eeh.c 34.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * eeh.c
 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
L
Linas Vepstas 已提交
4
 *
L
Linus Torvalds 已提交
5 6 7 8
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
L
Linas Vepstas 已提交
9
 *
L
Linus Torvalds 已提交
10 11 12 13
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
L
Linas Vepstas 已提交
14
 *
L
Linus Torvalds 已提交
15 16 17 18 19
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/delay.h>
L
Linus Torvalds 已提交
21 22 23 24 25 26 27
#include <linux/init.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/rbtree.h>
#include <linux/seq_file.h>
#include <linux/spinlock.h>
L
Linas Vepstas 已提交
28
#include <asm/atomic.h>
L
Linus Torvalds 已提交
29
#include <asm/eeh.h>
30
#include <asm/eeh_event.h>
L
Linus Torvalds 已提交
31 32
#include <asm/io.h>
#include <asm/machdep.h>
33
#include <asm/ppc-pci.h>
L
Linus Torvalds 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
#include <asm/rtas.h>

#undef DEBUG

/** Overview:
 *  EEH, or "Extended Error Handling" is a PCI bridge technology for
 *  dealing with PCI bus errors that can't be dealt with within the
 *  usual PCI framework, except by check-stopping the CPU.  Systems
 *  that are designed for high-availability/reliability cannot afford
 *  to crash due to a "mere" PCI error, thus the need for EEH.
 *  An EEH-capable bridge operates by converting a detected error
 *  into a "slot freeze", taking the PCI adapter off-line, making
 *  the slot behave, from the OS'es point of view, as if the slot
 *  were "empty": all reads return 0xff's and all writes are silently
 *  ignored.  EEH slot isolation events can be triggered by parity
 *  errors on the address or data busses (e.g. during posted writes),
L
Linas Vepstas 已提交
50 51
 *  which in turn might be caused by low voltage on the bus, dust,
 *  vibration, humidity, radioactivity or plain-old failed hardware.
L
Linus Torvalds 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
 *
 *  Note, however, that one of the leading causes of EEH slot
 *  freeze events are buggy device drivers, buggy device microcode,
 *  or buggy device hardware.  This is because any attempt by the
 *  device to bus-master data to a memory address that is not
 *  assigned to the device will trigger a slot freeze.   (The idea
 *  is to prevent devices-gone-wild from corrupting system memory).
 *  Buggy hardware/drivers will have a miserable time co-existing
 *  with EEH.
 *
 *  Ideally, a PCI device driver, when suspecting that an isolation
 *  event has occured (e.g. by reading 0xff's), will then ask EEH
 *  whether this is the case, and then take appropriate steps to
 *  reset the PCI slot, the PCI device, and then resume operations.
 *  However, until that day,  the checking is done here, with the
 *  eeh_check_failure() routine embedded in the MMIO macros.  If
 *  the slot is found to be isolated, an "EEH Event" is synthesized
 *  and sent out for processing.
 */

72
/* If a device driver keeps reading an MMIO register in an interrupt
L
Linus Torvalds 已提交
73 74 75 76
 * handler after a slot isolation event has occurred, we assume it
 * is broken and panic.  This sets the threshold for how many read
 * attempts we allow before panicking.
 */
77
#define EEH_MAX_FAILS	100000
L
Linus Torvalds 已提交
78

79 80 81
/* Misc forward declaraions */
static void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn);

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90
/* RTAS tokens */
static int ibm_set_eeh_option;
static int ibm_set_slot_reset;
static int ibm_read_slot_reset_state;
static int ibm_read_slot_reset_state2;
static int ibm_slot_error_detail;

static int eeh_subsystem_enabled;

91 92 93
/* Lock to avoid races due to multiple reports of an error */
static DEFINE_SPINLOCK(confirm_error_lock);

L
Linus Torvalds 已提交
94 95 96 97 98 99
/* Buffer for reporting slot-error-detail rtas calls */
static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
static DEFINE_SPINLOCK(slot_errbuf_lock);
static int eeh_error_buf_size;

/* System monitoring statistics */
100 101 102 103
static DEFINE_PER_CPU(unsigned long, no_device);
static DEFINE_PER_CPU(unsigned long, no_dn);
static DEFINE_PER_CPU(unsigned long, no_cfg_addr);
static DEFINE_PER_CPU(unsigned long, ignored_check);
L
Linus Torvalds 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
static DEFINE_PER_CPU(unsigned long, false_positives);
static DEFINE_PER_CPU(unsigned long, ignored_failures);
static DEFINE_PER_CPU(unsigned long, slot_resets);

