mmu-hash64.h 18.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#ifndef _ASM_POWERPC_MMU_HASH64_H_
#define _ASM_POWERPC_MMU_HASH64_H_
/*
 * PowerPC64 memory management structures
 *
 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
 *   PPC64 rework.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#include <asm/asm-compat.h>
#include <asm/page.h>

18 19 20 21 22 23 24
/*
 * This is necessary to get the definition of PGTABLE_RANGE which we
 * need for various slices related matters. Note that this isn't the
 * complete pgtable.h but only a portion of it.
 */
#include <asm/pgtable-ppc64.h>

25 26 27 28 29 30 31 32 33 34 35 36
/*
 * Segment table
 */

#define STE_ESID_V	0x80
#define STE_ESID_KS	0x20
#define STE_ESID_KP	0x10
#define STE_ESID_N	0x08

#define STE_VSID_SHIFT	12

/* Location of cpu0's segment table */
37
#define STAB0_PAGE	0x8
38 39 40 41 42 43 44 45 46 47 48 49 50
#define STAB0_OFFSET	(STAB0_PAGE << 12)
#define STAB0_PHYS_ADDR	(STAB0_OFFSET + PHYSICAL_START)

#ifndef __ASSEMBLY__
extern char initial_stab[];
#endif /* ! __ASSEMBLY */

/*
 * SLB
 */

#define SLB_NUM_BOLTED		3
#define SLB_CACHE_ENTRIES	8
51
#define SLB_MIN_SIZE		32
52 53 54 55 56 57

/* Bits in the SLB ESID word */
#define SLB_ESID_V		ASM_CONST(0x0000000008000000) /* valid */

/* Bits in the SLB VSID word */
#define SLB_VSID_SHIFT		12
P
Paul Mackerras 已提交
58 59
#define SLB_VSID_SHIFT_1T	24
#define SLB_VSID_SSIZE_SHIFT	62
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#define SLB_VSID_B		ASM_CONST(0xc000000000000000)
#define SLB_VSID_B_256M		ASM_CONST(0x0000000000000000)
#define SLB_VSID_B_1T		ASM_CONST(0x4000000000000000)
#define SLB_VSID_KS		ASM_CONST(0x0000000000000800)
#define SLB_VSID_KP		ASM_CONST(0x0000000000000400)
#define SLB_VSID_N		ASM_CONST(0x0000000000000200) /* no-execute */
#define SLB_VSID_L		ASM_CONST(0x0000000000000100)
#define SLB_VSID_C		ASM_CONST(0x0000000000000080) /* class */
#define SLB_VSID_LP		ASM_CONST(0x0000000000000030)
#define SLB_VSID_LP_00		ASM_CONST(0x0000000000000000)
#define SLB_VSID_LP_01		ASM_CONST(0x0000000000000010)
#define SLB_VSID_LP_10		ASM_CONST(0x0000000000000020)
#define SLB_VSID_LP_11		ASM_CONST(0x0000000000000030)
#define SLB_VSID_LLP		(SLB_VSID_L|SLB_VSID_LP)

#define SLB_VSID_KERNEL		(SLB_VSID_KP)
#define SLB_VSID_USER		(SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)

#define SLBIE_C			(0x08000000)
P
Paul Mackerras 已提交
79
#define SLBIE_SSIZE_SHIFT	25
80 81 82 83 84 85 86

/*
 * Hash table
 */

#define HPTES_PER_GROUP 8

87
#define HPTE_V_SSIZE_SHIFT	62
88
#define HPTE_V_AVPN_SHIFT	7
89
#define HPTE_V_AVPN		ASM_CONST(0x3fffffffffffff80)
90
#define HPTE_V_AVPN_VAL(x)	(((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
91
#define HPTE_V_COMPARE(x,y)	(!(((x) ^ (y)) & 0xffffffffffffff80UL))
92 93 94 95 96 97 98 99
#define HPTE_V_BOLTED		ASM_CONST(0x0000000000000010)
#define HPTE_V_LOCK		ASM_CONST(0x0000000000000008)
#define HPTE_V_LARGE		ASM_CONST(0x0000000000000004)
#define HPTE_V_SECONDARY	ASM_CONST(0x0000000000000002)
#define HPTE_V_VALID		ASM_CONST(0x0000000000000001)

