pci-ioda.c 40.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Support PCI/PCIe on PowerNV platforms
 *
 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

12
#undef DEBUG
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/msi.h>

#include <asm/sections.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <asm/machdep.h>
#include <asm/ppc-pci.h>
#include <asm/opal.h>
#include <asm/iommu.h>
#include <asm/tce.h>

#include "powernv.h"
#include "pci.h"

struct resource_wrap {
	struct list_head	link;
	resource_size_t		size;
	resource_size_t		align;
	struct pci_dev		*dev;	/* Set if it's a device */
	struct pci_bus		*bus;	/* Set if it's a bridge */
};

static int __pe_printk(const char *level, const struct pnv_ioda_pe *pe,
		       struct va_format *vaf)
{
	char pfix[32];

	if (pe->pdev)
		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
	else
		sprintf(pfix, "%04x:%02x     ",
			pci_domain_nr(pe->pbus), pe->pbus->number);
	return printk("pci %s%s: [PE# %.3d] %pV", level, pfix, pe->pe_number, vaf);
}

#define define_pe_printk_level(func, kern_level)		\
static int func(const struct pnv_ioda_pe *pe, const char *fmt, ...)	\
{								\
	struct va_format vaf;					\
	va_list args;						\
	int r;							\
								\
	va_start(args, fmt);					\
								\
	vaf.fmt = fmt;						\
	vaf.va = &args;						\
								\
	r = __pe_printk(kern_level, pe, &vaf);			\
	va_end(args);						\
								\
	return r;						\
}								\

define_pe_printk_level(pe_err, KERN_ERR);
define_pe_printk_level(pe_warn, KERN_WARNING);
define_pe_printk_level(pe_info, KERN_INFO);


/* Calculate resource usage & alignment requirement of a single
 * device. This will also assign all resources within the device
 * for a given type starting at 0 for the biggest one and then
 * assigning in decreasing order of size.
 */
static void __devinit pnv_ioda_calc_dev(struct pci_dev *dev, unsigned int flags,
					resource_size_t *size,
					resource_size_t *align)
{
	resource_size_t start;
	struct resource *r;
	int i;

	pr_devel("  -> CDR %s\n", pci_name(dev));

	*size = *align = 0;

	/* Clear the resources out and mark them all unset */
	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
		r = &dev->resource[i];
		if (!(r->flags & flags))
		    continue;
		if (r->start) {
			r->end -= r->start;
			r->start = 0;
		}
		r->flags |= IORESOURCE_UNSET;
	}

	/* We currently keep all memory resources together, we
	 * will handle prefetch & 64-bit separately in the future
	 * but for now we stick everybody in M32
	 */
	start = 0;
	for (;;) {
		resource_size_t max_size = 0;
		int max_no = -1;

		/* Find next biggest resource */
		for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
			r = &dev->resource[i];
			if (!(r->flags & IORESOURCE_UNSET) ||
			    !(r->flags & flags))
				continue;
			if (resource_size(r) > max_size) {
				max_size = resource_size(r);
				max_no = i;
			}
		}
		if (max_no < 0)
			break;
		r = &dev->resource[max_no];
		if (max_size > *align)
			*align = max_size;
		*size += max_size;
		r->start = start;
		start += max_size;
		r->end = r->start + max_size - 1;
		r->flags &= ~IORESOURCE_UNSET;
		pr_devel("  ->     R%d %016llx..%016llx\n",
			 max_no, r->start, r->end);
	}
	pr_devel("  <- CDR %s size=%llx align=%llx\n",
		 pci_name(dev), *size, *align);
}

/* Allocate a resource "wrap" for a given device or bridge and
 * insert it at the right position in the sorted list
 */
static void __devinit pnv_ioda_add_wrap(struct list_head *list,
					struct pci_bus *bus,
					struct pci_dev *dev,
					resource_size_t size,
					resource_size_t align)
{
	struct resource_wrap *w1, *w = kzalloc(sizeof(*w), GFP_KERNEL);

	w->size = size;
	w->align = align;
	w->dev = dev;
	w->bus = bus;

	list_for_each_entry(w1, list, link) {
		if (w1->align < align) {
			list_add_tail(&w->link, &w1->link);
			return;
		}
	}
	list_add_tail(&w->link, list);
}

/* Offset device resources of a given type */
static void __devinit pnv_ioda_offset_dev(struct pci_dev *dev,
					  unsigned int flags,
					  resource_size_t offset)
{
	struct resource *r;
	int i;

	pr_devel("  -> ODR %s [%x] +%016llx\n", pci_name(dev), flags, offset);

	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
		r = &dev->resource[i];
		if (r->flags & flags) {
			dev->resource[i].start += offset;
			dev->resource[i].end += offset;
		}
	}

	pr_devel("  <- ODR %s [%x] +%016llx\n", pci_name(dev), flags, offset);
}

/* Offset bus resources (& all children) of a given type */
static void __devinit pnv_ioda_offset_bus(struct pci_bus *bus,
					  unsigned int flags,
					  resource_size_t offset)
{
	struct resource *r;
	struct pci_dev *dev;
	struct pci_bus *cbus;
	int i;

	pr_devel("  -> OBR %s [%x] +%016llx\n",
		 bus->self ? pci_name(bus->self) : "root", flags, offset);

206
	pci_bus_for_each_resource(bus, r, i) {
207
		if (r && (r->flags & flags)) {
208 209
			r->start += offset;
			r->end += offset;
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
		}
	}
	list_for_each_entry(dev, &bus->devices, bus_list)
		pnv_ioda_offset_dev(dev, flags, offset);
	list_for_each_entry(cbus, &bus->children, node)
		pnv_ioda_offset_bus(cbus, flags, offset);

	pr_devel("  <- OBR %s [%x]\n",
		 bus->self ? pci_name(bus->self) : "root", flags);
}