/**
 * The pci address cache subsystem.  This subsystem places
 * PCI device address resources into a red-black tree, sorted
 * according to the address range, so that given only an i/o
 * address, the corresponding PCI device can be **quickly**
 * found. It is safe to perform an address lookup in an interrupt
 * context; this ability is an important feature.
 *
 * Currently, the only customer of this code is the EEH subsystem;
 * thus, this code has been somewhat tailored to suit EEH better.
 * In particular, the cache does *not* hold the addresses of devices
 * for which EEH is not enabled.
 *
 * (Implementation Note: The RB tree seems to be better/faster
 * than any hash algo I could think of for this problem, even
 * with the penalty of slow pointer chases for d-cache misses).
 */
struct pci_io_addr_range
{
	struct rb_node rb_node;
	unsigned long addr_lo;
	unsigned long addr_hi;
	struct pci_dev *pcidev;
	unsigned int flags;
};

static struct pci_io_addr_cache
{
	struct rb_root rb_root;
	spinlock_t piar_lock;
} pci_io_addr_cache_root;

static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
{
	struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;

	while (n) {
		struct pci_io_addr_range *piar;
		piar = rb_entry(n, struct pci_io_addr_range, rb_node);

		if (addr < piar->addr_lo) {
			n = n->rb_left;
		} else {
			if (addr > piar->addr_hi) {
				n = n->rb_right;
			} else {
				pci_dev_get(piar->pcidev);
				return piar->pcidev;
			}
		}
	}

	return NULL;
}

/**
 * pci_get_device_by_addr - Get device, given only address
 * @addr: mmio (PIO) phys address or i/o port number
 *
 * Given an mmio phys address, or a port number, find a pci device
 * that implements this address.  Be sure to pci_dev_put the device
 * when finished.  I/O port numbers are assumed to be offset
 * from zero (that is, they do *not* have pci_io_addr added in).
 * It is safe to call this function within an interrupt.
 */
static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
{
	struct pci_dev *dev;
	unsigned long flags;

	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
	dev = __pci_get_device_by_addr(addr);
	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
	return dev;
}

#ifdef DEBUG
/*
 * Handy-dandy debug print routine, does nothing more
 * than print out the contents of our addr cache.
 */
static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
{
	struct rb_node *n;
	int cnt = 0;

	n = rb_first(&cache->rb_root);
	while (n) {
		struct pci_io_addr_range *piar;
		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
199
		printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
L
Linus Torvalds 已提交
200
		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
201
		       piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
L
Linus Torvalds 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
		cnt++;
		n = rb_next(n);
	}
}
#endif

/* Insert address range into the rb tree. */
static struct pci_io_addr_range *
pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
		      unsigned long ahi, unsigned int flags)
{
	struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct pci_io_addr_range *piar;

	/* Walk tree, find a place to insert into tree */
	while (*p) {
		parent = *p;
		piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
221
		if (ahi < piar->addr_lo) {
L
Linus Torvalds 已提交
222
			p = &parent->rb_left;
223
		} else if (alo > piar->addr_hi) {
L
Linus Torvalds 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
			p = &parent->rb_right;
		} else {
			if (dev != piar->pcidev ||
			    alo != piar->addr_lo || ahi != piar->addr_hi) {
				printk(KERN_WARNING "PIAR: overlapping address range\n");
			}
			return piar;
		}
	}
	piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
	if (!piar)
		return NULL;

	piar->addr_lo = alo;
	piar->addr_hi = ahi;
	piar->pcidev = dev;
	piar->flags = flags;

242 243 244 245 246
#ifdef DEBUG
	printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
	                  alo, ahi, pci_name (dev));
#endif

L
Linus Torvalds 已提交
247 248 249 250 251 252 253 254 255
	rb_link_node(&piar->rb_node, parent, p);
	rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);

	return piar;
}

static void __pci_addr_cache_insert_device(struct pci_dev *dev)
{
	struct device_node *dn;
256
	struct pci_dn *pdn;
L
Linus Torvalds 已提交
257 258 259 260 261
	int i;
	int inserted = 0;

	dn = pci_device_to_OF_node(dev);
	if (!dn) {
L
Linas Vepstas 已提交
262
		printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
L
Linus Torvalds 已提交
263 264 265 266
		return;
	}

	/* Skip any devices for which EEH is not enabled. */
L
Linas Vepstas 已提交
267
	pdn = PCI_DN(dn);
268 269
	if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
	    pdn->eeh_mode & EEH_MODE_NOCHECK) {
L
Linus Torvalds 已提交
270
#ifdef DEBUG
L
Linas Vepstas 已提交
271 272
		printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",
		       pci_name(dev), pdn->node->full_name);
L
Linus Torvalds 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
#endif
		return;
	}

	/* The cache holds a reference to the device... */
	pci_dev_get(dev);

	/* Walk resources on this device, poke them into the tree */
	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
		unsigned long start = pci_resource_start(dev,i);
		unsigned long end = pci_resource_end(dev,i);
		unsigned int flags = pci_resource_flags(dev,i);

		/* We are interested only bus addresses, not dma or other stuff */
		if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
			continue;
		if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
			 continue;
		pci_addr_cache_insert(dev, start, end, flags);
		inserted = 1;
	}

	/* If there was nothing to add, the cache has no reference... */
	if (!inserted)
		pci_dev_put(dev);
}

