pagemap.h 6.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#ifndef _LINUX_PAGEMAP_H
#define _LINUX_PAGEMAP_H

/*
 * Copyright 1995 Linus Torvalds
 */
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/list.h>
#include <linux/highmem.h>
#include <linux/compiler.h>
#include <asm/uaccess.h>
#include <linux/gfp.h>

/*
 * Bits in mapping->flags.  The lower __GFP_BITS_SHIFT bits are the page
 * allocation mode flags.
 */
#define	AS_EIO		(__GFP_BITS_SHIFT + 0)	/* IO error on async write */
#define AS_ENOSPC	(__GFP_BITS_SHIFT + 1)	/* ENOSPC on async write */

static inline unsigned int __nocast mapping_gfp_mask(struct address_space * mapping)
{
	return mapping->flags & __GFP_BITS_MASK;
}

/*
 * This is non-atomic.  Only to be used before the mapping is activated.
 * Probably needs a barrier...
 */
static inline void mapping_set_gfp_mask(struct address_space *m, int mask)
{
	m->flags = (m->flags & ~__GFP_BITS_MASK) | mask;
}

/*
 * The page cache can done in larger chunks than
 * one page, because it allows for more efficient
 * throughput (it can then be mapped into user
 * space in smaller chunks for same flexibility).
 *
 * Or rather, it _will_ be done in larger chunks.
 */
#define PAGE_CACHE_SHIFT	PAGE_SHIFT
#define PAGE_CACHE_SIZE		PAGE_SIZE
#define PAGE_CACHE_MASK		PAGE_MASK
#define PAGE_CACHE_ALIGN(addr)	(((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)

#define page_cache_get(page)		get_page(page)
#define page_cache_release(page)	put_page(page)
void release_pages(struct page **pages, int nr, int cold);

static inline struct page *page_cache_alloc(struct address_space *x)
{
M
Martin Hicks 已提交
55
	return alloc_pages(mapping_gfp_mask(x)|__GFP_NORECLAIM, 0);
L
Linus Torvalds 已提交
56 57 58 59
}

static inline struct page *page_cache_alloc_cold(struct address_space *x)
{
M
Martin Hicks 已提交
60
	return alloc_pages(mapping_gfp_mask(x)|__GFP_COLD|__GFP_NORECLAIM, 0);
L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
}

typedef int filler_t(void *, struct page *);

extern struct page * find_get_page(struct address_space *mapping,
				unsigned long index);
extern struct page * find_lock_page(struct address_space *mapping,
				unsigned long index);
extern struct page * find_trylock_page(struct address_space *mapping,
				unsigned long index);
extern struct page * find_or_create_page(struct address_space *mapping,
				unsigned long index, unsigned int gfp_mask);
unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
			unsigned int nr_pages, struct page **pages);
unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
			int tag, unsigned int nr_pages, struct page **pages);

/*
 * Returns locked page at given index in given cache, creating it if needed.
 */
static inline struct page *grab_cache_page(struct address_space *mapping, unsigned long index)
{
	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
}

extern struct page * grab_cache_page_nowait(struct address_space *mapping,
				unsigned long index);
extern struct page * read_cache_page(struct address_space *mapping,
				unsigned long index, filler_t *filler,
				void *data);
extern int read_cache_pages(struct address_space *mapping,
		struct list_head *pages, filler_t *filler, void *data);

int add_to_page_cache(struct page *page, struct address_space *mapping,
				unsigned long index, int gfp_mask);
int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
				unsigned long index, int gfp_mask);
extern void remove_from_page_cache(struct page *page);
extern void __remove_from_page_cache(struct page *page);

extern atomic_t nr_pagecache;

#ifdef CONFIG_SMP

#define PAGECACHE_ACCT_THRESHOLD        max(16, NR_CPUS * 2)
DECLARE_PER_CPU(long, nr_pagecache_local);

/*
 * pagecache_acct implements approximate accounting for pagecache.
 * vm_enough_memory() do not need high accuracy. Writers will keep
 * an offset in their per-cpu arena and will spill that into the
 * global count whenever the absolute value of the local count
 * exceeds the counter's threshold.
 *
 * MUST be protected from preemption.
 * current protection is mapping->page_lock.
 */
static inline void pagecache_acct(int count)
{
	long *local;

	local = &__get_cpu_var(nr_pagecache_local);
	*local += count;
	if (*local > PAGECACHE_ACCT_THRESHOLD || *local < -PAGECACHE_ACCT_THRESHOLD) {
		atomic_add(*local, &nr_pagecache);
		*local = 0;
	}
}

#else

static inline void pagecache_acct(int count)
{
	atomic_add(count, &nr_pagecache);
}
#endif

static inline unsigned long get_page_cache_size(void)
{
	int ret = atomic_read(&nr_pagecache);
	if (unlikely(ret < 0))
		ret = 0;
	return ret;
}

/*
 * Return byte-offset into filesystem object for page.
 */
static inline loff_t page_offset(struct page *page)
{
	return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
}

static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
					unsigned long address)
{
	pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
	pgoff += vma->vm_pgoff;
	return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
}

extern void FASTCALL(__lock_page(struct page *page));
extern void FASTCALL(unlock_page(struct page *page));

static inline void lock_page(struct page *page)
{
	might_sleep();
	if (TestSetPageLocked(page))
		__lock_page(page);
}
	
/*
 * This is exported only for wait_on_page_locked/wait_on_page_writeback.
 * Never use this directly!
 */
extern void FASTCALL(wait_on_page_bit(struct page *page, int bit_nr));

/* 
 * Wait for a page to be unlocked.
 *
 * This must be called with the caller "holding" the page,
 * ie with increased "page->count" so that the page won't
 * go away during the wait..
 */
static inline void wait_on_page_locked(struct page *page)
{
	if (PageLocked(page))
		wait_on_page_bit(page, PG_locked);
}

/* 
 * Wait for a page to complete writeback
 */
static inline void wait_on_page_writeback(struct page *page)
{
	if (PageWriteback(page))
		wait_on_page_bit(page, PG_writeback);
}

extern void end_page_writeback(struct page *page);

/*
 * Fault a userspace page into pagetables.  Return non-zero on a fault.
 *
 * This assumes that two userspace pages are always sufficient.  That's
 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
 */
static inline int fault_in_pages_writeable(char __user *uaddr, int size)
{
	int ret;

	/*
	 * Writing zeroes into userspace here is OK, because we know that if
	 * the zero gets there, we'll be overwriting it.
	 */
	ret = __put_user(0, uaddr);
	if (ret == 0) {
		char __user *end = uaddr + size - 1;

		/*
		 * If the page was already mapped, this will get a cache miss
		 * for sure, so try to avoid doing it.
		 */
		if (((unsigned long)uaddr & PAGE_MASK) !=
				((unsigned long)end & PAGE_MASK))
		 	ret = __put_user(0, end);
	}
	return ret;
}

static inline void fault_in_pages_readable(const char __user *uaddr, int size)
{
	volatile char c;
	int ret;

	ret = __get_user(c, uaddr);
	if (ret == 0) {
		const char __user *end = uaddr + size - 1;

		if (((unsigned long)uaddr & PAGE_MASK) !=
				((unsigned long)end & PAGE_MASK))
		 	__get_user(c, end);
	}
}

#endif /* _LINUX_PAGEMAP_H */