/* This is the guts of our IODA resource allocation. This is called
 * recursively for each bus in the system. It calculates all the
 * necessary size and requirements for children and assign them
 * resources such that:
 *
 *   - Each function fits in it's own contiguous set of IO/M32
 *     segment
 *
 *   - All segments behind a P2P bridge are contiguous and obey
 *     alignment constraints of those bridges
 */
static void __devinit pnv_ioda_calc_bus(struct pci_bus *bus, unsigned int flags,
					resource_size_t *size,
					resource_size_t *align)
{
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
	resource_size_t dev_size, dev_align, start;
	resource_size_t min_align, min_balign;
	struct pci_dev *cdev;
	struct pci_bus *cbus;
	struct list_head head;
	struct resource_wrap *w;
	unsigned int bres;

	*size = *align = 0;

	pr_devel("-> CBR %s [%x]\n",
		 bus->self ? pci_name(bus->self) : "root", flags);

	/* Calculate alignment requirements based on the type
	 * of resource we are working on
	 */
	if (flags & IORESOURCE_IO) {
		bres = 0;
		min_align = phb->ioda.io_segsize;
		min_balign = 0x1000;
	} else {
		bres = 1;
		min_align = phb->ioda.m32_segsize;
		min_balign = 0x100000;
	}

	/* Gather all our children resources ordered by alignment */
	INIT_LIST_HEAD(&head);

	/*   - Busses */
	list_for_each_entry(cbus, &bus->children, node) {
		pnv_ioda_calc_bus(cbus, flags, &dev_size, &dev_align);
		pnv_ioda_add_wrap(&head, cbus, NULL, dev_size, dev_align);
	}

	/*   - Devices */
	list_for_each_entry(cdev, &bus->devices, bus_list) {
		pnv_ioda_calc_dev(cdev, flags, &dev_size, &dev_align);
		/* Align them to segment size */
		if (dev_align < min_align)
			dev_align = min_align;
		pnv_ioda_add_wrap(&head, NULL, cdev, dev_size, dev_align);
	}
	if (list_empty(&head))
		goto empty;

	/* Now we can do two things: assign offsets to them within that
	 * level and get our total alignment & size requirements. The
	 * assignment algorithm is going to be uber-trivial for now, we
	 * can try to be smarter later at filling out holes.
	 */
289 290 291 292 293 294 295 296 297 298 299
	if (bus->self) {
		/* No offset for downstream bridges */
		start = 0;
	} else {
		/* Offset from the root */
		if (flags & IORESOURCE_IO)
			/* Don't hand out IO 0 */
			start = hose->io_resource.start + 0x1000;
		else
			start = hose->mem_resources[0].start;
	}
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
	while(!list_empty(&head)) {
		w = list_first_entry(&head, struct resource_wrap, link);
		list_del(&w->link);
		if (w->size) {
			if (start) {
				start = ALIGN(start, w->align);
				if (w->dev)
					pnv_ioda_offset_dev(w->dev,flags,start);
				else if (w->bus)
					pnv_ioda_offset_bus(w->bus,flags,start);
			}
			if (w->align > *align)
				*align = w->align;
		}
		start += w->size;
		kfree(w);
	}
	*size = start;

	/* Align and setup bridge resources */
	*align = max_t(resource_size_t, *align,
		       max_t(resource_size_t, min_align, min_balign));
	*size = ALIGN(*size,
		      max_t(resource_size_t, min_align, min_balign));
 empty:
	/* Only setup P2P's, not the PHB itself */
	if (bus->self) {
327 328 329 330
		struct resource *res = bus->resource[bres];

		if (WARN_ON(res == NULL))
			return;
331

332 333 334 335 336 337 338 339 340
		/*
		 * FIXME: We should probably export and call
		 * pci_bridge_check_ranges() to properly re-initialize
		 * the PCI portion of the flags here, and to detect
		 * what the bridge actually supports.
		 */
		res->start = 0;
		res->flags = (*size) ? flags : 0;
		res->end = (*size) ? (*size - 1) : 0;
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	}

	pr_devel("<- CBR %s [%x] *size=%016llx *align=%016llx\n",
		 bus->self ? pci_name(bus->self) : "root", flags,*size,*align);
}

static struct pci_dn *pnv_ioda_get_pdn(struct pci_dev *dev)
{
	struct device_node *np;

	np = pci_device_to_OF_node(dev);
	if (!np)
		return NULL;
	return PCI_DN(np);
}

static void __devinit pnv_ioda_setup_pe_segments(struct pci_dev *dev)
{
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
	unsigned int pe, i;
	resource_size_t pos;
	struct resource io_res;
	struct resource m32_res;
	struct pci_bus_region region;
	int rc;

	/* Anything not referenced in the device-tree gets PE#0 */
	pe = pdn ? pdn->pe_number : 0;

	/* Calculate the device min/max */
	io_res.start = m32_res.start = (resource_size_t)-1;
	io_res.end = m32_res.end = 0;
	io_res.flags = IORESOURCE_IO;
	m32_res.flags = IORESOURCE_MEM;

	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
		struct resource *r = NULL;
		if (dev->resource[i].flags & IORESOURCE_IO)
			r = &io_res;
		if (dev->resource[i].flags & IORESOURCE_MEM)
			r = &m32_res;
		if (!r)
			continue;
		if (dev->resource[i].start < r->start)
			r->start = dev->resource[i].start;
		if (dev->resource[i].end > r->end)
			r->end = dev->resource[i].end;
	}

