
out:
	return ret;
750 751
}

752 753 754 755 756 757 758 759 760 761 762 763 764
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	int ret;
	struct spu_context *ctx = file->private_data;

	spu_acquire_saved(ctx);
	ret = __spufs_signal1_read(ctx, buf, len, pos);
	spu_release(ctx);

	return ret;
}

765 766 767 768 769 770 771 772 773 774 775 776 777 778
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

779 780 781
	spu_acquire(ctx);
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
782 783 784 785

	return 4;
}

786 787
static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
788
{
789
#if PAGE_SIZE == 0x1000
790
	return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
791 792 793 794
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
795
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
796 797 798
#else
#error unsupported page size
#endif
799 800 801
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
802
	.nopfn = spufs_signal1_mmap_nopfn,
803 804 805 806 807 808 809
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

810
	vma->vm_flags |= VM_IO | VM_PFNMAP;
811
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
812
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
813 814 815 816 817

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

818
static const struct file_operations spufs_signal1_fops = {
819
	.open = spufs_signal1_open,
820 821
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
822
	.mmap = spufs_signal1_mmap,
823 824
};

825 826 827 828 829 830
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	ctx->signal2 = inode->i_mapping;
831
	smp_wmb();
832 833 834
	return nonseekable_open(inode, file);
}

835
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
836 837
			size_t len, loff_t *pos)
{
838
	int ret = 0;
839 840 841 842 843
	u32 data;

	if (len < 4)
		return -EINVAL;

844 845 846 847
	if (ctx->csa.spu_chnlcnt_RW[4]) {
		data =  ctx->csa.spu_chnldata_RW[4];
		ret = 4;
	}
848

849 850 851
	if (!ret)
		goto out;

852 853 854
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

855
out:
856 857 858 859 860 861 862 863 864 865 866 867 868 869
	return ret;
}

static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire_saved(ctx);
	ret = __spufs_signal2_read(ctx, buf, len, pos);
	spu_release(ctx);

	return ret;
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

886 887 888
	spu_acquire(ctx);
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
889 890 891 892

	return 4;
}

893
#if SPUFS_MMAP_4K
894 895
static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
896
{
897
#if PAGE_SIZE == 0x1000
898
	return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
899 900 901 902
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
903
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
904 905 906
#else
#error unsupported page size
#endif
907 908 909
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
910
	.nopfn = spufs_signal2_mmap_nopfn,
911 912 913 914 915 916 917
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

918
	vma->vm_flags |= VM_IO | VM_PFNMAP;
919
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
920
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
921 922 923 924

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
925 926 927
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
928

929
static const struct file_operations spufs_signal2_fops = {
930
	.open = spufs_signal2_open,
931 932
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
933
	.mmap = spufs_signal2_mmap,
934 935 936 937 938 939
};

static void spufs_signal1_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

940 941 942
	spu_acquire(ctx);
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
943 944
}

945 946 947 948 949 950
static u64 __spufs_signal1_type_get(void *data)
{
	struct spu_context *ctx = data;
	return ctx->ops->signal1_type_get(ctx);
}

951 952 953
static u64 spufs_signal1_type_get(void *data)
{
	struct spu_context *ctx = data;
954 955 956
	u64 ret;

	spu_acquire(ctx);
957
	ret = __spufs_signal1_type_get(data);
958 959 960
	spu_release(ctx);

	return ret;
961 962 963 964 965 966 967 968
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
					spufs_signal1_type_set, "%llu");

static void spufs_signal2_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

969 970 971
	spu_acquire(ctx);
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
972 973
}

974 975 976 977 978 979
static u64 __spufs_signal2_type_get(void *data)
{
	struct spu_context *ctx = data;
	return ctx->ops->signal2_type_get(ctx);
}

980 981 982
static u64 spufs_signal2_type_get(void *data)
{
	struct spu_context *ctx = data;
983 984 985
	u64 ret;

	spu_acquire(ctx);
986
	ret = __spufs_signal2_type_get(data);
987 988 989
	spu_release(ctx);

	return ret;
990 991 992 993
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
					spufs_signal2_type_set, "%llu");