/**
 * pci_addr_cache_insert_device - Add a device to the address cache
 * @dev: PCI device whose I/O addresses we are interested in.
 *
 * In order to support the fast lookup of devices based on addresses,
 * we maintain a cache of devices that can be quickly searched.
 * This routine adds a device to that cache.
 */
308
static void pci_addr_cache_insert_device(struct pci_dev *dev)
L
Linus Torvalds 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
{
	unsigned long flags;

	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
	__pci_addr_cache_insert_device(dev);
	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
}

static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
{
	struct rb_node *n;
	int removed = 0;

restart:
	n = rb_first(&pci_io_addr_cache_root.rb_root);
	while (n) {
		struct pci_io_addr_range *piar;
		piar = rb_entry(n, struct pci_io_addr_range, rb_node);

		if (piar->pcidev == dev) {
			rb_erase(n, &pci_io_addr_cache_root.rb_root);
			removed = 1;
			kfree(piar);
			goto restart;
		}
		n = rb_next(n);
	}

	/* The cache no longer holds its reference to this device... */
	if (removed)
		pci_dev_put(dev);
}

/**
 * pci_addr_cache_remove_device - remove pci device from addr cache
 * @dev: device to remove
 *
 * Remove a device from the addr-cache tree.
 * This is potentially expensive, since it will walk
 * the tree multiple times (once per resource).
 * But so what; device removal doesn't need to be that fast.
 */
351
static void pci_addr_cache_remove_device(struct pci_dev *dev)
L
Linus Torvalds 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
{
	unsigned long flags;

	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
	__pci_addr_cache_remove_device(dev);
	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
}

/**
 * pci_addr_cache_build - Build a cache of I/O addresses
 *
 * Build a cache of pci i/o addresses.  This cache will be used to
 * find the pci device that corresponds to a given address.
 * This routine scans all pci busses to build the cache.
 * Must be run late in boot process, after the pci controllers
 * have been scaned for devices (after all device resources are known).
 */
void __init pci_addr_cache_build(void)
{
371
	struct device_node *dn;
L
Linus Torvalds 已提交
372 373
	struct pci_dev *dev = NULL;

374 375 376
	if (!eeh_subsystem_enabled)
		return;

L
Linus Torvalds 已提交
377 378 379 380 381 382 383 384
	spin_lock_init(&pci_io_addr_cache_root.piar_lock);

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
		/* Ignore PCI bridges ( XXX why ??) */
		if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
			continue;
		}
		pci_addr_cache_insert_device(dev);
385 386 387 388

		/* Save the BAR's; firmware doesn't restore these after EEH reset */
		dn = pci_device_to_OF_node(dev);
		eeh_save_bars(dev, PCI_DN(dn));
L
Linus Torvalds 已提交
389 390 391 392 393 394 395 396 397 398 399
	}

#ifdef DEBUG
	/* Verify tree built up above, echo back the list of addrs. */
	pci_addr_cache_print(&pci_io_addr_cache_root);
#endif
}

/* --------------------------------------------------------------- */
/* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
{
	unsigned long flags;
	int rc;

	/* Log the error with the rtas logger */
	spin_lock_irqsave(&slot_errbuf_lock, flags);
	memset(slot_errbuf, 0, eeh_error_buf_size);

	rc = rtas_call(ibm_slot_error_detail,
	               8, 1, NULL, pdn->eeh_config_addr,
	               BUID_HI(pdn->phb->buid),
	               BUID_LO(pdn->phb->buid), NULL, 0,
	               virt_to_phys(slot_errbuf),
	               eeh_error_buf_size,
	               severity);

	if (rc == 0)
		log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
	spin_unlock_irqrestore(&slot_errbuf_lock, flags);
}

L
Linus Torvalds 已提交
422 423 424 425 426
/**
 * read_slot_reset_state - Read the reset state of a device node's slot
 * @dn: device node to read
 * @rets: array to return results in
 */
L
Linas Vepstas 已提交
427
static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
L
Linus Torvalds 已提交
428 429 430 431 432 433 434 435
{
	int token, outputs;

	if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
		token = ibm_read_slot_reset_state2;
		outputs = 4;
	} else {
		token = ibm_read_slot_reset_state;
L
Linas Vepstas 已提交
436
		rets[2] = 0; /* fake PE Unavailable info */
L
Linus Torvalds 已提交
437 438 439
		outputs = 3;
	}

440 441
	return rtas_call(token, 3, outputs, rets, pdn->eeh_config_addr,
			 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
L
Linus Torvalds 已提交
442 443 444 445
}

/**
 * eeh_token_to_phys - convert EEH address token to phys address
L
Linas Vepstas 已提交
446
 * @token i/o token, should be address in the form 0xA....
L
Linus Torvalds 已提交
447 448 449 450 451 452
 */
static inline unsigned long eeh_token_to_phys(unsigned long token)
{
	pte_t *ptep;
	unsigned long pa;

D
David Gibson 已提交
453
	ptep = find_linux_pte(init_mm.pgd, token);
L
Linus Torvalds 已提交
454 455 456 457 458 459 460
	if (!ptep)
		return token;
	pa = pte_pfn(*ptep) << PAGE_SHIFT;

	return pa | (token & (PAGE_SIZE-1));
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
/** 
 * Return the "partitionable endpoint" (pe) under which this device lies
 */
static struct device_node * find_device_pe(struct device_node *dn)
{
	while ((dn->parent) && PCI_DN(dn->parent) &&
	      (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
		dn = dn->parent;
	}
	return dn;
}