	/* Setup IO segments */
	if (io_res.start < io_res.end) {
		pcibios_resource_to_bus(dev, &region, &io_res);
		pos = region.start;
		i = pos / phb->ioda.io_segsize;
		while(i < phb->ioda.total_pe && pos <= region.end) {
			if (phb->ioda.io_segmap[i]) {
				pr_err("%s: Trying to use IO seg #%d which is"
				       " already used by PE# %d\n",
				       pci_name(dev), i,
				       phb->ioda.io_segmap[i]);
				/* XXX DO SOMETHING TO DISABLE DEVICE ? */
				break;
			}
			phb->ioda.io_segmap[i] = pe;
			rc = opal_pci_map_pe_mmio_window(phb->opal_id, pe,
							 OPAL_IO_WINDOW_TYPE,
							 0, i);
			if (rc != OPAL_SUCCESS) {
				pr_err("%s: OPAL error %d setting up mapping"
				       " for IO seg# %d\n",
				       pci_name(dev), rc, i);
				/* XXX DO SOMETHING TO DISABLE DEVICE ? */
				break;
			}
			pos += phb->ioda.io_segsize;
			i++;
		};
	}

	/* Setup M32 segments */
	if (m32_res.start < m32_res.end) {
		pcibios_resource_to_bus(dev, &region, &m32_res);
		pos = region.start;
		i = pos / phb->ioda.m32_segsize;
		while(i < phb->ioda.total_pe && pos <= region.end) {
			if (phb->ioda.m32_segmap[i]) {
				pr_err("%s: Trying to use M32 seg #%d which is"
				       " already used by PE# %d\n",
				       pci_name(dev), i,
				       phb->ioda.m32_segmap[i]);
				/* XXX DO SOMETHING TO DISABLE DEVICE ? */
				break;
			}
			phb->ioda.m32_segmap[i] = pe;
			rc = opal_pci_map_pe_mmio_window(phb->opal_id, pe,
							 OPAL_M32_WINDOW_TYPE,
							 0, i);
			if (rc != OPAL_SUCCESS) {
				pr_err("%s: OPAL error %d setting up mapping"
				       " for M32 seg# %d\n",
				       pci_name(dev), rc, i);
				/* XXX DO SOMETHING TO DISABLE DEVICE ? */
				break;
			}
			pos += phb->ioda.m32_segsize;
			i++;
		}
	}
}

/* Check if a resource still fits in the total IO or M32 range
 * for a given PHB
 */
static int __devinit pnv_ioda_resource_fit(struct pci_controller *hose,
					   struct resource *r)
{
	struct resource *bounds;

	if (r->flags & IORESOURCE_IO)
		bounds = &hose->io_resource;
	else if (r->flags & IORESOURCE_MEM)
		bounds = &hose->mem_resources[0];
	else
		return 1;

	if (r->start >= bounds->start && r->end <= bounds->end)
		return 1;
	r->flags = 0;
	return 0;
}

static void __devinit pnv_ioda_update_resources(struct pci_bus *bus)
{
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pci_bus *cbus;
	struct pci_dev *cdev;
	unsigned int i;

481 482 483 484 485 486
	/* We used to clear all device enables here. However it looks like
	 * clearing MEM enable causes Obsidian (IPR SCS) to go bonkers,
	 * and shoot fatal errors to the PHB which in turns fences itself
	 * and we can't recover from that ... yet. So for now, let's leave
	 * the enables as-is and hope for the best.
	 */
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549

	/* Check if bus resources fit in our IO or M32 range */
	for (i = 0; bus->self && (i < 2); i++) {
		struct resource *r = bus->resource[i];
		if (r && !pnv_ioda_resource_fit(hose, r))
			pr_err("%s: Bus %d resource %d disabled, no room\n",
			       pci_name(bus->self), bus->number, i);
	}

	/* Update self if it's not a PHB */
	if (bus->self)
		pci_setup_bridge(bus);

	/* Update child devices */
	list_for_each_entry(cdev, &bus->devices, bus_list) {
		/* Check if resource fits, if not, disabled it */
		for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
			struct resource *r = &cdev->resource[i];
			if (!pnv_ioda_resource_fit(hose, r))
				pr_err("%s: Resource %d disabled, no room\n",
				       pci_name(cdev), i);
		}

		/* Assign segments */
		pnv_ioda_setup_pe_segments(cdev);

		/* Update HW BARs */
		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
			pci_update_resource(cdev, i);
	}

	/* Update child busses */
	list_for_each_entry(cbus, &bus->children, node)
		pnv_ioda_update_resources(cbus);
}

static int __devinit pnv_ioda_alloc_pe(struct pnv_phb *phb)
{
	unsigned long pe;

	do {
		pe = find_next_zero_bit(phb->ioda.pe_alloc,
					phb->ioda.total_pe, 0);
		if (pe >= phb->ioda.total_pe)
			return IODA_INVALID_PE;
	} while(test_and_set_bit(pe, phb->ioda.pe_alloc));

	phb->ioda.pe_array[pe].pe_number = pe;
	return pe;
}

static void __devinit pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
{
	WARN_ON(phb->ioda.pe_array[pe].pdev);

	memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
	clear_bit(pe, phb->ioda.pe_alloc);
}

/* Currently those 2 are only used when MSIs are enabled, this will change
 * but in the meantime, we need to protect them to avoid warnings
 */
#ifdef CONFIG_PCI_MSI
550
static struct pnv_ioda_pe * __devinit pnv_ioda_get_pe(struct pci_dev *dev)
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
{
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dn *pdn = pnv_ioda_get_pdn(dev);

	if (!pdn)
		return NULL;
	if (pdn->pe_number == IODA_INVALID_PE)
		return NULL;
	return &phb->ioda.pe_array[pdn->pe_number];
}
#endif /* CONFIG_PCI_MSI */

static int __devinit pnv_ioda_configure_pe(struct pnv_phb *phb,
					   struct pnv_ioda_pe *pe)
{
	struct pci_dev *parent;
	uint8_t bcomp, dcomp, fcomp;
	long rc, rid_end, rid;