994
#if SPUFS_MMAP_4K
995 996
static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
997
{
998
	return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
999 1000 1001
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
1002
	.nopfn = spufs_mss_mmap_nopfn,
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1013
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1014
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1015
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1016 1017 1018 1019

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
1020 1021 1022
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1023 1024 1025 1026

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1027
	struct spu_context *ctx = i->i_ctx;
1028 1029

	file->private_data = i->i_ctx;
1030 1031
	ctx->mss = inode->i_mapping;
	smp_wmb();
1032 1033 1034
	return nonseekable_open(inode, file);
}

1035
static const struct file_operations spufs_mss_fops = {
1036 1037
	.open	 = spufs_mss_open,
	.mmap	 = spufs_mss_mmap,
1038 1039
};

1040 1041
static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
					    unsigned long address)
1042
{
1043
	return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1044 1045 1046
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1047
	.nopfn = spufs_psmap_mmap_nopfn,
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1058
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1069
	struct spu_context *ctx = i->i_ctx;
1070 1071

	file->private_data = i->i_ctx;
1072 1073
	ctx->psmap = inode->i_mapping;
	smp_wmb();
1074 1075 1076
	return nonseekable_open(inode, file);
}

1077
static const struct file_operations spufs_psmap_fops = {
1078 1079
	.open	 = spufs_psmap_open,
	.mmap	 = spufs_psmap_mmap,
1080 1081 1082
};


1083
#if SPUFS_MMAP_4K
1084 1085
static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1086
{
1087
	return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1088 1089 1090
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1091
	.nopfn = spufs_mfc_mmap_nopfn,
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1102
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1103
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1104
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1105 1106 1107 1108

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1109 1110 1111
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

	file->private_data = ctx;
1126 1127
	ctx->mfc = inode->i_mapping;
	smp_wmb();
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	return nonseekable_open(inode, file);
}

/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->mfc_wq);

	pr_debug("%s %s\n", __FUNCTION__, spu->name);
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

	spu_acquire(ctx);
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

1312
	spu_acquire_runnable(ctx, 0);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
		if (status)
			ret = status;
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ctx->tagwait |= 1 << cmd.tag;
1328
	ret = size;
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

	spu_acquire(ctx);
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	poll_wait(file, &ctx->mfc_wq, wait);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1360
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire(ctx);
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
out:
#else
	ret = 0;
#endif
	spu_release(ctx);

	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1386
	return spufs_mfc_flush(file, NULL);
1387 1388 1389 1390 1391 1392 1393 1394 1395
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

1396
static const struct file_operations spufs_mfc_fops = {
1397 1398 1399 1400 1401 1402 1403
	.open	 = spufs_mfc_open,
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1404
	.mmap	 = spufs_mfc_mmap,
1405 1406
};

1407 1408 1409
static void spufs_npc_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
1410 1411 1412
	spu_acquire(ctx);
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1413 1414 1415 1416 1417 1418
}

static u64 spufs_npc_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret;
1419 1420 1421
	spu_acquire(ctx);
	ret = ctx->ops->npc_read(ctx);
	spu_release(ctx);
1422 1423
	return ret;
}
1424 1425
DEFINE_SIMPLE_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
			"0x%llx\n")
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435
static void spufs_decr_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->decr.slot[0] = (u32) val;
	spu_release(ctx);
}

1436
static u64 __spufs_decr_get(void *data)
1437 1438 1439
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1440 1441 1442 1443 1444 1445
	return lscsa->decr.slot[0];
}

static u64 spufs_decr_get(void *data)
{
	struct spu_context *ctx = data;
1446 1447
	u64 ret;
	spu_acquire_saved(ctx);
1448
	ret = __spufs_decr_get(data);
1449 1450 1451 1452
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1453
			"0x%llx\n")
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463

static void spufs_decr_status_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->decr_status.slot[0] = (u32) val;
	spu_release(ctx);
}