/** Mark all devices that are peers of this device as failed.
 *  Mark the device driver too, so that it can see the failure
 *  immediately; this is critical, since some drivers poll
 *  status registers in interrupts ... If a driver is polling,
 *  and the slot is frozen, then the driver can deadlock in
 *  an interrupt context, which is bad.
 */

481
static void __eeh_mark_slot (struct device_node *dn)
482 483 484 485 486 487 488 489 490 491
{
	while (dn) {
		PCI_DN(dn)->eeh_mode |= EEH_MODE_ISOLATED;

		if (dn->child)
			__eeh_mark_slot (dn->child);
		dn = dn->sibling;
	}
}

492
static void __eeh_clear_slot (struct device_node *dn)
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
{
	while (dn) {
		PCI_DN(dn)->eeh_mode &= ~EEH_MODE_ISOLATED;
		if (dn->child)
			__eeh_clear_slot (dn->child);
		dn = dn->sibling;
	}
}

static inline void eeh_clear_slot (struct device_node *dn)
{
	unsigned long flags;
	spin_lock_irqsave(&confirm_error_lock, flags);
	__eeh_clear_slot (dn);
	spin_unlock_irqrestore(&confirm_error_lock, flags);
}

L
Linus Torvalds 已提交
510 511 512 513 514 515 516 517 518 519 520
/**
 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
 * @dn device node
 * @dev pci device, if known
 *
 * Check for an EEH failure for the given device node.  Call this
 * routine if the result of a read was all 0xff's and you want to
 * find out if this is due to an EEH slot freeze.  This routine
 * will query firmware for the EEH status.
 *
 * Returns 0 if there has not been an EEH error; otherwise returns
L
Linas Vepstas 已提交
521
 * a non-zero value and queues up a slot isolation event notification.
L
Linus Torvalds 已提交
522 523 524 525 526 527 528 529
 *
 * It is safe to call this routine in an interrupt context.
 */
int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
{
	int ret;
	int rets[3];
	unsigned long flags;
530
	struct pci_dn *pdn;
531 532
	struct device_node *pe_dn;
	int rc = 0;
L
Linus Torvalds 已提交
533 534 535 536 537 538

	__get_cpu_var(total_mmio_ffs)++;

	if (!eeh_subsystem_enabled)
		return 0;

539 540
	if (!dn) {
		__get_cpu_var(no_dn)++;
L
Linus Torvalds 已提交
541
		return 0;
542
	}
L
Linas Vepstas 已提交
543
	pdn = PCI_DN(dn);
L
Linus Torvalds 已提交
544 545

	/* Access to IO BARs might get this far and still not want checking. */
546
	if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
547
	    pdn->eeh_mode & EEH_MODE_NOCHECK) {
548 549
		__get_cpu_var(ignored_check)++;
#ifdef DEBUG
550 551
		printk ("EEH:ignored check (%x) for %s %s\n", 
		        pdn->eeh_mode, pci_name (dev), dn->full_name);
552
#endif
L
Linus Torvalds 已提交
553 554 555
		return 0;
	}

556
	if (!pdn->eeh_config_addr) {
557
		__get_cpu_var(no_cfg_addr)++;
L
Linus Torvalds 已提交
558 559 560
		return 0;
	}

561 562 563 564 565
	/* If we already have a pending isolation event for this
	 * slot, we know it's bad already, we don't need to check.
	 * Do this checking under a lock; as multiple PCI devices
	 * in one slot might report errors simultaneously, and we
	 * only want one error recovery routine running.
L
Linus Torvalds 已提交
566
	 */
567 568
	spin_lock_irqsave(&confirm_error_lock, flags);
	rc = 1;
569
	if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
570 571 572 573 574 575
		pdn->eeh_check_count ++;
		if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
			printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
			        pdn->eeh_check_count);
			dump_stack();
			
L
Linus Torvalds 已提交
576
			/* re-read the slot reset state */
L
Linas Vepstas 已提交
577
			if (read_slot_reset_state(pdn, rets) != 0)
L
Linus Torvalds 已提交
578
				rets[0] = -1;	/* reset state unknown */
579 580 581

			/* If we are here, then we hit an infinite loop. Stop. */
			panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
L
Linus Torvalds 已提交
582
		}
583
		goto dn_unlock;
L
Linus Torvalds 已提交
584 585 586 587 588 589 590 591 592
	}

	/*
	 * Now test for an EEH failure.  This is VERY expensive.
	 * Note that the eeh_config_addr may be a parent device
	 * in the case of a device behind a bridge, or it may be
	 * function zero of a multi-function device.
	 * In any case they must share a common PHB.
	 */
L
Linas Vepstas 已提交
593
	ret = read_slot_reset_state(pdn, rets);
594 595 596 597 598 599

