setup.c 45.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright 2010 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 */

#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mmzone.h>
#include <linux/bootmem.h>
#include <linux/module.h>
#include <linux/node.h>
#include <linux/cpu.h>
#include <linux/ioport.h>
23
#include <linux/irq.h>
24 25 26 27 28 29 30
#include <linux/kexec.h>
#include <linux/pci.h>
#include <linux/initrd.h>
#include <linux/io.h>
#include <linux/highmem.h>
#include <linux/smp.h>
#include <linux/timex.h>
31
#include <linux/hugetlb.h>
32
#include <linux/start_kernel.h>
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#include <asm/setup.h>
#include <asm/sections.h>
#include <asm/cacheflush.h>
#include <asm/pgalloc.h>
#include <asm/mmu_context.h>
#include <hv/hypervisor.h>
#include <arch/interrupts.h>

/* <linux/smp.h> doesn't provide this definition. */
#ifndef CONFIG_SMP
#define setup_max_cpus 1
#endif

static inline int ABS(int x) { return x >= 0 ? x : -x; }

/* Chip information */
char chip_model[64] __write_once;

struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
EXPORT_SYMBOL(node_data);

/* Information on the NUMA nodes that we compute early */
unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
unsigned long __initdata node_free_pfn[MAX_NUMNODES];

61 62
static unsigned long __initdata node_percpu[MAX_NUMNODES];

T
Thomas Gleixner 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
/*
 * per-CPU stack and boot info.
 */
DEFINE_PER_CPU(unsigned long, boot_sp) =
	(unsigned long)init_stack + THREAD_SIZE;

#ifdef CONFIG_SMP
DEFINE_PER_CPU(unsigned long, boot_pc) = (unsigned long)start_kernel;
#else
/*
 * The variable must be __initdata since it references __init code.
 * With CONFIG_SMP it is per-cpu data, which is exempt from validation.
 */
unsigned long __initdata boot_pc = (unsigned long)start_kernel;
#endif

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
#ifdef CONFIG_HIGHMEM
/* Page frame index of end of lowmem on each controller. */
unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];

/* Number of pages that can be mapped into lowmem. */
static unsigned long __initdata mappable_physpages;
#endif

/* Data on which physical memory controller corresponds to which NUMA node */
int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };

#ifdef CONFIG_HIGHMEM
/* Map information from VAs to PAs */
unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
EXPORT_SYMBOL(pbase_map);

/* Map information from PAs to VAs */
void *vbase_map[NR_PA_HIGHBIT_VALUES]
  __write_once __attribute__((aligned(L2_CACHE_BYTES)));
EXPORT_SYMBOL(vbase_map);
#endif

/* Node number as a function of the high PA bits */
int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
EXPORT_SYMBOL(highbits_to_node);

static unsigned int __initdata maxmem_pfn = -1U;
static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
	[0 ... MAX_NUMNODES-1] = -1U
};
static nodemask_t __initdata isolnodes;

#ifdef CONFIG_PCI
enum { DEFAULT_PCI_RESERVE_MB = 64 };
static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
unsigned long __initdata pci_reserve_start_pfn = -1U;
unsigned long __initdata pci_reserve_end_pfn = -1U;
#endif

static int __init setup_maxmem(char *str)
{
121 122
	unsigned long long maxmem;
	if (str == NULL || (maxmem = memparse(str, NULL)) == 0)
123 124
		return -EINVAL;

125
	maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT);
126
	pr_info("Forcing RAM used to no more than %dMB\n",
127 128 129 130 131 132 133 134
	       maxmem_pfn >> (20 - PAGE_SHIFT));
	return 0;
}
early_param("maxmem", setup_maxmem);

static int __init setup_maxnodemem(char *str)
{
	char *endp;
135 136
	unsigned long long maxnodemem;
	long node;
137 138

	node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
139
	if (node >= MAX_NUMNODES || *endp != ':')
140 141
		return -EINVAL;