	/* Bus validation ? */
	if (pe->pbus) {
		int count;

		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
		parent = pe->pbus->self;
578 579 580 581 582
		if (pe->flags & PNV_IODA_PE_BUS_ALL)
			count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
		else
			count = 1;

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
		switch(count) {
		case  1: bcomp = OpalPciBusAll;		break;
		case  2: bcomp = OpalPciBus7Bits;	break;
		case  4: bcomp = OpalPciBus6Bits;	break;
		case  8: bcomp = OpalPciBus5Bits;	break;
		case 16: bcomp = OpalPciBus4Bits;	break;
		case 32: bcomp = OpalPciBus3Bits;	break;
		default:
			pr_err("%s: Number of subordinate busses %d"
			       " unsupported\n",
			       pci_name(pe->pbus->self), count);
			/* Do an exact match only */
			bcomp = OpalPciBusAll;
		}
		rid_end = pe->rid + (count << 8);
	} else {
		parent = pe->pdev->bus->self;
		bcomp = OpalPciBusAll;
		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
		rid_end = pe->rid + 1;
	}

	/* Associate PE in PELT */
	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
	if (rc) {
		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
		return -ENXIO;
	}
	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);

	/* Add to all parents PELT-V */
	while (parent) {
		struct pci_dn *pdn = pnv_ioda_get_pdn(parent);
		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
621
						pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
			/* XXX What to do in case of error ? */
		}
		parent = parent->bus->self;
	}
	/* Setup reverse map */
	for (rid = pe->rid; rid < rid_end; rid++)
		phb->ioda.pe_rmap[rid] = pe->pe_number;

	/* Setup one MVTs on IODA1 */
	if (phb->type == PNV_PHB_IODA1) {
		pe->mve_number = pe->pe_number;
		rc = opal_pci_set_mve(phb->opal_id, pe->mve_number,
				      pe->pe_number);
		if (rc) {
			pe_err(pe, "OPAL error %ld setting up MVE %d\n",
			       rc, pe->mve_number);
			pe->mve_number = -1;
		} else {
			rc = opal_pci_set_mve_enable(phb->opal_id,
641
						     pe->mve_number, OPAL_ENABLE_MVE);
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
			if (rc) {
				pe_err(pe, "OPAL error %ld enabling MVE %d\n",
				       rc, pe->mve_number);
				pe->mve_number = -1;
			}
		}
	} else if (phb->type == PNV_PHB_IODA2)
		pe->mve_number = 0;

	return 0;
}

static void __devinit pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
						 struct pnv_ioda_pe *pe)
{
	struct pnv_ioda_pe *lpe;

659
	list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
660
		if (lpe->dma_weight < pe->dma_weight) {
661
			list_add_tail(&pe->dma_link, &lpe->dma_link);
662 663 664
			return;
		}
	}
665
	list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
}

static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
{
	/* This is quite simplistic. The "base" weight of a device
	 * is 10. 0 means no DMA is to be accounted for it.
	 */

	/* If it's a bridge, no DMA */
	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
		return 0;

	/* Reduce the weight of slow USB controllers */
	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
		return 3;

	/* Increase the weight of RAID (includes Obsidian) */
	if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
		return 15;

	/* Default */
	return 10;
}

692
#if 0
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
static struct pnv_ioda_pe * __devinit pnv_ioda_setup_dev_PE(struct pci_dev *dev)
{
	struct pci_controller *hose = pci_bus_to_host(dev->bus);
	struct pnv_phb *phb = hose->private_data;
	struct pci_dn *pdn = pnv_ioda_get_pdn(dev);
	struct pnv_ioda_pe *pe;
	int pe_num;

	if (!pdn) {
		pr_err("%s: Device tree node not associated properly\n",
			   pci_name(dev));
		return NULL;
	}
	if (pdn->pe_number != IODA_INVALID_PE)
		return NULL;

	/* PE#0 has been pre-set */
	if (dev->bus->number == 0)
		pe_num = 0;
	else
		pe_num = pnv_ioda_alloc_pe(phb);
	if (pe_num == IODA_INVALID_PE) {
		pr_warning("%s: Not enough PE# available, disabling device\n",
			   pci_name(dev));
		return NULL;
	}

	/* NOTE: We get only one ref to the pci_dev for the pdn, not for the
	 * pointer in the PE data structure, both should be destroyed at the
	 * same time. However, this needs to be looked at more closely again
	 * once we actually start removing things (Hotplug, SR-IOV, ...)
	 *
	 * At some point we want to remove the PDN completely anyways
	 */
	pe = &phb->ioda.pe_array[pe_num];
	pci_dev_get(dev);
	pdn->pcidev = dev;
	pdn->pe_number = pe_num;
	pe->pdev = dev;
	pe->pbus = NULL;
	pe->tce32_seg = -1;
	pe->mve_number = -1;
	pe->rid = dev->bus->number << 8 | pdn->devfn;

	pe_info(pe, "Associated device to PE\n");

	if (pnv_ioda_configure_pe(phb, pe)) {
		/* XXX What do we do here ? */
		if (pe_num)
			pnv_ioda_free_pe(phb, pe_num);
		pdn->pe_number = IODA_INVALID_PE;
		pe->pdev = NULL;
		pci_dev_put(dev);
		return NULL;
	}