#define HPTE_R_PP0		ASM_CONST(0x8000000000000000)
#define HPTE_R_TS		ASM_CONST(0x4000000000000000)
100
#define HPTE_R_KEY_HI		ASM_CONST(0x3000000000000000)
101
#define HPTE_R_RPN_SHIFT	12
102
#define HPTE_R_RPN		ASM_CONST(0x0ffffffffffff000)
103 104
#define HPTE_R_PP		ASM_CONST(0x0000000000000003)
#define HPTE_R_N		ASM_CONST(0x0000000000000004)
105 106 107 108 109
#define HPTE_R_G		ASM_CONST(0x0000000000000008)
#define HPTE_R_M		ASM_CONST(0x0000000000000010)
#define HPTE_R_I		ASM_CONST(0x0000000000000020)
#define HPTE_R_W		ASM_CONST(0x0000000000000040)
#define HPTE_R_WIMG		ASM_CONST(0x0000000000000078)
110 111
#define HPTE_R_C		ASM_CONST(0x0000000000000080)
#define HPTE_R_R		ASM_CONST(0x0000000000000100)
112
#define HPTE_R_KEY_LO		ASM_CONST(0x0000000000000e00)
113

114 115 116
#define HPTE_V_1TB_SEG		ASM_CONST(0x4000000000000000)
#define HPTE_V_VRMA_MASK	ASM_CONST(0x4001ffffff000000)

117 118 119 120 121
/* Values for PP (assumes Ks=0, Kp=1) */
#define PP_RWXX	0	/* Supervisor read/write, User none */
#define PP_RWRX 1	/* Supervisor read/write, User read */
#define PP_RWRW 2	/* Supervisor read/write, User read/write */
#define PP_RXRX 3	/* Supervisor read,       User read */
122
#define PP_RXXX	(HPTE_R_PP0 | 2)	/* Supervisor read, user none */
123

124 125 126 127 128 129 130 131 132 133
/* Fields for tlbiel instruction in architecture 2.06 */
#define TLBIEL_INVAL_SEL_MASK	0xc00	/* invalidation selector */
#define  TLBIEL_INVAL_PAGE	0x000	/* invalidate a single page */
#define  TLBIEL_INVAL_SET_LPID	0x800	/* invalidate a set for current LPID */
#define  TLBIEL_INVAL_SET	0xc00	/* invalidate a set for all LPIDs */
#define TLBIEL_INVAL_SET_MASK	0xfff000	/* set number to inval. */
#define TLBIEL_INVAL_SET_SHIFT	12

#define POWER7_TLB_SETS		128	/* # sets in POWER7 TLB */

134 135
#ifndef __ASSEMBLY__

136
struct hash_pte {
137 138
	unsigned long v;
	unsigned long r;
139
};
140

141
extern struct hash_pte *htab_address;
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
extern unsigned long htab_size_bytes;
extern unsigned long htab_hash_mask;

/*
 * Page size definition
 *
 *    shift : is the "PAGE_SHIFT" value for that page size
 *    sllp  : is a bit mask with the value of SLB L || LP to be or'ed
 *            directly to a slbmte "vsid" value
 *    penc  : is the HPTE encoding mask for the "LP" field:
 *
 */
struct mmu_psize_def
{
	unsigned int	shift;	/* number of bits */
	unsigned int	penc;	/* HPTE encoding */
	unsigned int	tlbiel;	/* tlbiel supported for that page size */
	unsigned long	avpnm;	/* bits to mask out in AVPN in the HPTE */
	unsigned long	sllp;	/* SLB L||LP (exact mask to use in slbmte) */
};