1464
static u64 __spufs_decr_status_get(void *data)
1465 1466 1467
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1468 1469 1470 1471 1472 1473
	return lscsa->decr_status.slot[0];
}

static u64 spufs_decr_status_get(void *data)
{
	struct spu_context *ctx = data;
1474 1475
	u64 ret;
	spu_acquire_saved(ctx);
1476
	ret = __spufs_decr_status_get(data);
1477 1478 1479 1480
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1481
			spufs_decr_status_set, "0x%llx\n")
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491

static void spufs_event_mask_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->event_mask.slot[0] = (u32) val;
	spu_release(ctx);
}

1492
static u64 __spufs_event_mask_get(void *data)
1493 1494 1495
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1496 1497 1498 1499 1500 1501
	return lscsa->event_mask.slot[0];
}

static u64 spufs_event_mask_get(void *data)
{
	struct spu_context *ctx = data;
1502 1503
	u64 ret;
	spu_acquire_saved(ctx);
1504
	ret = __spufs_event_mask_get(data);
1505 1506 1507 1508
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1509
			spufs_event_mask_set, "0x%llx\n")
1510

1511
static u64 __spufs_event_status_get(void *data)
1512 1513 1514 1515 1516 1517
{
	struct spu_context *ctx = data;
	struct spu_state *state = &ctx->csa;
	u64 stat;
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
		return state->spu_chnldata_RW[0];
	return 0;
}

static u64 spufs_event_status_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret = 0;

	spu_acquire_saved(ctx);
	ret = __spufs_event_status_get(data);
1529 1530 1531 1532 1533 1534
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
			NULL, "0x%llx\n")

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
static void spufs_srr0_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->srr0.slot[0] = (u32) val;
	spu_release(ctx);
}

static u64 spufs_srr0_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	u64 ret;
	spu_acquire_saved(ctx);
	ret = lscsa->srr0.slot[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1555
			"0x%llx\n")
1556

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
static u64 spufs_id_get(void *data)
{
	struct spu_context *ctx = data;
	u64 num;

	spu_acquire(ctx);
	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;
	spu_release(ctx);

	return num;
}
A
Al Viro 已提交
1571
DEFINE_SIMPLE_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n")
1572

1573
static u64 __spufs_object_id_get(void *data)
1574 1575 1576 1577 1578
{
	struct spu_context *ctx = data;
	return ctx->object_id;
}

1579 1580 1581 1582 1583 1584
static u64 spufs_object_id_get(void *data)
{
	/* FIXME: Should there really be no locking here? */
	return __spufs_object_id_get(data);
}

1585 1586 1587 1588 1589 1590 1591 1592 1593
static void spufs_object_id_set(void *data, u64 id)
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
}

DEFINE_SIMPLE_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		spufs_object_id_set, "0x%llx\n");

1594 1595 1596 1597 1598 1599
static u64 __spufs_lslr_get(void *data)
{
	struct spu_context *ctx = data;
	return ctx->csa.priv2.spu_lslr_RW;
}

1600 1601 1602 1603 1604 1605
static u64 spufs_lslr_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret;

	spu_acquire_saved(ctx);
1606
	ret = __spufs_lslr_get(data);
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
	spu_release(ctx);

	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n")

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
{
	u32 mbox_stat;
	u32 data;

	mbox_stat = ctx->csa.prob.mb_stat_R;
	if (mbox_stat & 0x0000ff) {
		data = ctx->csa.prob.pu_mb_R;
	}

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

1635 1636 1637
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
1638
	int ret;
1639 1640 1641 1642 1643 1644 1645
	struct spu_context *ctx = file->private_data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1646
	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
1647 1648 1649
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

1650
	return ret;
1651 1652
}

1653
static const struct file_operations spufs_mbox_info_fops = {
1654 1655 1656 1657 1658
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
				char __user *buf, size_t len, loff_t *pos)
{
	u32 ibox_stat;
	u32 data;

	ibox_stat = ctx->csa.prob.mb_stat_R;
	if (ibox_stat & 0xff0000) {
		data = ctx->csa.priv2.puint_mb_R;
	}