	/* Assign a DMA weight to the device */
	pe->dma_weight = pnv_ioda_dma_weight(dev);
	if (pe->dma_weight != 0) {
		phb->ioda.dma_weight += pe->dma_weight;
		phb->ioda.dma_pe_count++;
	}

	/* Link the PE */
	pnv_ioda_link_pe_by_weight(phb, pe);

	return pe;
}
761
#endif /* Useful for SRIOV case */
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778

static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
		struct pci_dn *pdn = pnv_ioda_get_pdn(dev);

		if (pdn == NULL) {
			pr_warn("%s: No device node associated with device !\n",
				pci_name(dev));
			continue;
		}
		pci_dev_get(dev);
		pdn->pcidev = dev;
		pdn->pe_number = pe->pe_number;
		pe->dma_weight += pnv_ioda_dma_weight(dev);
779
		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
780 781 782 783
			pnv_ioda_setup_same_PE(dev->subordinate, pe);
	}
}

784 785 786 787 788 789 790
/*
 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
 * single PCI bus. Another one that contains the primary PCI bus and its
 * subordinate PCI devices and buses. The second type of PE is normally
 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
 */
static void __devinit pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
791
{
792
	struct pci_controller *hose = pci_bus_to_host(bus);
793 794 795 796 797 798
	struct pnv_phb *phb = hose->private_data;
	struct pnv_ioda_pe *pe;
	int pe_num;

	pe_num = pnv_ioda_alloc_pe(phb);
	if (pe_num == IODA_INVALID_PE) {
799 800
		pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
			__func__, pci_domain_nr(bus), bus->number);
801 802 803 804
		return;
	}

	pe = &phb->ioda.pe_array[pe_num];
805
	pe->flags = (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
806 807 808 809
	pe->pbus = bus;
	pe->pdev = NULL;
	pe->tce32_seg = -1;
	pe->mve_number = -1;
810
	pe->rid = bus->busn_res.start << 8;
811 812
	pe->dma_weight = 0;

813 814 815 816 817 818
	if (all)
		pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
			bus->busn_res.start, bus->busn_res.end, pe_num);
	else
		pe_info(pe, "Secondary bus %d associated with PE#%d\n",
			bus->busn_res.start, pe_num);
819 820 821 822 823 824 825 826 827 828 829 830

	if (pnv_ioda_configure_pe(phb, pe)) {
		/* XXX What do we do here ? */
		if (pe_num)
			pnv_ioda_free_pe(phb, pe_num);
		pe->pbus = NULL;
		return;
	}

	/* Associate it with all child devices */
	pnv_ioda_setup_same_PE(bus, pe);

831 832 833
	/* Put PE to the list */
	list_add_tail(&pe->list, &phb->ioda.pe_list);

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
	/* Account for one DMA PE if at least one DMA capable device exist
	 * below the bridge
	 */
	if (pe->dma_weight != 0) {
		phb->ioda.dma_weight += pe->dma_weight;
		phb->ioda.dma_pe_count++;
	}

	/* Link the PE */
	pnv_ioda_link_pe_by_weight(phb, pe);
}

static void __devinit pnv_ioda_setup_PEs(struct pci_bus *bus)
{
	struct pci_dev *dev;
849 850

	pnv_ioda_setup_bus_PE(bus, 0);
851 852

	list_for_each_entry(dev, &bus->devices, bus_list) {
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
		if (dev->subordinate) {
			if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
				pnv_ioda_setup_bus_PE(dev->subordinate, 1);
			else
				pnv_ioda_setup_PEs(dev->subordinate);
		}
	}
}

/*
 * Configure PEs so that the downstream PCI buses and devices
 * could have their associated PE#. Unfortunately, we didn't
 * figure out the way to identify the PLX bridge yet. So we
 * simply put the PCI bus and the subordinate behind the root
 * port to PE# here. The game rule here is expected to be changed
 * as soon as we can detected PLX bridge correctly.
 */
static void __devinit pnv_pci_ioda_setup_PEs(void)
{
	struct pci_controller *hose, *tmp;

	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
		pnv_ioda_setup_PEs(hose->bus);
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	}
}

static void __devinit pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb,
						 struct pci_dev *dev)
{
	/* We delay DMA setup after we have assigned all PE# */
}

static void __devinit pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
					     struct pci_bus *bus)
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
		set_iommu_table_base(&dev->dev, &pe->tce32_table);
		if (dev->subordinate)
			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
	}
}

static void __devinit pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
						struct pnv_ioda_pe *pe,
						unsigned int base,
						unsigned int segs)
{

	struct page *tce_mem = NULL;
	const __be64 *swinvp;
	struct iommu_table *tbl;
	unsigned int i;
	int64_t rc;
	void *addr;

	/* 256M DMA window, 4K TCE pages, 8 bytes TCE */
#define TCE32_TABLE_SIZE	((0x10000000 / 0x1000) * 8)

	/* XXX FIXME: Handle 64-bit only DMA devices */
	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
	/* XXX FIXME: Allocate multi-level tables on PHB3 */

	/* We shouldn't already have a 32-bit DMA associated */
	if (WARN_ON(pe->tce32_seg >= 0))
		return;

	/* Grab a 32-bit TCE table */
	pe->tce32_seg = base;
	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
		(base << 28), ((base + segs) << 28) - 1);

	/* XXX Currently, we allocate one big contiguous table for the
	 * TCEs. We only really need one chunk per 256M of TCE space
	 * (ie per segment) but that's an optimization for later, it
	 * requires some added smarts with our get/put_tce implementation
	 */
	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
				   get_order(TCE32_TABLE_SIZE * segs));
	if (!tce_mem) {
		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
		goto fail;
	}
	addr = page_address(tce_mem);
	memset(addr, 0, TCE32_TABLE_SIZE * segs);