142 143
	maxnodemem = memparse(endp+1, NULL);
	maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) <<
144
		(HPAGE_SHIFT - PAGE_SHIFT);
145
	pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
146 147 148 149 150 151 152 153 154 155 156 157
	       node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
	return 0;
}
early_param("maxnodemem", setup_maxnodemem);

static int __init setup_isolnodes(char *str)
{
	char buf[MAX_NUMNODES * 5];
	if (str == NULL || nodelist_parse(str, isolnodes) != 0)
		return -EINVAL;

	nodelist_scnprintf(buf, sizeof(buf), isolnodes);
158
	pr_info("Set isolnodes value to '%s'\n", buf);
159 160 161 162 163 164 165 166 167 168 169 170 171 172
	return 0;
}
early_param("isolnodes", setup_isolnodes);

#ifdef CONFIG_PCI
static int __init setup_pci_reserve(char* str)
{
	unsigned long mb;

	if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
	    mb > 3 * 1024)
		return -EINVAL;

	pci_reserve_mb = mb;
173
	pr_info("Reserving %dMB for PCIE root complex mappings\n",
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
	       pci_reserve_mb);
	return 0;
}
early_param("pci_reserve", setup_pci_reserve);
#endif

#ifndef __tilegx__
/*
 * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
 * This can be used to increase (or decrease) the vmalloc area.
 */
static int __init parse_vmalloc(char *arg)
{
	if (!arg)
		return -EINVAL;

	VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;

	/* See validate_va() for more on this test. */
	if ((long)_VMALLOC_START >= 0)
		early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
			    VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);

	return 0;
}
early_param("vmalloc", parse_vmalloc);
#endif

#ifdef CONFIG_HIGHMEM
/*
204 205 206 207 208
 * Determine for each controller where its lowmem is mapped and how much of
 * it is mapped there.  On controller zero, the first few megabytes are
 * already mapped in as code at MEM_SV_INTRPT, so in principle we could
 * start our data mappings higher up, but for now we don't bother, to avoid
 * additional confusion.
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
 *
 * One question is whether, on systems with more than 768 Mb and
 * controllers of different sizes, to map in a proportionate amount of
 * each one, or to try to map the same amount from each controller.
 * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
 * respectively, do we map 256MB from each, or do we map 128 MB, 512
 * MB, and 128 MB respectively?)  For now we use a proportionate
 * solution like the latter.
 *
 * The VA/PA mapping demands that we align our decisions at 16 MB
 * boundaries so that we can rapidly convert VA to PA.
 */
static void *__init setup_pa_va_mapping(void)
{
	unsigned long curr_pages = 0;
	unsigned long vaddr = PAGE_OFFSET;
	nodemask_t highonlynodes = isolnodes;
	int i, j;

	memset(pbase_map, -1, sizeof(pbase_map));
	memset(vbase_map, -1, sizeof(vbase_map));

	/* Node zero cannot be isolated for LOWMEM purposes. */
	node_clear(0, highonlynodes);

	/* Count up the number of pages on non-highonlynodes controllers. */
	mappable_physpages = 0;
	for_each_online_node(i) {
		if (!node_isset(i, highonlynodes))
			mappable_physpages +=
				node_end_pfn[i] - node_start_pfn[i];
	}

	for_each_online_node(i) {
		unsigned long start = node_start_pfn[i];
		unsigned long end = node_end_pfn[i];
		unsigned long size = end - start;
		unsigned long vaddr_end;

		if (node_isset(i, highonlynodes)) {
			/* Mark this controller as having no lowmem. */
			node_lowmem_end_pfn[i] = start;
			continue;
		}

		curr_pages += size;
		if (mappable_physpages > MAXMEM_PFN) {
			vaddr_end = PAGE_OFFSET +
				(((u64)curr_pages * MAXMEM_PFN /
				  mappable_physpages)
				 << PAGE_SHIFT);
		} else {
			vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
		}
		for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
			unsigned long this_pfn =
				start + (j << HUGETLB_PAGE_ORDER);
			pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
			if (vbase_map[__pfn_to_highbits(this_pfn)] ==
			    (void *)-1)
				vbase_map[__pfn_to_highbits(this_pfn)] =
					(void *)(vaddr & HPAGE_MASK);
		}
		node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
		BUG_ON(node_lowmem_end_pfn[i] > end);
	}