	/* If the call to firmware failed, punt */
	if (ret != 0) {
		printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
		       ret, dn->full_name);
		__get_cpu_var(false_positives)++;
600 601
		rc = 0;
		goto dn_unlock;
602 603 604 605 606 607 608
	}

	/* If EEH is not supported on this device, punt. */
	if (rets[1] != 1) {
		printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
		       ret, dn->full_name);
		__get_cpu_var(false_positives)++;
609 610
		rc = 0;
		goto dn_unlock;
611 612 613 614 615
	}

	/* If not the kind of error we know about, punt. */
	if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
		__get_cpu_var(false_positives)++;
616 617
		rc = 0;
		goto dn_unlock;
618 619 620 621 622
	}

	/* Note that config-io to empty slots may fail;
	 * we recognize empty because they don't have children. */
	if ((rets[0] == 5) && (dn->child == NULL)) {
L
Linus Torvalds 已提交
623
		__get_cpu_var(false_positives)++;
624 625
		rc = 0;
		goto dn_unlock;
L
Linus Torvalds 已提交
626 627
	}

628 629 630 631 632 633 634 635
	__get_cpu_var(slot_resets)++;
 
	/* Avoid repeated reports of this failure, including problems
	 * with other functions on this device, and functions under
	 * bridges. */
	pe_dn = find_device_pe (dn);
	__eeh_mark_slot (pe_dn);
	spin_unlock_irqrestore(&confirm_error_lock, flags);
L
Linus Torvalds 已提交
636

637 638
	eeh_send_failure_event (dn, dev, rets[0], rets[2]);
	
L
Linus Torvalds 已提交
639 640 641
	/* Most EEH events are due to device driver bugs.  Having
	 * a stack trace will help the device-driver authors figure
	 * out what happened.  So print that out. */
642
	if (rets[0] != 5) dump_stack();
643 644 645 646 647
	return 1;

dn_unlock:
	spin_unlock_irqrestore(&confirm_error_lock, flags);
	return rc;
L
Linus Torvalds 已提交
648 649
}

650
EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
L
Linus Torvalds 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672

/**
 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
 * @token i/o token, should be address in the form 0xA....
 * @val value, should be all 1's (XXX why do we need this arg??)
 *
 * Check for an EEH failure at the given token address.  Call this
 * routine if the result of a read was all 0xff's and you want to
 * find out if this is due to an EEH slot freeze event.  This routine
 * will query firmware for the EEH status.
 *
 * Note this routine is safe to call in an interrupt context.
 */
unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
{
	unsigned long addr;
	struct pci_dev *dev;
	struct device_node *dn;

	/* Finding the phys addr + pci device; this is pretty quick. */
	addr = eeh_token_to_phys((unsigned long __force) token);
	dev = pci_get_device_by_addr(addr);
673 674
	if (!dev) {
		__get_cpu_var(no_device)++;
L
Linus Torvalds 已提交
675
		return val;
676
	}
L
Linus Torvalds 已提交
677 678 679 680 681 682 683 684 685 686

	dn = pci_device_to_OF_node(dev);
	eeh_dn_check_failure (dn, dev);

	pci_dev_put(dev);
	return val;
}

EXPORT_SYMBOL(eeh_check_failure);

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
/* ------------------------------------------------------------- */
/* The code below deals with error recovery */

/** Return negative value if a permanent error, else return
 * a number of milliseconds to wait until the PCI slot is
 * ready to be used.
 */
static int
eeh_slot_availability(struct pci_dn *pdn)
{
	int rc;
	int rets[3];

	rc = read_slot_reset_state(pdn, rets);

	if (rc) return rc;

	if (rets[1] == 0) return -1;  /* EEH is not supported */
	if (rets[0] == 0)  return 0;  /* Oll Korrect */
	if (rets[0] == 5) {
		if (rets[2] == 0) return -1; /* permanently unavailable */
		return rets[2]; /* number of millisecs to wait */
	}
	return -1;
}

/** rtas_pci_slot_reset raises/lowers the pci #RST line
 *  state: 1/0 to raise/lower the #RST
 *
 * Clear the EEH-frozen condition on a slot.  This routine
 * asserts the PCI #RST line if the 'state' argument is '1',
 * and drops the #RST line if 'state is '0'.  This routine is
 * safe to call in an interrupt context.
 *
 */

static void
rtas_pci_slot_reset(struct pci_dn *pdn, int state)
{
	int rc;

	BUG_ON (pdn==NULL); 

	if (!pdn->phb) {
		printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
		        pdn->node->full_name);
		return;
	}

	rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
	               pdn->eeh_config_addr,
	               BUID_HI(pdn->phb->buid),
	               BUID_LO(pdn->phb->buid),
	               state);
	if (rc) {
		printk (KERN_WARNING "EEH: Unable to reset the failed slot, (%d) #RST=%d dn=%s\n", 
		        rc, state, pdn->node->full_name);
		return;
	}

	if (state == 0)
		eeh_clear_slot (pdn->node->parent->child);
}

/** rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
 *  dn -- device node to be reset.
 */

void
rtas_set_slot_reset(struct pci_dn *pdn)
{
	int i, rc;

	rtas_pci_slot_reset (pdn, 1);