	/* Configure HW */
	for (i = 0; i < segs; i++) {
		rc = opal_pci_map_pe_dma_window(phb->opal_id,
					      pe->pe_number,
					      base + i, 1,
					      __pa(addr) + TCE32_TABLE_SIZE * i,
					      TCE32_TABLE_SIZE, 0x1000);
		if (rc) {
			pe_err(pe, " Failed to configure 32-bit TCE table,"
			       " err %ld\n", rc);
			goto fail;
		}
	}

	/* Setup linux iommu table */
	tbl = &pe->tce32_table;
	pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
				  base << 28);

	/* OPAL variant of P7IOC SW invalidated TCEs */
	swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
	if (swinvp) {
		/* We need a couple more fields -- an address and a data
		 * to or.  Since the bus is only printed out on table free
		 * errors, and on the first pass the data will be a relative
		 * bus number, print that out instead.
		 */
		tbl->it_busno = 0;
		tbl->it_index = (unsigned long)ioremap(be64_to_cpup(swinvp), 8);
		tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE
			| TCE_PCI_SWINV_PAIR;
	}
	iommu_init_table(tbl, phb->hose->node);

	if (pe->pdev)
		set_iommu_table_base(&pe->pdev->dev, tbl);
	else
		pnv_ioda_setup_bus_dma(pe, pe->pbus);

	return;
 fail:
	/* XXX Failure: Try to fallback to 64-bit only ? */
	if (pe->tce32_seg >= 0)
		pe->tce32_seg = -1;
	if (tce_mem)
		__free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
}

static void __devinit pnv_ioda_setup_dma(struct pnv_phb *phb)
{
	struct pci_controller *hose = phb->hose;
	unsigned int residual, remaining, segs, tw, base;
	struct pnv_ioda_pe *pe;

	/* If we have more PE# than segments available, hand out one
	 * per PE until we run out and let the rest fail. If not,
	 * then we assign at least one segment per PE, plus more based
	 * on the amount of devices under that PE
	 */
	if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
		residual = 0;
	else
		residual = phb->ioda.tce32_count -
			phb->ioda.dma_pe_count;

	pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
		hose->global_number, phb->ioda.tce32_count);
	pr_info("PCI: %d PE# for a total weight of %d\n",
		phb->ioda.dma_pe_count, phb->ioda.dma_weight);

	/* Walk our PE list and configure their DMA segments, hand them
	 * out one base segment plus any residual segments based on
	 * weight
	 */
	remaining = phb->ioda.tce32_count;
	tw = phb->ioda.dma_weight;
	base = 0;
1017
	list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		if (!pe->dma_weight)
			continue;
		if (!remaining) {
			pe_warn(pe, "No DMA32 resources available\n");
			continue;
		}
		segs = 1;
		if (residual) {
			segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
			if (segs > remaining)
				segs = remaining;
		}
		pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
			pe->dma_weight, segs);
		pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
		remaining -= segs;
		base += segs;
	}
}

#ifdef CONFIG_PCI_MSI
static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
				  unsigned int hwirq, unsigned int is_64,
				  struct msi_msg *msg)
{
	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
	unsigned int xive_num = hwirq - phb->msi_base;
	uint64_t addr64;
	uint32_t addr32, data;
	int rc;

	/* No PE assigned ? bail out ... no MSI for you ! */
	if (pe == NULL)
		return -ENXIO;

	/* Check if we have an MVE */
	if (pe->mve_number < 0)
		return -ENXIO;

	/* Assign XIVE to PE */
	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
	if (rc) {
		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
			pci_name(dev), rc, xive_num);
		return -EIO;
	}

	if (is_64) {
		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
				     &addr64, &data);
		if (rc) {
			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
				pci_name(dev), rc);
			return -EIO;
		}
		msg->address_hi = addr64 >> 32;
		msg->address_lo = addr64 & 0xfffffffful;
	} else {
		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
				     &addr32, &data);
		if (rc) {
			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
				pci_name(dev), rc);
			return -EIO;
		}
		msg->address_hi = 0;
		msg->address_lo = addr32;
	}
	msg->data = data;

	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
		 " address=%x_%08x data=%x PE# %d\n",
		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
		 msg->address_hi, msg->address_lo, data, pe->pe_number);

	return 0;
}

static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
{
	unsigned int bmap_size;
	const __be32 *prop = of_get_property(phb->hose->dn,
					     "ibm,opal-msi-ranges", NULL);
	if (!prop) {
		/* BML Fallback */
		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
	}
	if (!prop)
		return;

	phb->msi_base = be32_to_cpup(prop);
	phb->msi_count = be32_to_cpup(prop + 1);
	bmap_size = BITS_TO_LONGS(phb->msi_count) * sizeof(unsigned long);
	phb->msi_map = zalloc_maybe_bootmem(bmap_size, GFP_KERNEL);
	if (!phb->msi_map) {
		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
		       phb->hose->global_number);
		return;
	}
	phb->msi_setup = pnv_pci_ioda_msi_setup;
	phb->msi32_support = 1;
	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
		phb->msi_count, phb->msi_base);
}
#else
static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
#endif /* CONFIG_PCI_MSI */

/* This is the starting point of our IODA specific resource
 * allocation process
 */
static void __devinit pnv_pci_ioda_fixup_phb(struct pci_controller *hose)
{
	resource_size_t size, align;
	struct pci_bus *child;

	/* Associate PEs per functions */
	pnv_ioda_setup_PEs(hose->bus);

	/* Calculate all resources */
	pnv_ioda_calc_bus(hose->bus, IORESOURCE_IO, &size, &align);
	pnv_ioda_calc_bus(hose->bus, IORESOURCE_MEM, &size, &align);

