init.c 11.2 KB
Newer Older
1
/*
2
 * x86 FPU boot time init code:
3
 */
4
#include <asm/fpu/internal.h>
5
#include <asm/tlbflush.h>
6 7
#include <asm/setup.h>
#include <asm/cmdline.h>
8

9
#include <linux/sched.h>
10
#include <linux/init.h>
11

12 13 14 15
/*
 * Initialize the TS bit in CR0 according to the style of context-switches
 * we are using:
 */
I
Ingo Molnar 已提交
16 17
static void fpu__init_cpu_ctx_switch(void)
{
18
	if (!boot_cpu_has(X86_FEATURE_EAGER_FPU))
I
Ingo Molnar 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
		stts();
	else
		clts();
}

/*
 * Initialize the registers found in all CPUs, CR0 and CR4:
 */
static void fpu__init_cpu_generic(void)
{
	unsigned long cr0;
	unsigned long cr4_mask = 0;

	if (cpu_has_fxsr)
		cr4_mask |= X86_CR4_OSFXSR;
	if (cpu_has_xmm)
		cr4_mask |= X86_CR4_OSXMMEXCPT;
	if (cr4_mask)
		cr4_set_bits(cr4_mask);

	cr0 = read_cr0();
	cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
	if (!cpu_has_fpu)
		cr0 |= X86_CR0_EM;
	write_cr0(cr0);
44 45

	/* Flush out any pending x87 state: */
46 47 48 49 50 51
#ifdef CONFIG_MATH_EMULATION
	if (!cpu_has_fpu)
		fpstate_init_soft(&current->thread.fpu.state.soft);
	else
#endif
		asm volatile ("fninit");
I
Ingo Molnar 已提交
52 53 54
}

/*
55
 * Enable all supported FPU features. Called when a CPU is brought online:
I
Ingo Molnar 已提交
56 57 58 59 60 61 62 63
 */
void fpu__init_cpu(void)
{
	fpu__init_cpu_generic();
	fpu__init_cpu_xstate();
	fpu__init_cpu_ctx_switch();
}

64
/*
65 66 67 68
 * The earliest FPU detection code.
 *
 * Set the X86_FEATURE_FPU CPU-capability bit based on
 * trying to execute an actual sequence of FPU instructions:
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
 */
static void fpu__init_system_early_generic(struct cpuinfo_x86 *c)
{
	unsigned long cr0;
	u16 fsw, fcw;

	fsw = fcw = 0xffff;

	cr0 = read_cr0();
	cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
	write_cr0(cr0);

	asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
		     : "+m" (fsw), "+m" (fcw));

	if (fsw == 0 && (fcw & 0x103f) == 0x003f)
		set_cpu_cap(c, X86_FEATURE_FPU);
	else
		clear_cpu_cap(c, X86_FEATURE_FPU);
88 89 90

#ifndef CONFIG_MATH_EMULATION
	if (!cpu_has_fpu) {
91
		pr_emerg("x86/fpu: Giving up, no FPU found and no math emulation present\n");
92 93 94 95
		for (;;)
			asm volatile("hlt");
	}
#endif
96 97
}

98 99 100
/*
 * Boot time FPU feature detection code:
 */
101
unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
102

103
static void __init fpu__init_system_mxcsr(void)
104
{
105
	unsigned int mask = 0;
106 107

	if (cpu_has_fxsr) {
108 109
		/* Static because GCC does not get 16-byte stack alignment right: */
		static struct fxregs_state fxregs __initdata;
110

111
		asm volatile("fxsave %0" : "+m" (fxregs));
112

113
		mask = fxregs.mxcsr_mask;
114 115 116 117 118 119

		/*
		 * If zero then use the default features mask,
		 * which has all features set, except the
		 * denormals-are-zero feature bit:
		 */
120 121 122 123 124 125
		if (mask == 0)
			mask = 0x0000ffbf;
	}
	mxcsr_feature_mask &= mask;
}

126 127 128
/*
 * Once per bootup FPU initialization sequences that will run on most x86 CPUs:
 */
129
static void __init fpu__init_system_generic(void)
130 131 132 133 134
{
	/*
	 * Set up the legacy init FPU context. (xstate init might overwrite this
	 * with a more modern format, if the CPU supports it.)
	 */
135
	fpstate_init_fxstate(&init_fpstate.fxsave);
136 137 138 139

	fpu__init_system_mxcsr();
}

140 141 142 143 144 145
/*
 * Size of the FPU context state. All tasks in the system use the
 * same context size, regardless of what portion they use.
 * This is inherent to the XSAVE architecture which puts all state
 * components into a single, continuous memory block:
 */
I
Ingo Molnar 已提交
146 147 148
unsigned int xstate_size;
EXPORT_SYMBOL_GPL(xstate_size);

149 150 151 152 153 154 155 156 157
/* Get alignment of the TYPE. */
#define TYPE_ALIGN(TYPE) offsetof(struct { char x; TYPE test; }, test)