	/* Return highest address of any mapped memory. */
	return (void *)vaddr;
}
#endif /* CONFIG_HIGHMEM */

/*
 * Register our most important memory mappings with the debug stub.
 *
 * This is up to 4 mappings for lowmem, one mapping per memory
 * controller, plus one for our text segment.
 */
287
static void __cpuinit store_permanent_mappings(void)
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
{
	int i;

	for_each_online_node(i) {
		HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
#ifdef CONFIG_HIGHMEM
		HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
#else
		HV_PhysAddr high_mapped_pa = node_end_pfn[i];
#endif

		unsigned long pages = high_mapped_pa - node_start_pfn[i];
		HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
		hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
	}

	hv_store_mapping((HV_VirtAddr)_stext,
			 (uint32_t)(_einittext - _stext), 0);
}

/*
 * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
 * and node_online_map, doing suitable sanity-checking.
 * Also set min_low_pfn, max_low_pfn, and max_pfn.
 */
static void __init setup_memory(void)
{
	int i, j;
	int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
#ifdef CONFIG_HIGHMEM
	long highmem_pages;
#endif
#ifndef __tilegx__
	int cap;
#endif
#if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
	long lowmem_pages;
#endif

	/* We are using a char to hold the cpu_2_node[] mapping */
328
	BUILD_BUG_ON(MAX_NUMNODES > 127);
329 330 331 332 333 334 335 336 337

	/* Discover the ranges of memory available to us */
	for (i = 0; ; ++i) {
		unsigned long start, size, end, highbits;
		HV_PhysAddrRange range = hv_inquire_physical(i);
		if (range.size == 0)
			break;
#ifdef CONFIG_FLATMEM
		if (i > 0) {
338
			pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
339 340 341 342 343 344
			       range.size, range.start + range.size);
			continue;
		}
#endif
#ifndef __tilegx__
		if ((unsigned long)range.start) {
345
			pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
346 347 348 349 350 351 352
			       range.start, range.start + range.size);
			continue;
		}
#endif
		if ((range.start & (HPAGE_SIZE-1)) != 0 ||
		    (range.size & (HPAGE_SIZE-1)) != 0) {
			unsigned long long start_pa = range.start;
353
			unsigned long long orig_size = range.size;
354 355 356
			range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
			range.size -= (range.start - start_pa);
			range.size &= HPAGE_MASK;
357
			pr_err("Range not hugepage-aligned: %#llx..%#llx:"
358
			       " now %#llx-%#llx\n",
359
			       start_pa, start_pa + orig_size,
360 361 362 363
			       range.start, range.start + range.size);
		}
		highbits = __pa_to_highbits(range.start);
		if (highbits >= NR_PA_HIGHBIT_VALUES) {
364
			pr_err("PA high bits too high: %#llx..%#llx\n",
365 366 367 368
			       range.start, range.start + range.size);
			continue;
		}
		if (highbits_seen[highbits]) {
369
			pr_err("Range overlaps in high bits: %#llx..%#llx\n",
370 371 372 373 374
			       range.start, range.start + range.size);
			continue;
		}
		highbits_seen[highbits] = 1;
		if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
375 376 377 378 379
			int max_size = maxnodemem_pfn[i];
			if (max_size > 0) {
				pr_err("Maxnodemem reduced node %d to"
				       " %d pages\n", i, max_size);
				range.size = PFN_PHYS(max_size);
380
			} else {
381
				pr_err("Maxnodemem disabled node %d\n", i);
382 383 384 385
				continue;
			}
		}
		if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) {
386 387 388 389 390
			int max_size = maxmem_pfn - num_physpages;
			if (max_size > 0) {
				pr_err("Maxmem reduced node %d to %d pages\n",
				       i, max_size);
				range.size = PFN_PHYS(max_size);
391
			} else {
392
				pr_err("Maxmem disabled node %d\n", i);
393 394 395 396
				continue;
			}
		}
		if (i >= MAX_NUMNODES) {
397
			pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
398 399 400 401 402 403 404 405 406 407 408
			       i, range.size, range.size + range.start);
			continue;
		}

		start = range.start >> PAGE_SHIFT;
		size = range.size >> PAGE_SHIFT;
		end = start + size;