	/* Apply then to HW */
	pnv_ioda_update_resources(hose->bus);

	/* Setup DMA */
	pnv_ioda_setup_dma(hose->private_data);

	/* Configure PCI Express settings */
	list_for_each_entry(child, &hose->bus->children, node) {
		struct pci_dev *self = child->self;
		if (!self)
			continue;
		pcie_bus_configure_settings(child, self->pcie_mpss);
	}
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
/*
 * This function is supposed to be called on basis of PE from top
 * to bottom style. So the the I/O or MMIO segment assigned to
 * parent PE could be overrided by its child PEs if necessary.
 */
static void __devinit pnv_ioda_setup_pe_seg(struct pci_controller *hose,
				struct pnv_ioda_pe *pe)
{
	struct pnv_phb *phb = hose->private_data;
	struct pci_bus_region region;
	struct resource *res;
	int i, index;
	int rc;

	/*
	 * NOTE: We only care PCI bus based PE for now. For PCI
	 * device based PE, for example SRIOV sensitive VF should
	 * be figured out later.
	 */
	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));

	pci_bus_for_each_resource(pe->pbus, res, i) {
		if (!res || !res->flags ||
		    res->start > res->end)
			continue;

		if (res->flags & IORESOURCE_IO) {
			region.start = res->start - phb->ioda.io_pci_base;
			region.end   = res->end - phb->ioda.io_pci_base;
			index = region.start / phb->ioda.io_segsize;

			while (index < phb->ioda.total_pe &&
			       region.start <= region.end) {
				phb->ioda.io_segmap[index] = pe->pe_number;
				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
					pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
				if (rc != OPAL_SUCCESS) {
					pr_err("%s: OPAL error %d when mapping IO "
					       "segment #%d to PE#%d\n",
					       __func__, rc, index, pe->pe_number);
					break;
				}

				region.start += phb->ioda.io_segsize;
				index++;
			}
		} else if (res->flags & IORESOURCE_MEM) {
			region.start = res->start -
				       hose->pci_mem_offset -
				       phb->ioda.m32_pci_base;
			region.end   = res->end -
				       hose->pci_mem_offset -
				       phb->ioda.m32_pci_base;
			index = region.start / phb->ioda.m32_segsize;

			while (index < phb->ioda.total_pe &&
			       region.start <= region.end) {
				phb->ioda.m32_segmap[index] = pe->pe_number;
				rc = opal_pci_map_pe_mmio_window(phb->opal_id,
					pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
				if (rc != OPAL_SUCCESS) {
					pr_err("%s: OPAL error %d when mapping M32 "
					       "segment#%d to PE#%d",
					       __func__, rc, index, pe->pe_number);
					break;
				}

				region.start += phb->ioda.m32_segsize;
				index++;
			}
		}
	}
}

static void __devinit pnv_pci_ioda_setup_seg(void)
{
	struct pci_controller *tmp, *hose;
	struct pnv_phb *phb;
	struct pnv_ioda_pe *pe;

	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
		phb = hose->private_data;
		list_for_each_entry(pe, &phb->ioda.pe_list, list) {
			pnv_ioda_setup_pe_seg(hose, pe);
		}
	}
}

1244 1245 1246
static void __devinit pnv_pci_ioda_fixup(void)
{
	pnv_pci_ioda_setup_PEs();
1247
	pnv_pci_ioda_setup_seg();
1248 1249
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
/*
 * Returns the alignment for I/O or memory windows for P2P
 * bridges. That actually depends on how PEs are segmented.
 * For now, we return I/O or M32 segment size for PE sensitive
 * P2P bridges. Otherwise, the default values (4KiB for I/O,
 * 1MiB for memory) will be returned.
 *
 * The current PCI bus might be put into one PE, which was
 * create against the parent PCI bridge. For that case, we
 * needn't enlarge the alignment so that we can save some
 * resources.
 */
static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
						unsigned long type)
{
	struct pci_dev *bridge;
	struct pci_controller *hose = pci_bus_to_host(bus);
	struct pnv_phb *phb = hose->private_data;
	int num_pci_bridges = 0;

	bridge = bus->self;
	while (bridge) {
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
			num_pci_bridges++;
			if (num_pci_bridges >= 2)
				return 1;
		}

		bridge = bridge->bus->self;
	}

	/* We need support prefetchable memory window later */
	if (type & IORESOURCE_MEM)
		return phb->ioda.m32_segsize;

	return phb->ioda.io_segsize;
}

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
/* Prevent enabling devices for which we couldn't properly
 * assign a PE
 */
static int __devinit pnv_pci_enable_device_hook(struct pci_dev *dev)
{
	struct pci_dn *pdn = pnv_ioda_get_pdn(dev);

	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
		return -EINVAL;
	return 0;
}

static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
			       u32 devfn)
{
	return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
}

void __init pnv_pci_init_ioda1_phb(struct device_node *np)
{
	struct pci_controller *hose;
	static int primary = 1;
	struct pnv_phb *phb;
	unsigned long size, m32map_off, iomap_off, pemap_off;
	const u64 *prop64;
	u64 phb_id;
	void *aux;
	long rc;

	pr_info(" Initializing IODA OPAL PHB %s\n", np->full_name);

	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
	if (!prop64) {
		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
		return;
	}
	phb_id = be64_to_cpup(prop64);
	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);

	phb = alloc_bootmem(sizeof(struct pnv_phb));
	if (phb) {
		memset(phb, 0, sizeof(struct pnv_phb));
		phb->hose = hose = pcibios_alloc_controller(np);
	}
	if (!phb || !phb->hose) {
		pr_err("PCI: Failed to allocate PCI controller for %s\n",
		       np->full_name);
		return;
	}

	spin_lock_init(&phb->lock);
	/* XXX Use device-tree */
	hose->first_busno = 0;
	hose->last_busno = 0xff;
	hose->private_data = phb;
	phb->opal_id = phb_id;
	phb->type = PNV_PHB_IODA1;