/*
 * Enforce that 'MEMBER' is the last field of 'TYPE'.
 *
 * Align the computed size with alignment of the TYPE,
 * because that's how C aligns structs.
 */
158
#define CHECK_MEMBER_AT_END_OF(TYPE, MEMBER) \
159 160
	BUILD_BUG_ON(sizeof(TYPE) != ALIGN(offsetofend(TYPE, MEMBER), \
					   TYPE_ALIGN(TYPE)))
161 162

/*
163
 * We append the 'struct fpu' to the task_struct:
164
 */
165
static void __init fpu__init_task_struct_size(void)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
{
	int task_size = sizeof(struct task_struct);

	/*
	 * Subtract off the static size of the register state.
	 * It potentially has a bunch of padding.
	 */
	task_size -= sizeof(((struct task_struct *)0)->thread.fpu.state);

	/*
	 * Add back the dynamically-calculated register state
	 * size.
	 */
	task_size += xstate_size;

	/*
	 * We dynamically size 'struct fpu', so we require that
	 * it be at the end of 'thread_struct' and that
	 * 'thread_struct' be at the end of 'task_struct'.  If
	 * you hit a compile error here, check the structure to
	 * see if something got added to the end.
	 */
	CHECK_MEMBER_AT_END_OF(struct fpu, state);
	CHECK_MEMBER_AT_END_OF(struct thread_struct, fpu);
	CHECK_MEMBER_AT_END_OF(struct task_struct, thread);

192
	arch_task_struct_size = task_size;
193 194
}

I
Ingo Molnar 已提交
195 196 197 198 199 200
/*
 * Set up the xstate_size based on the legacy FPU context size.
 *
 * We set this up first, and later it will be overwritten by
 * fpu__init_system_xstate() if the CPU knows about xstates.
 */
201
static void __init fpu__init_system_xstate_size_legacy(void)
202
{
203
	static int on_boot_cpu __initdata = 1;
204 205 206 207

	WARN_ON_FPU(!on_boot_cpu);
	on_boot_cpu = 0;

208 209
	/*
	 * Note that xstate_size might be overwriten later during
I
Ingo Molnar 已提交
210
	 * fpu__init_system_xstate().
211 212 213 214 215 216 217 218 219
	 */

	if (!cpu_has_fpu) {
		/*
		 * Disable xsave as we do not support it if i387
		 * emulation is enabled.
		 */
		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
220
		xstate_size = sizeof(struct swregs_state);
221 222
	} else {
		if (cpu_has_fxsr)
223
			xstate_size = sizeof(struct fxregs_state);
224
		else
225
			xstate_size = sizeof(struct fregs_state);
226
	}
227 228 229 230 231 232 233 234 235 236 237 238 239 240
	/*
	 * Quirk: we don't yet handle the XSAVES* instructions
	 * correctly, as we don't correctly convert between
	 * standard and compacted format when interfacing
	 * with user-space - so disable it for now.
	 *
	 * The difference is small: with recent CPUs the
	 * compacted format is only marginally smaller than
	 * the standard FPU state format.
	 *
	 * ( This is easy to backport while we are fixing
	 *   XSAVES* support. )
	 */
	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
241 242
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
/*
 * FPU context switching strategies:
 *
 * Against popular belief, we don't do lazy FPU saves, due to the
 * task migration complications it brings on SMP - we only do
 * lazy FPU restores.
 *
 * 'lazy' is the traditional strategy, which is based on setting
 * CR0::TS to 1 during context-switch (instead of doing a full
 * restore of the FPU state), which causes the first FPU instruction
 * after the context switch (whenever it is executed) to fault - at
 * which point we lazily restore the FPU state into FPU registers.
 *
 * Tasks are of course under no obligation to execute FPU instructions,
 * so it can easily happen that another context-switch occurs without
 * a single FPU instruction being executed. If we eventually switch
 * back to the original task (that still owns the FPU) then we have
 * not only saved the restores along the way, but we also have the
 * FPU ready to be used for the original task.
 *
 * 'eager' switching is used on modern CPUs, there we switch the FPU
 * state during every context switch, regardless of whether the task
 * has used FPU instructions in that time slice or not. This is done
 * because modern FPU context saving instructions are able to optimize
 * state saving and restoration in hardware: they can detect both
 * unused and untouched FPU state and optimize accordingly.
 *
 * [ Note that even in 'lazy' mode we might optimize context switches
 *   to use 'eager' restores, if we detect that a task is using the FPU
 *   frequently. See the fpu->counter logic in fpu/internal.h for that. ]
 */
274 275
static enum { AUTO, ENABLE, DISABLE } eagerfpu = AUTO;

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
/*
 * Find supported xfeatures based on cpu features and command-line input.
 * This must be called after fpu__init_parse_early_param() is called and
 * xfeatures_mask is enumerated.
 */
u64 __init fpu__get_supported_xfeatures_mask(void)
{
	/* Support all xfeatures known to us */
	if (eagerfpu != DISABLE)
		return XCNTXT_MASK;