#ifndef __tilegx__
		if (((HV_PhysAddr)end << PAGE_SHIFT) !=
		    (range.start + range.size)) {
409
			pr_err("PAs too high to represent: %#llx..%#llx\n",
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
			       range.start, range.start + range.size);
			continue;
		}
#endif
#ifdef CONFIG_PCI
		/*
		 * Blocks that overlap the pci reserved region must
		 * have enough space to hold the maximum percpu data
		 * region at the top of the range.  If there isn't
		 * enough space above the reserved region, just
		 * truncate the node.
		 */
		if (start <= pci_reserve_start_pfn &&
		    end > pci_reserve_start_pfn) {
			unsigned int per_cpu_size =
				__per_cpu_end - __per_cpu_start;
			unsigned int percpu_pages =
				NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
			if (end < pci_reserve_end_pfn + percpu_pages) {
				end = pci_reserve_start_pfn;
430
				pr_err("PCI mapping region reduced node %d to"
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
				       " %ld pages\n", i, end - start);
			}
		}
#endif

		for (j = __pfn_to_highbits(start);
		     j <= __pfn_to_highbits(end - 1); j++)
			highbits_to_node[j] = i;

		node_start_pfn[i] = start;
		node_end_pfn[i] = end;
		node_controller[i] = range.controller;
		num_physpages += size;
		max_pfn = end;

		/* Mark node as online */
		node_set(i, node_online_map);
		node_set(i, node_possible_map);
	}

#ifndef __tilegx__
	/*
	 * For 4KB pages, mem_map "struct page" data is 1% of the size
	 * of the physical memory, so can be quite big (640 MB for
	 * four 16G zones).  These structures must be mapped in
	 * lowmem, and since we currently cap out at about 768 MB,
	 * it's impractical to try to use this much address space.
	 * For now, arbitrarily cap the amount of physical memory
	 * we're willing to use at 8 million pages (32GB of 4KB pages).
	 */
	cap = 8 * 1024 * 1024;  /* 8 million pages */
	if (num_physpages > cap) {
		int num_nodes = num_online_nodes();
		int cap_each = cap / num_nodes;
		unsigned long dropped_pages = 0;
		for (i = 0; i < num_nodes; ++i) {
			int size = node_end_pfn[i] - node_start_pfn[i];
			if (size > cap_each) {
				dropped_pages += (size - cap_each);
				node_end_pfn[i] = node_start_pfn[i] + cap_each;
			}
		}
		num_physpages -= dropped_pages;
474
		pr_warning("Only using %ldMB memory;"
475 476 477
		       " ignoring %ldMB.\n",
		       num_physpages >> (20 - PAGE_SHIFT),
		       dropped_pages >> (20 - PAGE_SHIFT));
478
		pr_warning("Consider using a larger page size.\n");
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	}
#endif

	/* Heap starts just above the last loaded address. */
	min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);

#ifdef CONFIG_HIGHMEM
	/* Find where we map lowmem from each controller. */
	high_memory = setup_pa_va_mapping();

	/* Set max_low_pfn based on what node 0 can directly address. */
	max_low_pfn = node_lowmem_end_pfn[0];

	lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
		MAXMEM_PFN : mappable_physpages;
	highmem_pages = (long) (num_physpages - lowmem_pages);

496
	pr_notice("%ldMB HIGHMEM available.\n",
497
	       pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
498
	pr_notice("%ldMB LOWMEM available.\n",
499 500 501 502 503 504 505
			pages_to_mb(lowmem_pages));
#else
	/* Set max_low_pfn based on what node 0 can directly address. */
	max_low_pfn = node_end_pfn[0];