	/* The PCI bus requires that the reset be held high for at least
	 * a 100 milliseconds. We wait a bit longer 'just in case'.  */

#define PCI_BUS_RST_HOLD_TIME_MSEC 250
	msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
	rtas_pci_slot_reset (pdn, 0);

	/* After a PCI slot has been reset, the PCI Express spec requires
	 * a 1.5 second idle time for the bus to stabilize, before starting
	 * up traffic. */
#define PCI_BUS_SETTLE_TIME_MSEC 1800
	msleep (PCI_BUS_SETTLE_TIME_MSEC);

	/* Now double check with the firmware to make sure the device is
	 * ready to be used; if not, wait for recovery. */
	for (i=0; i<10; i++) {
		rc = eeh_slot_availability (pdn);
		if (rc <= 0) break;

		msleep (rc+100);
	}
}

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
/* ------------------------------------------------------- */
/** Save and restore of PCI BARs
 *
 * Although firmware will set up BARs during boot, it doesn't
 * set up device BAR's after a device reset, although it will,
 * if requested, set up bridge configuration. Thus, we need to
 * configure the PCI devices ourselves.  
 */

/**
 * __restore_bars - Restore the Base Address Registers
 * Loads the PCI configuration space base address registers,
 * the expansion ROM base address, the latency timer, and etc.
 * from the saved values in the device node.
 */
static inline void __restore_bars (struct pci_dn *pdn)
{
	int i;

	if (NULL==pdn->phb) return;
	for (i=4; i<10; i++) {
		rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
	}

	/* 12 == Expansion ROM Address */
	rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);

#define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
#define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])

	rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
	            SAVED_BYTE(PCI_CACHE_LINE_SIZE));

	rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
	            SAVED_BYTE(PCI_LATENCY_TIMER));

	/* max latency, min grant, interrupt pin and line */
	rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
}

/**
 * eeh_restore_bars - restore the PCI config space info
 *
 * This routine performs a recursive walk to the children
 * of this device as well.
 */
void eeh_restore_bars(struct pci_dn *pdn)
{
	struct device_node *dn;
	if (!pdn) 
		return;
	
	if (! pdn->eeh_is_bridge)
		__restore_bars (pdn);

	dn = pdn->node->child;
	while (dn) {
		eeh_restore_bars (PCI_DN(dn));
		dn = dn->sibling;
	}
}

/**
 * eeh_save_bars - save device bars
 *
 * Save the values of the device bars. Unlike the restore
 * routine, this routine is *not* recursive. This is because
 * PCI devices are added individuallly; but, for the restore,
 * an entire slot is reset at a time.
 */
static void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn)
{
	int i;

	if (!pdev || !pdn )
		return;
	
	for (i = 0; i < 16; i++)
		pci_read_config_dword(pdev, i * 4, &pdn->config_space[i]);

	if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
		pdn->eeh_is_bridge = 1;
}

void
rtas_configure_bridge(struct pci_dn *pdn)
{
	int token = rtas_token ("ibm,configure-bridge");
	int rc;

	if (token == RTAS_UNKNOWN_SERVICE)
		return;
	rc = rtas_call(token,3,1, NULL,
	               pdn->eeh_config_addr,
	               BUID_HI(pdn->phb->buid),
	               BUID_LO(pdn->phb->buid));
	if (rc) {
		printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
		        rc, pdn->node->full_name);
	}
}

887 888 889 890 891 892 893 894
/* ------------------------------------------------------------- */
/* The code below deals with enabling EEH for devices during  the
 * early boot sequence.  EEH must be enabled before any PCI probing
 * can be done.
 */

#define EEH_ENABLE 1

L
Linus Torvalds 已提交
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
struct eeh_early_enable_info {
	unsigned int buid_hi;
	unsigned int buid_lo;
};

/* Enable eeh for the given device node. */
static void *early_enable_eeh(struct device_node *dn, void *data)
{
	struct eeh_early_enable_info *info = data;
	int ret;
	char *status = get_property(dn, "status", NULL);
	u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
	u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
	u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
	u32 *regs;
	int enable;
L
Linas Vepstas 已提交
911
	struct pci_dn *pdn = PCI_DN(dn);
L
Linus Torvalds 已提交
912

913
	pdn->eeh_mode = 0;
914 915
	pdn->eeh_check_count = 0;
	pdn->eeh_freeze_count = 0;
L
Linus Torvalds 已提交
916 917 918 919 920 921 922 923 924 925

	if (status && strcmp(status, "ok") != 0)
		return NULL;	/* ignore devices with bad status */

	/* Ignore bad nodes. */
	if (!class_code || !vendor_id || !device_id)
		return NULL;

	/* There is nothing to check on PCI to ISA bridges */
	if (dn->type && !strcmp(dn->type, "isa")) {
926
		pdn->eeh_mode |= EEH_MODE_NOCHECK;
L
Linus Torvalds 已提交
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
		return NULL;
	}