#endif /* __ASSEMBLY__ */

165 166 167 168 169 170 171 172 173
/*
 * Segment sizes.
 * These are the values used by hardware in the B field of
 * SLB entries and the first dword of MMU hashtable entries.
 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
 */
#define MMU_SEGSIZE_256M	0
#define MMU_SEGSIZE_1T		1

174 175 176 177 178 179 180 181 182
/*
 * encode page number shift.
 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
 * 12 bits. This enable us to address upto 76 bit va.
 * For hpt hash from a va we can ignore the page size bits of va and for
 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
 * we work in all cases including 4k page size.
 */
#define VPN_SHIFT	12
P
Paul Mackerras 已提交
183

184 185
#ifndef __ASSEMBLY__

186 187 188 189 190 191 192
static inline int segment_shift(int ssize)
{
	if (ssize == MMU_SEGSIZE_256M)
		return SID_SHIFT;
	return SID_SHIFT_1T;
}

193
/*
P
Paul Mackerras 已提交
194
 * The current system page and segment sizes
195 196 197 198 199
 */
extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
extern int mmu_linear_psize;
extern int mmu_virtual_psize;
extern int mmu_vmalloc_psize;
200
extern int mmu_vmemmap_psize;
201
extern int mmu_io_psize;
P
Paul Mackerras 已提交
202 203
extern int mmu_kernel_ssize;
extern int mmu_highuser_ssize;
204
extern u16 mmu_slb_size;
205
extern unsigned long tce_alloc_start, tce_alloc_end;
206 207 208 209 210 211 212 213 214

/*
 * If the processor supports 64k normal pages but not 64k cache
 * inhibited pages, we have to be prepared to switch processes
 * to use 4k pages when they create cache-inhibited mappings.
 * If this is the case, mmu_ci_restrictions will be set to 1.
 */
extern int mmu_ci_restrictions;

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * This computes the AVPN and B fields of the first dword of a HPTE,
 * for use when we want to match an existing PTE.  The bottom 7 bits
 * of the returned value are zero.
 */
static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
					     int ssize)
{
	unsigned long v;
	/*
	 * The AVA field omits the low-order 23 bits of the 78 bits VA.
	 * These bits are not needed in the PTE, because the
	 * low-order b of these bits are part of the byte offset
	 * into the virtual page and, if b < 23, the high-order
	 * 23-b of these bits are always used in selecting the
	 * PTEGs to be searched
	 */
	v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
	v <<= HPTE_V_AVPN_SHIFT;
	v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
	return v;
}

238 239 240 241
/*
 * This function sets the AVPN and L fields of the HPTE  appropriately
 * for the page size
 */
242 243
static inline unsigned long hpte_encode_v(unsigned long vpn,
					  int psize, int ssize)
244
{
P
Paul Mackerras 已提交
245
	unsigned long v;
246
	v = hpte_encode_avpn(vpn, psize, ssize);
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
	if (psize != MMU_PAGE_4K)
		v |= HPTE_V_LARGE;
	return v;
}

/*
 * This function sets the ARPN, and LP fields of the HPTE appropriately
 * for the page size. We assume the pa is already "clean" that is properly
 * aligned for the requested page size
 */
static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
{
	unsigned long r;

	/* A 4K page needs no special encoding */
	if (psize == MMU_PAGE_4K)
		return pa & HPTE_R_RPN;
	else {
		unsigned int penc = mmu_psize_defs[psize].penc;
		unsigned int shift = mmu_psize_defs[psize].shift;
		return (pa & ~((1ul << shift) - 1)) | (penc << 12);
	}
	return r;
}

/*
273
 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
274
 */
275 276
static inline unsigned long hpt_vpn(unsigned long ea,
				    unsigned long vsid, int ssize)
P
Paul Mackerras 已提交
277
{
278 279 280 281 282
	unsigned long mask;
	int s_shift = segment_shift(ssize);

	mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
	return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
P
Paul Mackerras 已提交
283
}
284

P
Paul Mackerras 已提交
285 286 287
/*
 * This hashes a virtual address
 */
288 289
static inline unsigned long hpt_hash(unsigned long vpn,
				     unsigned int shift, int ssize)
290
{
291
	int mask;
P
Paul Mackerras 已提交
292 293
	unsigned long hash, vsid;