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

1673 1674 1675 1676
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
1677
	int ret;
1678 1679 1680 1681 1682 1683

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1684
	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
1685 1686 1687
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

1688
	return ret;
1689 1690
}

1691
static const struct file_operations spufs_ibox_info_fops = {
1692 1693 1694 1695 1696
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

1697 1698
static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1699 1700 1701 1702 1703
{
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

1720 1721 1722 1723 1724
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
1725
	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
1726 1727 1728
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

1729
	return ret;
1730 1731
}

1732
static const struct file_operations spufs_wbox_info_fops = {
1733 1734 1735 1736 1737
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

1738 1739
static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
{
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_dma_info_read(ctx, buf, len, pos);
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	return ret;
}

1782
static const struct file_operations spufs_dma_info_fops = {
1783 1784 1785 1786
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

1787 1788
static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
1789 1790 1791
{
	struct spu_proxydma_info info;
	struct mfc_cq_sr *qp, *puqp;
1792
	int ret = sizeof info;
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire_saved(ctx);
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
1827 1828 1829 1830 1831 1832
	spin_unlock(&ctx->csa.register_lock);
	spu_release(ctx);

	return ret;
}

1833
static const struct file_operations spufs_proxydma_info_fops = {
1834 1835 1836 1837
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

1838 1839
struct tree_descr spufs_dir_contents[] = {
	{ "mem",  &spufs_mem_fops,  0666, },
1840
	{ "regs", &spufs_regs_fops,  0666, },
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
1851
	{ "cntl", &spufs_cntl_fops,  0666, },
1852
	{ "fpcr", &spufs_fpcr_fops, 0666, },
1853 1854 1855 1856 1857
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
1858 1859 1860
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
1861
	{ "event_status", &spufs_event_status_ops, 0444, },
1862
	{ "psmap", &spufs_psmap_fops, 0666, },
1863 1864
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
1865 1866 1867
	{ "mbox_info", &spufs_mbox_info_fops, 0444, },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, },
1868 1869
	{ "dma_info", &spufs_dma_info_fops, 0444, },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444, },
1870 1871
	{},
};
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

struct tree_descr spufs_dir_nosched_contents[] = {
	{ "mem",  &spufs_mem_fops,  0666, },
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "psmap", &spufs_psmap_fops, 0666, },
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
	{},
};
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917

struct spufs_coredump_reader spufs_coredump_read[] = {
	{ "regs", __spufs_regs_read, NULL, 128 * 16 },
	{ "fpcr", __spufs_fpcr_read, NULL, 16 },
	{ "lslr", NULL, __spufs_lslr_get, 11 },
	{ "decr", NULL, __spufs_decr_get, 11 },
	{ "decr_status", NULL, __spufs_decr_status_get, 11 },
	{ "mem", __spufs_mem_read, NULL, 256 * 1024, },
	{ "signal1", __spufs_signal1_read, NULL, 4 },
	{ "signal1_type", NULL, __spufs_signal1_type_get, 2 },
	{ "signal2", __spufs_signal2_read, NULL, 4 },
	{ "signal2_type", NULL, __spufs_signal2_type_get, 2 },
	{ "event_mask", NULL, __spufs_event_mask_get, 8 },
	{ "event_status", NULL, __spufs_event_status_get, 8 },
	{ "mbox_info", __spufs_mbox_info_read, NULL, 4 },
	{ "ibox_info", __spufs_ibox_info_read, NULL, 4 },
	{ "wbox_info", __spufs_wbox_info_read, NULL, 16 },
	{ "dma_info", __spufs_dma_info_read, NULL, 69 * 8 },
	{ "proxydma_info", __spufs_proxydma_info_read, NULL, 35 * 8 },
	{ "object-id", NULL, __spufs_object_id_get, 19 },
	{ },
};
int spufs_coredump_num_notes = ARRAY_SIZE(spufs_coredump_read) - 1;