	/* Warning of xfeatures being disabled for no eagerfpu mode */
	if (xfeatures_mask & XFEATURE_MASK_EAGER) {
		pr_err("x86/fpu: eagerfpu switching disabled, disabling the following xstate features: 0x%llx.\n",
			xfeatures_mask & XFEATURE_MASK_EAGER);
	}

	/* Return a mask that masks out all features requiring eagerfpu mode */
	return ~XFEATURE_MASK_EAGER;
}

/*
 * Disable features dependent on eagerfpu.
 */
static void __init fpu__clear_eager_fpu_features(void)
{
	setup_clear_cpu_cap(X86_FEATURE_MPX);
303 304 305 306 307 308
	setup_clear_cpu_cap(X86_FEATURE_AVX);
	setup_clear_cpu_cap(X86_FEATURE_AVX2);
	setup_clear_cpu_cap(X86_FEATURE_AVX512F);
	setup_clear_cpu_cap(X86_FEATURE_AVX512PF);
	setup_clear_cpu_cap(X86_FEATURE_AVX512ER);
	setup_clear_cpu_cap(X86_FEATURE_AVX512CD);
309 310
}

311
/*
312
 * Pick the FPU context switching strategy:
313 314 315 316 317 318 319 320 321
 *
 * When eagerfpu is AUTO or ENABLE, we ensure it is ENABLE if either of
 * the following is true:
 *
 * (1) the cpu has xsaveopt, as it has the optimization and doing eager
 *     FPU switching has a relatively low cost compared to a plain xsave;
 * (2) the cpu has xsave features (e.g. MPX) that depend on eager FPU
 *     switching. Should the kernel boot with noxsaveopt, we support MPX
 *     with eager FPU switching at a higher cost.
322
 */
323
static void __init fpu__init_system_ctx_switch(void)
324
{
325
	static bool on_boot_cpu __initdata = 1;
326 327 328 329 330

	WARN_ON_FPU(!on_boot_cpu);
	on_boot_cpu = 0;

	WARN_ON_FPU(current->thread.fpu.fpstate_active);
331 332
	current_thread_info()->status = 0;

333
	if (boot_cpu_has(X86_FEATURE_XSAVEOPT) && eagerfpu != DISABLE)
334 335
		eagerfpu = ENABLE;

336 337
	if (xfeatures_mask & XFEATURE_MASK_EAGER)
		eagerfpu = ENABLE;
338 339 340 341

	if (eagerfpu == ENABLE)
		setup_force_cpu_cap(X86_FEATURE_EAGER_FPU);

342
	printk(KERN_INFO "x86/fpu: Using '%s' FPU context switches.\n", eagerfpu == ENABLE ? "eager" : "lazy");
343 344
}

345 346 347 348 349 350 351 352 353 354
/*
 * We parse fpu parameters early because fpu__init_system() is executed
 * before parse_early_param().
 */
static void __init fpu__init_parse_early_param(void)
{
	/*
	 * No need to check "eagerfpu=auto" again, since it is the
	 * initial default.
	 */
355
	if (cmdline_find_option_bool(boot_command_line, "eagerfpu=off")) {
356
		eagerfpu = DISABLE;
357 358
		fpu__clear_eager_fpu_features();
	} else if (cmdline_find_option_bool(boot_command_line, "eagerfpu=on")) {
359
		eagerfpu = ENABLE;
360
	}
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

	if (cmdline_find_option_bool(boot_command_line, "no387"))
		setup_clear_cpu_cap(X86_FEATURE_FPU);

	if (cmdline_find_option_bool(boot_command_line, "nofxsr")) {
		setup_clear_cpu_cap(X86_FEATURE_FXSR);
		setup_clear_cpu_cap(X86_FEATURE_FXSR_OPT);
		setup_clear_cpu_cap(X86_FEATURE_XMM);
	}

	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
		fpu__xstate_clear_all_cpu_caps();

	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);

	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
}

381
/*
382 383
 * Called on the boot CPU once per system bootup, to set up the initial
 * FPU state that is later cloned into all processes:
384
 */
385
void __init fpu__init_system(struct cpuinfo_x86 *c)
386
{
387
	fpu__init_parse_early_param();
388 389
	fpu__init_system_early_generic(c);

390 391 392 393
	/*
	 * The FPU has to be operational for some of the
	 * later FPU init activities:
	 */
394
	fpu__init_cpu();
395

396
	/*
397 398 399 400
	 * But don't leave CR0::TS set yet, as some of the FPU setup
	 * methods depend on being able to execute FPU instructions
	 * that will fault on a set TS, such as the FXSAVE in
	 * fpu__init_system_mxcsr().
401 402 403
	 */
	clts();

404
	fpu__init_system_generic();
405
	fpu__init_system_xstate_size_legacy();
I
Ingo Molnar 已提交
406
	fpu__init_system_xstate();
407
	fpu__init_task_struct_size();
408

409
	fpu__init_system_ctx_switch();
410
}