294
	/* VPN_SHIFT can be atmost 12 */
P
Paul Mackerras 已提交
295
	if (ssize == MMU_SEGSIZE_256M) {
296 297 298
		mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
		hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
			((vpn & mask) >> (shift - VPN_SHIFT));
P
Paul Mackerras 已提交
299
	} else {
300 301 302 303
		mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
		vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
		hash = vsid ^ (vsid << 25) ^
			((vpn & mask) >> (shift - VPN_SHIFT)) ;
P
Paul Mackerras 已提交
304 305
	}
	return hash & 0x7fffffffffUL;
306 307 308 309
}

extern int __hash_page_4K(unsigned long ea, unsigned long access,
			  unsigned long vsid, pte_t *ptep, unsigned long trap,
310
			  unsigned int local, int ssize, int subpage_prot);
311 312
extern int __hash_page_64K(unsigned long ea, unsigned long access,
			   unsigned long vsid, pte_t *ptep, unsigned long trap,
P
Paul Mackerras 已提交
313
			   unsigned int local, int ssize);
314
struct mm_struct;
315
unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
316
extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
317 318 319
int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
		     pte_t *ptep, unsigned long trap, int local, int ssize,
		     unsigned int shift, unsigned int mmu_psize);
320 321 322
extern void hash_failure_debug(unsigned long ea, unsigned long access,
			       unsigned long vsid, unsigned long trap,
			       int ssize, int psize, unsigned long pte);
323
extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
324
			     unsigned long pstart, unsigned long prot,
P
Paul Mackerras 已提交
325
			     int psize, int ssize);
B
Becky Bruce 已提交
326
extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
327
extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
328 329 330 331

extern void hpte_init_native(void);
extern void hpte_init_lpar(void);
extern void hpte_init_beat(void);
332
extern void hpte_init_beat_v3(void);
333 334 335 336 337 338

extern void stabs_alloc(void);
extern void slb_initialize(void);
extern void slb_flush_and_rebolt(void);
extern void stab_initialize(unsigned long stab);

339
extern void slb_vmalloc_update(void);
340
extern void slb_set_size(u16 size);
341 342 343
#endif /* __ASSEMBLY__ */

/*
344
 * VSID allocation (256MB segment)
345
 *
346 347
 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
 * from mmu context id and effective segment id of the address.
348
 *
349 350 351 352 353 354 355
 * For user processes max context id is limited to ((1ul << 19) - 5)
 * for kernel space, we use the top 4 context ids to map address as below
 * NOTE: each context only support 64TB now.
 * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
 * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
 * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
 * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
356 357 358 359 360 361
 *
 * The proto-VSIDs are then scrambled into real VSIDs with the
 * multiplicative hash:
 *
 *	VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
 *
362
 * VSID_MULTIPLIER is prime, so in particular it is
363 364
 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
 * Because the modulus is 2^n-1 we can compute it efficiently without
365 366 367
 * a divide or extra multiply (see below). The scramble function gives
 * robust scattering in the hash table (at least based on some initial
 * results).
368
 *
369 370 371
 * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
 * bad address. This enables us to consolidate bad address handling in
 * hash_page.
372
 *
373 374 375 376 377
 * We also need to avoid the last segment of the last context, because that
 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
 * because of the modulo operation in vsid scramble. But the vmemmap
 * (which is what uses region 0xf) will never be close to 64TB in size
 * (it's 56 bytes per page of system memory).
378 379
 */

380
#define CONTEXT_BITS		19
381 382
#define ESID_BITS		18
#define ESID_BITS_1T		6
383

384 385
/*
 * 256MB segment
386
 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
387 388 389 390 391 392 393
 * available for user + kernel mapping. The top 4 contexts are used for
 * kernel mapping. Each segment contains 2^28 bytes. Each
 * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
 * (19 == 37 + 28 - 46).
 */
#define MAX_USER_CONTEXT	((ASM_CONST(1) << CONTEXT_BITS) - 5)