	/*
	 * Now decide if we are going to "Disable" EEH checking
	 * for this device.  We still run with the EEH hardware active,
	 * but we won't be checking for ff's.  This means a driver
	 * could return bad data (very bad!), an interrupt handler could
	 * hang waiting on status bits that won't change, etc.
	 * But there are a few cases like display devices that make sense.
	 */
	enable = 1;	/* i.e. we will do checking */
	if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
		enable = 0;

	if (!enable)
943
		pdn->eeh_mode |= EEH_MODE_NOCHECK;
L
Linus Torvalds 已提交
944 945 946 947 948 949 950 951

	/* Ok... see if this device supports EEH.  Some do, some don't,
	 * and the only way to find out is to check each and every one. */
	regs = (u32 *)get_property(dn, "reg", NULL);
	if (regs) {
		/* First register entry is addr (00BBSS00)  */
		/* Try to enable eeh */
		ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
952 953 954
		                regs[0], info->buid_hi, info->buid_lo,
		                EEH_ENABLE);

L
Linus Torvalds 已提交
955 956
		if (ret == 0) {
			eeh_subsystem_enabled = 1;
957 958
			pdn->eeh_mode |= EEH_MODE_SUPPORTED;
			pdn->eeh_config_addr = regs[0];
L
Linus Torvalds 已提交
959 960 961 962 963 964 965
#ifdef DEBUG
			printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name);
#endif
		} else {

			/* This device doesn't support EEH, but it may have an
			 * EEH parent, in which case we mark it as supported. */
L
Linas Vepstas 已提交
966
			if (dn->parent && PCI_DN(dn->parent)
967
			    && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
L
Linus Torvalds 已提交
968
				/* Parent supports EEH. */
969 970
				pdn->eeh_mode |= EEH_MODE_SUPPORTED;
				pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
L
Linus Torvalds 已提交
971 972 973 974 975 976 977 978
				return NULL;
			}
		}
	} else {
		printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
		       dn->full_name);
	}

L
Linas Vepstas 已提交
979
	return NULL;
L
Linus Torvalds 已提交
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
}

/*
 * Initialize EEH by trying to enable it for all of the adapters in the system.
 * As a side effect we can determine here if eeh is supported at all.
 * Note that we leave EEH on so failed config cycles won't cause a machine
 * check.  If a user turns off EEH for a particular adapter they are really
 * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
 * grant access to a slot if EEH isn't enabled, and so we always enable
 * EEH for all slots/all devices.
 *
 * The eeh-force-off option disables EEH checking globally, for all slots.
 * Even if force-off is set, the EEH hardware is still enabled, so that
 * newer systems can boot.
 */
void __init eeh_init(void)
{
	struct device_node *phb, *np;
	struct eeh_early_enable_info info;

1000
	spin_lock_init(&confirm_error_lock);
1001 1002
	spin_lock_init(&slot_errbuf_lock);

L
Linus Torvalds 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	np = of_find_node_by_path("/rtas");
	if (np == NULL)
		return;

	ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
	ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
	ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
	ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
	ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");

	if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
		return;

	eeh_error_buf_size = rtas_token("rtas-error-log-max");
	if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
		eeh_error_buf_size = 1024;
	}
	if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
		printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
		      "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
		eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
	}

	/* Enable EEH for all adapters.  Note that eeh requires buid's */
	for (phb = of_find_node_by_name(NULL, "pci"); phb;
	     phb = of_find_node_by_name(phb, "pci")) {
		unsigned long buid;

		buid = get_phb_buid(phb);
L
Linas Vepstas 已提交
1032
		if (buid == 0 || PCI_DN(phb) == NULL)
L
Linus Torvalds 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
			continue;

		info.buid_lo = BUID_LO(buid);
		info.buid_hi = BUID_HI(buid);
		traverse_pci_devices(phb, early_enable_eeh, &info);
	}

	if (eeh_subsystem_enabled)
		printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
	else
		printk(KERN_WARNING "EEH: No capable adapters found\n");
}

/**
 * eeh_add_device_early - enable EEH for the indicated device_node
 * @dn: device node for which to set up EEH
 *
 * This routine must be used to perform EEH initialization for PCI
 * devices that were added after system boot (e.g. hotplug, dlpar).
 * This routine must be called before any i/o is performed to the
 * adapter (inluding any config-space i/o).
 * Whether this actually enables EEH or not for this device depends
 * on the CEC architecture, type of the device, on earlier boot
 * command-line arguments & etc.
 */
void eeh_add_device_early(struct device_node *dn)
{
	struct pci_controller *phb;
	struct eeh_early_enable_info info;

L
Linas Vepstas 已提交
1063
	if (!dn || !PCI_DN(dn))
L
Linus Torvalds 已提交
1064
		return;
1065
	phb = PCI_DN(dn)->phb;
L
Linus Torvalds 已提交
1066
	if (NULL == phb || 0 == phb->buid) {
L
Linas Vepstas 已提交
1067 1068 1069
		printk(KERN_WARNING "EEH: Expected buid but found none for %s\n",
		       dn->full_name);
		dump_stack();
L
Linus Torvalds 已提交
1070 1071 1072 1073 1074 1075 1076
		return;
	}

	info.buid_hi = BUID_HI(phb->buid);
	info.buid_lo = BUID_LO(phb->buid);
	early_enable_eeh(dn, &info);
}
1077
EXPORT_SYMBOL_GPL(eeh_add_device_early);
L
Linus Torvalds 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