#ifndef __tilegx__
	if (node_end_pfn[0] > MAXMEM_PFN) {
506
		pr_warning("Only using %ldMB LOWMEM.\n",
507
		       MAXMEM>>20);
508
		pr_warning("Use a HIGHMEM enabled kernel.\n");
509 510 511 512 513
		max_low_pfn = MAXMEM_PFN;
		max_pfn = MAXMEM_PFN;
		num_physpages = MAXMEM_PFN;
		node_end_pfn[0] = MAXMEM_PFN;
	} else {
514
		pr_notice("%ldMB memory available.\n",
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
		       pages_to_mb(node_end_pfn[0]));
	}
	for (i = 1; i < MAX_NUMNODES; ++i) {
		node_start_pfn[i] = 0;
		node_end_pfn[i] = 0;
	}
	high_memory = __va(node_end_pfn[0]);
#else
	lowmem_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i) {
		int pages = node_end_pfn[i] - node_start_pfn[i];
		lowmem_pages += pages;
		if (pages)
			high_memory = pfn_to_kaddr(node_end_pfn[i]);
	}
530
	pr_notice("%ldMB memory available.\n",
531 532 533 534 535
	       pages_to_mb(lowmem_pages));
#endif
#endif
}

536 537 538 539 540 541 542 543 544
/*
 * On 32-bit machines, we only put bootmem on the low controller,
 * since PAs > 4GB can't be used in bootmem.  In principle one could
 * imagine, e.g., multiple 1 GB controllers all of which could support
 * bootmem, but in practice using controllers this small isn't a
 * particularly interesting scenario, so we just keep it simple and
 * use only the first controller for bootmem on 32-bit machines.
 */
static inline int node_has_bootmem(int nid)
545
{
546 547 548 549 550 551
#ifdef CONFIG_64BIT
	return 1;
#else
	return nid == 0;
#endif
}
552

553 554 555 556 557 558 559 560 561 562
static inline unsigned long alloc_bootmem_pfn(int nid,
					      unsigned long size,
					      unsigned long goal)
{
	void *kva = __alloc_bootmem_node(NODE_DATA(nid), size,
					 PAGE_SIZE, goal);
	unsigned long pfn = kaddr_to_pfn(kva);
	BUG_ON(goal && PFN_PHYS(pfn) != goal);
	return pfn;
}
563

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
static void __init setup_bootmem_allocator_node(int i)
{
	unsigned long start, end, mapsize, mapstart;

	if (node_has_bootmem(i)) {
		NODE_DATA(i)->bdata = &bootmem_node_data[i];
	} else {
		/* Share controller zero's bdata for now. */
		NODE_DATA(i)->bdata = &bootmem_node_data[0];
		return;
	}

	/* Skip up to after the bss in node 0. */
	start = (i == 0) ? min_low_pfn : node_start_pfn[i];

	/* Only lowmem, if we're a HIGHMEM build. */
#ifdef CONFIG_HIGHMEM
	end = node_lowmem_end_pfn[i];
582
#else
583
	end = node_end_pfn[i];
584 585
#endif

586 587 588 589 590 591 592 593 594 595 596 597 598 599
	/* No memory here. */
	if (end == start)
		return;

	/* Figure out where the bootmem bitmap is located. */
	mapsize = bootmem_bootmap_pages(end - start);
	if (i == 0) {
		/* Use some space right before the heap on node 0. */
		mapstart = start;
		start += mapsize;
	} else {
		/* Allocate bitmap on node 0 to avoid page table issues. */
		mapstart = alloc_bootmem_pfn(0, PFN_PHYS(mapsize), 0);
	}
600

601 602
	/* Initialize a node. */
	init_bootmem_node(NODE_DATA(i), mapstart, start, end);
603

604 605 606 607
	/* Free all the space back into the allocator. */
	free_bootmem(PFN_PHYS(start), PFN_PHYS(end - start));