1346 1347 1348 1349 1350 1351
	/* Detect specific models for error handling */
	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
		phb->model = PNV_PHB_MODEL_P7IOC;
	else
		phb->model = PNV_PHB_MODEL_UNKNOWN;

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	/* We parse "ranges" now since we need to deduce the register base
	 * from the IO base
	 */
	pci_process_bridge_OF_ranges(phb->hose, np, primary);
	primary = 0;

	/* Magic formula from Milton */
	phb->regs = of_iomap(np, 0);
	if (phb->regs == NULL)
		pr_err("  Failed to map registers !\n");


	/* XXX This is hack-a-thon. This needs to be changed so that:
	 *  - we obtain stuff like PE# etc... from device-tree
	 *  - we properly re-allocate M32 ourselves
	 *    (the OFW one isn't very good)
	 */

	/* Initialize more IODA stuff */
	phb->ioda.total_pe = 128;

	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
	/* OFW Has already off top 64k of M32 space (MSI space) */
	phb->ioda.m32_size += 0x10000;

	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
	phb->ioda.m32_pci_base = hose->mem_resources[0].start -
		hose->pci_mem_offset;
	phb->ioda.io_size = hose->pci_io_size;
	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */

	/* Allocate aux data & arrays */
	size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
	m32map_off = size;
	size += phb->ioda.total_pe;
	iomap_off = size;
	size += phb->ioda.total_pe;
	pemap_off = size;
	size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
	aux = alloc_bootmem(size);
	memset(aux, 0, size);
	phb->ioda.pe_alloc = aux;
	phb->ioda.m32_segmap = aux + m32map_off;
	phb->ioda.io_segmap = aux + iomap_off;
	phb->ioda.pe_array = aux + pemap_off;
	set_bit(0, phb->ioda.pe_alloc);

1400
	INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	INIT_LIST_HEAD(&phb->ioda.pe_list);

	/* Calculate how many 32-bit TCE segments we have */
	phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;

	/* Clear unusable m64 */
	hose->mem_resources[1].flags = 0;
	hose->mem_resources[1].start = 0;
	hose->mem_resources[1].end = 0;
	hose->mem_resources[2].flags = 0;
	hose->mem_resources[2].start = 0;
	hose->mem_resources[2].end = 0;

#if 0
	rc = opal_pci_set_phb_mem_window(opal->phb_id,
					 window_type,
					 window_num,
					 starting_real_address,
					 starting_pci_address,
					 segment_size);
#endif

	pr_info("  %d PE's M32: 0x%x [segment=0x%x] IO: 0x%x [segment=0x%x]\n",
		phb->ioda.total_pe,
		phb->ioda.m32_size, phb->ioda.m32_segsize,
		phb->ioda.io_size, phb->ioda.io_segsize);

	if (phb->regs)  {
		pr_devel(" BUID     = 0x%016llx\n", in_be64(phb->regs + 0x100));
		pr_devel(" PHB2_CR  = 0x%016llx\n", in_be64(phb->regs + 0x160));
		pr_devel(" IO_BAR   = 0x%016llx\n", in_be64(phb->regs + 0x170));
		pr_devel(" IO_BAMR  = 0x%016llx\n", in_be64(phb->regs + 0x178));
		pr_devel(" IO_SAR   = 0x%016llx\n", in_be64(phb->regs + 0x180));
		pr_devel(" M32_BAR  = 0x%016llx\n", in_be64(phb->regs + 0x190));
		pr_devel(" M32_BAMR = 0x%016llx\n", in_be64(phb->regs + 0x198));
		pr_devel(" M32_SAR  = 0x%016llx\n", in_be64(phb->regs + 0x1a0));
	}
	phb->hose->ops = &pnv_pci_ops;

	/* Setup RID -> PE mapping function */
	phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;

	/* Setup TCEs */
	phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;

	/* Setup MSI support */
	pnv_pci_init_ioda_msis(phb);

1449
	/* We set both PCI_PROBE_ONLY and PCI_REASSIGN_ALL_RSRC. This is an
1450 1451 1452 1453 1454
	 * odd combination which essentially means that we skip all resource
	 * fixups and assignments in the generic code, and do it all
	 * ourselves here
	 */
	ppc_md.pcibios_fixup_phb = pnv_pci_ioda_fixup_phb;
1455
	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
1456
	ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
1457
	ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
1458
	pci_add_flags(PCI_PROBE_ONLY | PCI_REASSIGN_ALL_RSRC);
1459 1460

	/* Reset IODA tables to a clean state */
1461
	rc = opal_pci_reset(phb_id, OPAL_PCI_IODA_TABLE_RESET, OPAL_ASSERT_RESET);
1462
	if (rc)
1463
		pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	opal_pci_set_pe(phb_id, 0, 0, 7, 1, 1 , OPAL_MAP_PE);
}

void __init pnv_pci_init_ioda_hub(struct device_node *np)
{
	struct device_node *phbn;
	const u64 *prop64;
	u64 hub_id;

	pr_info("Probing IODA IO-Hub %s\n", np->full_name);

	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
	if (!prop64) {
		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
		return;
	}
	hub_id = be64_to_cpup(prop64);
	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);

	/* Count child PHBs */
	for_each_child_of_node(np, phbn) {
		/* Look for IODA1 PHBs */
		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
			pnv_pci_init_ioda1_phb(phbn);
	}
}