/**
 * eeh_add_device_late - perform EEH initialization for the indicated pci device
 * @dev: pci device for which to set up EEH
 *
 * This routine must be used to complete EEH initialization for PCI
 * devices that were added after system boot (e.g. hotplug, dlpar).
 */
void eeh_add_device_late(struct pci_dev *dev)
{
1088
	struct device_node *dn;
1089
	struct pci_dn *pdn;
1090

L
Linus Torvalds 已提交
1091 1092 1093 1094
	if (!dev || !eeh_subsystem_enabled)
		return;

#ifdef DEBUG
1095
	printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
L
Linus Torvalds 已提交
1096 1097
#endif

1098 1099
	pci_dev_get (dev);
	dn = pci_device_to_OF_node(dev);
1100 1101
	pdn = PCI_DN(dn);
	pdn->pcidev = dev;
1102

L
Linus Torvalds 已提交
1103
	pci_addr_cache_insert_device (dev);
1104
	eeh_save_bars(dev, pdn);
L
Linus Torvalds 已提交
1105
}
1106
EXPORT_SYMBOL_GPL(eeh_add_device_late);
L
Linus Torvalds 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116

/**
 * eeh_remove_device - undo EEH setup for the indicated pci device
 * @dev: pci device to be removed
 *
 * This routine should be when a device is removed from a running
 * system (e.g. by hotplug or dlpar).
 */
void eeh_remove_device(struct pci_dev *dev)
{
1117
	struct device_node *dn;
L
Linus Torvalds 已提交
1118 1119 1120 1121 1122
	if (!dev || !eeh_subsystem_enabled)
		return;

	/* Unregister the device with the EEH/PCI address search system */
#ifdef DEBUG
1123
	printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
L
Linus Torvalds 已提交
1124 1125
#endif
	pci_addr_cache_remove_device(dev);
1126 1127 1128 1129

	dn = pci_device_to_OF_node(dev);
	PCI_DN(dn)->pcidev = NULL;
	pci_dev_put (dev);
L
Linus Torvalds 已提交
1130
}
1131
EXPORT_SYMBOL_GPL(eeh_remove_device);
L
Linus Torvalds 已提交
1132 1133 1134 1135 1136 1137

static int proc_eeh_show(struct seq_file *m, void *v)
{
	unsigned int cpu;
	unsigned long ffs = 0, positives = 0, failures = 0;
	unsigned long resets = 0;
1138
	unsigned long no_dev = 0, no_dn = 0, no_cfg = 0, no_check = 0;
L
Linus Torvalds 已提交
1139 1140 1141 1142 1143 1144

	for_each_cpu(cpu) {
		ffs += per_cpu(total_mmio_ffs, cpu);
		positives += per_cpu(false_positives, cpu);
		failures += per_cpu(ignored_failures, cpu);
		resets += per_cpu(slot_resets, cpu);
1145 1146 1147 1148
		no_dev += per_cpu(no_device, cpu);
		no_dn += per_cpu(no_dn, cpu);
		no_cfg += per_cpu(no_cfg_addr, cpu);
		no_check += per_cpu(ignored_check, cpu);
L
Linus Torvalds 已提交
1149 1150 1151 1152 1153 1154 1155
	}

	if (0 == eeh_subsystem_enabled) {
		seq_printf(m, "EEH Subsystem is globally disabled\n");
		seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
	} else {
		seq_printf(m, "EEH Subsystem is enabled\n");
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		seq_printf(m,
				"no device=%ld\n"
				"no device node=%ld\n"
				"no config address=%ld\n"
				"check not wanted=%ld\n"
				"eeh_total_mmio_ffs=%ld\n"
				"eeh_false_positives=%ld\n"
				"eeh_ignored_failures=%ld\n"
				"eeh_slot_resets=%ld\n",
				no_dev, no_dn, no_cfg, no_check,
				ffs, positives, failures, resets);
L
Linus Torvalds 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	}

	return 0;
}

static int proc_eeh_open(struct inode *inode, struct file *file)
{
	return single_open(file, proc_eeh_show, NULL);
}

static struct file_operations proc_eeh_operations = {
	.open      = proc_eeh_open,
	.read      = seq_read,
	.llseek    = seq_lseek,
	.release   = single_release,
};

static int __init eeh_init_proc(void)
{
	struct proc_dir_entry *e;

1188
	if (platform_is_pseries()) {
L
Linus Torvalds 已提交
1189 1190 1191 1192 1193 1194 1195 1196
		e = create_proc_entry("ppc64/eeh", 0, NULL);
		if (e)
			e->proc_fops = &proc_eeh_operations;
	}

	return 0;
}
__initcall(eeh_init_proc);