#if defined(CONFIG_PCI)
608
	/*
609 610 611
	 * Throw away any memory aliased by the PCI region.  FIXME: this
	 * is a temporary hack to work around bug 10502, and needs to be
	 * fixed properly.
612
	 */
613 614 615 616 617 618 619
	if (pci_reserve_start_pfn < end && pci_reserve_end_pfn > start)
		reserve_bootmem(PFN_PHYS(pci_reserve_start_pfn),
				PFN_PHYS(pci_reserve_end_pfn -
					 pci_reserve_start_pfn),
				BOOTMEM_EXCLUSIVE);
#endif
}
620

621 622 623 624 625
static void __init setup_bootmem_allocator(void)
{
	int i;
	for (i = 0; i < MAX_NUMNODES; ++i)
		setup_bootmem_allocator_node(i);
626 627 628

#ifdef CONFIG_KEXEC
	if (crashk_res.start != crashk_res.end)
629
		reserve_bootmem(crashk_res.start, resource_size(&crashk_res), 0);
630 631 632 633 634 635 636 637 638 639 640 641 642 643
#endif
}

void *__init alloc_remap(int nid, unsigned long size)
{
	int pages = node_end_pfn[nid] - node_start_pfn[nid];
	void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
	BUG_ON(size != pages * sizeof(struct page));
	memset(map, 0, size);
	return map;
}

static int __init percpu_size(void)
{
644 645 646 647 648 649 650
	int size = __per_cpu_end - __per_cpu_start;
	size += PERCPU_MODULE_RESERVE;
	size += PERCPU_DYNAMIC_EARLY_SIZE;
	if (size < PCPU_MIN_UNIT_SIZE)
		size = PCPU_MIN_UNIT_SIZE;
	size = roundup(size, PAGE_SIZE);

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	/* In several places we assume the per-cpu data fits on a huge page. */
	BUG_ON(kdata_huge && size > HPAGE_SIZE);
	return size;
}

static void __init zone_sizes_init(void)
{
	unsigned long zones_size[MAX_NR_ZONES] = { 0 };
	int size = percpu_size();
	int num_cpus = smp_height * smp_width;
	int i;

	for (i = 0; i < num_cpus; ++i)
		node_percpu[cpu_to_node(i)] += size;

	for_each_online_node(i) {
		unsigned long start = node_start_pfn[i];
		unsigned long end = node_end_pfn[i];
#ifdef CONFIG_HIGHMEM
		unsigned long lowmem_end = node_lowmem_end_pfn[i];
#else
		unsigned long lowmem_end = end;
#endif
		int memmap_size = (end - start) * sizeof(struct page);
		node_free_pfn[i] = start;

		/*
		 * Set aside pages for per-cpu data and the mem_map array.
		 *
		 * Since the per-cpu data requires special homecaching,
		 * if we are in kdata_huge mode, we put it at the end of
		 * the lowmem region.  If we're not in kdata_huge mode,
		 * we take the per-cpu pages from the bottom of the
		 * controller, since that avoids fragmenting a huge page
		 * that users might want.  We always take the memmap
		 * from the bottom of the controller, since with
		 * kdata_huge that lets it be under a huge TLB entry.
		 *
		 * If the user has requested isolnodes for a controller,
		 * though, there'll be no lowmem, so we just alloc_bootmem
		 * the memmap.  There will be no percpu memory either.
		 */
693 694 695 696 697
		if (i != 0 && cpu_isset(i, isolnodes)) {
			node_memmap_pfn[i] =
				alloc_bootmem_pfn(0, memmap_size, 0);
			BUG_ON(node_percpu[i] != 0);
		} else if (node_has_bootmem(start)) {
698 699
			unsigned long goal = 0;
			node_memmap_pfn[i] =
700
				alloc_bootmem_pfn(i, memmap_size, 0);
701 702 703 704
			if (kdata_huge)
				goal = PFN_PHYS(lowmem_end) - node_percpu[i];
			if (node_percpu[i])
				node_percpu_pfn[i] =
705 706
					alloc_bootmem_pfn(i, node_percpu[i],
							  goal);
707
		} else {
708
			/* In non-bootmem zones, just reserve some pages. */
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
			node_memmap_pfn[i] = node_free_pfn[i];
			node_free_pfn[i] += PFN_UP(memmap_size);
			if (!kdata_huge) {
				node_percpu_pfn[i] = node_free_pfn[i];
				node_free_pfn[i] += PFN_UP(node_percpu[i]);
			} else {
				node_percpu_pfn[i] =
					lowmem_end - PFN_UP(node_percpu[i]);
			}
		}