A
Aneesh Kumar K.V 已提交
394 395 396 397 398
/*
 * This should be computed such that protovosid * vsid_mulitplier
 * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
 */
#define VSID_MULTIPLIER_256M	ASM_CONST(12538073)	/* 24-bit prime */
399
#define VSID_BITS_256M		(CONTEXT_BITS + ESID_BITS)
P
Paul Mackerras 已提交
400
#define VSID_MODULUS_256M	((1UL<<VSID_BITS_256M)-1)
401

P
Paul Mackerras 已提交
402
#define VSID_MULTIPLIER_1T	ASM_CONST(12538073)	/* 24-bit prime */
403
#define VSID_BITS_1T		(CONTEXT_BITS + ESID_BITS_1T)
P
Paul Mackerras 已提交
404 405
#define VSID_MODULUS_1T		((1UL<<VSID_BITS_1T)-1)

406

407
#define USER_VSID_RANGE	(1UL << (ESID_BITS + SID_SHIFT))
408 409 410 411 412 413 414 415 416 417 418

/*
 * This macro generates asm code to compute the VSID scramble
 * function.  Used in slb_allocate() and do_stab_bolted.  The function
 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
 *
 *	rt = register continaing the proto-VSID and into which the
 *		VSID will be stored
 *	rx = scratch register (clobbered)
 *
 * 	- rt and rx must be different registers
P
Paul Mackerras 已提交
419
 * 	- The answer will end up in the low VSID_BITS bits of rt.  The higher
420 421 422
 * 	  bits may contain other garbage, so you may need to mask the
 * 	  result.
 */
P
Paul Mackerras 已提交
423 424 425
#define ASM_VSID_SCRAMBLE(rt, rx, size)					\
	lis	rx,VSID_MULTIPLIER_##size@h;				\
	ori	rx,rx,VSID_MULTIPLIER_##size@l;				\
426 427
	mulld	rt,rt,rx;		/* rt = rt * MULTIPLIER */	\
									\
P
Paul Mackerras 已提交
428 429
	srdi	rx,rt,VSID_BITS_##size;					\
	clrldi	rt,rt,(64-VSID_BITS_##size);				\
430
	add	rt,rt,rx;		/* add high and low bits */	\
431 432
	/* NOTE: explanation based on VSID_BITS_##size = 36		\
	 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\
433 434 435 436 437 438
	 * 2^36-1+2^28-1.  That in particular means that if r3 >=	\
	 * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has	\
	 * the bit clear, r3 already has the answer we want, if it	\
	 * doesn't, the answer is the low 36 bits of r3+1.  So in all	\
	 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
	addi	rx,rt,1;						\
P
Paul Mackerras 已提交
439
	srdi	rx,rx,VSID_BITS_##size;	/* extract 2^VSID_BITS bit */	\
440 441
	add	rt,rt,rx

442 443
/* 4 bits per slice and we have one slice per 1TB */
#define SLICE_ARRAY_SIZE  (PGTABLE_RANGE >> 41)
444 445 446

#ifndef __ASSEMBLY__

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
#ifdef CONFIG_PPC_SUBPAGE_PROT
/*
 * For the sub-page protection option, we extend the PGD with one of
 * these.  Basically we have a 3-level tree, with the top level being
 * the protptrs array.  To optimize speed and memory consumption when
 * only addresses < 4GB are being protected, pointers to the first
 * four pages of sub-page protection words are stored in the low_prot
 * array.
 * Each page of sub-page protection words protects 1GB (4 bytes
 * protects 64k).  For the 3-level tree, each page of pointers then
 * protects 8TB.
 */
struct subpage_prot_table {
	unsigned long maxaddr;	/* only addresses < this are protected */
	unsigned int **protptrs[2];
	unsigned int *low_prot[4];
};

#define SBP_L1_BITS		(PAGE_SHIFT - 2)
#define SBP_L2_BITS		(PAGE_SHIFT - 3)
#define SBP_L1_COUNT		(1 << SBP_L1_BITS)
#define SBP_L2_COUNT		(1 << SBP_L2_BITS)
#define SBP_L2_SHIFT		(PAGE_SHIFT + SBP_L1_BITS)
#define SBP_L3_SHIFT		(SBP_L2_SHIFT + SBP_L2_BITS)

extern void subpage_prot_free(struct mm_struct *mm);
extern void subpage_prot_init_new_context(struct mm_struct *mm);
#else
static inline void subpage_prot_free(struct mm_struct *mm) {}
static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
#endif /* CONFIG_PPC_SUBPAGE_PROT */

479
typedef unsigned long mm_context_id_t;
480
struct spinlock;
481 482 483

typedef struct {
	mm_context_id_t id;
484 485 486 487
	u16 user_psize;		/* page size index */

#ifdef CONFIG_PPC_MM_SLICES
	u64 low_slices_psize;	/* SLB page size encodings */
488
	unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
489 490
#else
	u16 sllp;		/* SLB page size encoding */
491 492
#endif
	unsigned long vdso_base;
493 494 495
#ifdef CONFIG_PPC_SUBPAGE_PROT
	struct subpage_prot_table spt;
#endif /* CONFIG_PPC_SUBPAGE_PROT */
496 497 498 499 500
#ifdef CONFIG_PPC_ICSWX
	struct spinlock *cop_lockp; /* guard acop and cop_pid */
	unsigned long acop;	/* mask of enabled coprocessor types */
	unsigned int cop_pid;	/* pid value used with coprocessors */
#endif /* CONFIG_PPC_ICSWX */
501 502 503 504
} mm_context_t;


#if 0
P
Paul Mackerras 已提交
505 506 507 508 509 510
/*
 * The code below is equivalent to this function for arguments
 * < 2^VSID_BITS, which is all this should ever be called
 * with.  However gcc is not clever enough to compute the
 * modulus (2^n-1) without a second multiply.
 */
511
#define vsid_scramble(protovsid, size) \
P
Paul Mackerras 已提交
512
	((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
513

P
Paul Mackerras 已提交
514 515 516 517 518 519 520 521
#else /* 1 */
#define vsid_scramble(protovsid, size) \
	({								 \
		unsigned long x;					 \
		x = (protovsid) * VSID_MULTIPLIER_##size;		 \
		x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
		(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
	})
522 523
#endif /* 1 */

P
Paul Mackerras 已提交
524 525
/* Returns the segment size indicator for a user address */
static inline int user_segment_size(unsigned long addr)
526
{
P
Paul Mackerras 已提交
527 528 529 530
	/* Use 1T segments if possible for addresses >= 1T */
	if (addr >= (1UL << SID_SHIFT_1T))
		return mmu_highuser_ssize;
	return MMU_SEGSIZE_256M;
531 532
}

P
Paul Mackerras 已提交
533 534 535
static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
				     int ssize)
{
536 537 538 539 540 541
	/*
	 * Bad address. We return VSID 0 for that
	 */
	if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
		return 0;

P
Paul Mackerras 已提交
542
	if (ssize == MMU_SEGSIZE_256M)
543
		return vsid_scramble((context << ESID_BITS)
P
Paul Mackerras 已提交
544
				     | (ea >> SID_SHIFT), 256M);
545
	return vsid_scramble((context << ESID_BITS_1T)
P
Paul Mackerras 已提交
546 547 548
			     | (ea >> SID_SHIFT_1T), 1T);
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*
 * This is only valid for addresses >= PAGE_OFFSET
 *
 * For kernel space, we use the top 4 context ids to map address as below
 * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
 * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
 * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
 * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
 */
static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
{
	unsigned long context;

	/*
	 * kernel take the top 4 context from the available range
	 */
	context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
	return get_vsid(context, ea, ssize);
}
568 569 570
#endif /* __ASSEMBLY__ */

#endif /* _ASM_POWERPC_MMU_HASH64_H_ */