#ifdef CONFIG_HIGHMEM
		if (start > lowmem_end) {
			zones_size[ZONE_NORMAL] = 0;
			zones_size[ZONE_HIGHMEM] = end - start;
		} else {
			zones_size[ZONE_NORMAL] = lowmem_end - start;
			zones_size[ZONE_HIGHMEM] = end - lowmem_end;
		}
#else
		zones_size[ZONE_NORMAL] = end - start;
#endif

732 733 734
		/* Take zone metadata from controller 0 if we're isolnode. */
		if (node_isset(i, isolnodes))
			NODE_DATA(i)->bdata = &bootmem_node_data[0];
735 736

		free_area_init_node(i, zones_size, start, NULL);
737
		printk(KERN_DEBUG "  Normal zone: %ld per-cpu pages\n",
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
		       PFN_UP(node_percpu[i]));

		/* Track the type of memory on each node */
		if (zones_size[ZONE_NORMAL])
			node_set_state(i, N_NORMAL_MEMORY);
#ifdef CONFIG_HIGHMEM
		if (end != start)
			node_set_state(i, N_HIGH_MEMORY);
#endif

		node_set_online(i);
	}
}

#ifdef CONFIG_NUMA

/* which logical CPUs are on which nodes */
struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
EXPORT_SYMBOL(node_2_cpu_mask);

/* which node each logical CPU is on */
char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
EXPORT_SYMBOL(cpu_2_node);

/* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
{
	if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
		return -1;
	else
		return cpu_to_node(cpu);
}

/* Return number of immediately-adjacent tiles sharing the same NUMA node. */
static int __init node_neighbors(int node, int cpu,
				 struct cpumask *unbound_cpus)
{
	int neighbors = 0;
	int w = smp_width;
	int h = smp_height;
	int x = cpu % w;
	int y = cpu / w;
	if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
		++neighbors;
	if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
		++neighbors;
	if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
		++neighbors;
	if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
		++neighbors;
	return neighbors;
}

static void __init setup_numa_mapping(void)
{
	int distance[MAX_NUMNODES][NR_CPUS];
	HV_Coord coord;
	int cpu, node, cpus, i, x, y;
	int num_nodes = num_online_nodes();
	struct cpumask unbound_cpus;
	nodemask_t default_nodes;

	cpumask_clear(&unbound_cpus);

	/* Get set of nodes we will use for defaults */
	nodes_andnot(default_nodes, node_online_map, isolnodes);
	if (nodes_empty(default_nodes)) {
		BUG_ON(!node_isset(0, node_online_map));
806
		pr_err("Forcing NUMA node zero available as a default node\n");
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
		node_set(0, default_nodes);
	}

	/* Populate the distance[] array */
	memset(distance, -1, sizeof(distance));
	cpu = 0;
	for (coord.y = 0; coord.y < smp_height; ++coord.y) {
		for (coord.x = 0; coord.x < smp_width;
		     ++coord.x, ++cpu) {
			BUG_ON(cpu >= nr_cpu_ids);
			if (!cpu_possible(cpu)) {
				cpu_2_node[cpu] = -1;
				continue;
			}
			for_each_node_mask(node, default_nodes) {
				HV_MemoryControllerInfo info =
					hv_inquire_memory_controller(
						coord, node_controller[node]);
				distance[node][cpu] =
					ABS(info.coord.x) + ABS(info.coord.y);
			}
			cpumask_set_cpu(cpu, &unbound_cpus);
		}
	}
	cpus = cpu;

	/*
	 * Round-robin through the NUMA nodes until all the cpus are
	 * assigned.  We could be more clever here (e.g. create four
	 * sorted linked lists on the same set of cpu nodes, and pull
	 * off them in round-robin sequence, removing from all four
	 * lists each time) but given the relatively small numbers
	 * involved, O(n^2) seem OK for a one-time cost.
	 */
	node = first_node(default_nodes);
	while (!cpumask_empty(&unbound_cpus)) {
		int best_cpu = -1;
		int best_distance = INT_MAX;
		for (cpu = 0; cpu < cpus; ++cpu) {
			if (cpumask_test_cpu(cpu, &unbound_cpus)) {
				/*
				 * Compute metric, which is how much
				 * closer the cpu is to this memory
				 * controller than the others, shifted
				 * up, and then the number of
				 * neighbors already in the node as an
				 * epsilon adjustment to try to keep
				 * the nodes compact.
				 */
				int d = distance[node][cpu] * num_nodes;
				for_each_node_mask(i, default_nodes) {
					if (i != node)
						d -= distance[i][cpu];
				}
				d *= 8;  /* allow space for epsilon */
				d -= node_neighbors(node, cpu, &unbound_cpus);
				if (d < best_distance) {
					best_cpu = cpu;
					best_distance = d;
				}
			}
		}
		BUG_ON(best_cpu < 0);
		cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
		cpu_2_node[best_cpu] = node;
		cpumask_clear_cpu(best_cpu, &unbound_cpus);
		node = next_node(node, default_nodes);
		if (node == MAX_NUMNODES)
			node = first_node(default_nodes);
	}

	/* Print out node assignments and set defaults for disabled cpus */
	cpu = 0;
	for (y = 0; y < smp_height; ++y) {
		printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
		for (x = 0; x < smp_width; ++x, ++cpu) {
			if (cpu_to_node(cpu) < 0) {
884
				pr_cont(" -");
885 886
				cpu_2_node[cpu] = first_node(default_nodes);
			} else {
887
				pr_cont(" %d", cpu_to_node(cpu));
888 889
			}
		}
890
		pr_cont("\n");
891 892 893 894 895 896 897 898 899 900 901 902
	}
}

static struct cpu cpu_devices[NR_CPUS];

static int __init topology_init(void)
{
	int i;

	for_each_online_node(i)
		register_one_node(i);

903
	for (i = 0; i < smp_height * smp_width; ++i)
904 905 906 907 908 909 910 911 912 913 914 915 916
		register_cpu(&cpu_devices[i], i);

	return 0;
}

subsys_initcall(topology_init);

#else /* !CONFIG_NUMA */

#define setup_numa_mapping() do { } while (0)

#endif /* CONFIG_NUMA */

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
/*
 * Initialize hugepage support on this cpu.  We do this on all cores
 * early in boot: before argument parsing for the boot cpu, and after
 * argument parsing but before the init functions run on the secondaries.
 * So the values we set up here in the hypervisor may be overridden on
 * the boot cpu as arguments are parsed.
 */
static __cpuinit void init_super_pages(void)
{
#ifdef CONFIG_HUGETLB_SUPER_PAGES
	int i;
	for (i = 0; i < HUGE_SHIFT_ENTRIES; ++i)
		hv_set_pte_super_shift(i, huge_shift[i]);
#endif
}

933
/**
934 935
 * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
 * @boot: Is this the boot cpu?
936
 *
937
 * Called from setup_arch() on the boot cpu, or online_secondary().
938
 */
939
void __cpuinit setup_cpu(int boot)
940
{
941 942 943 944
	/* The boot cpu sets up its permanent mappings much earlier. */
	if (!boot)
		store_permanent_mappings();

945 946
	/* Allow asynchronous TLB interrupts. */
#if CHIP_HAS_TILE_DMA()
947 948
	arch_local_irq_unmask(INT_DMATLB_MISS);
	arch_local_irq_unmask(INT_DMATLB_ACCESS);
949 950
#endif
#if CHIP_HAS_SN_PROC()
951
	arch_local_irq_unmask(INT_SNITLB_MISS);
952
#endif
953
#ifdef __tilegx__
954
	arch_local_irq_unmask(INT_SINGLE_STEP_K);
955
#endif
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972

	/*
	 * Allow user access to many generic SPRs, like the cycle
	 * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
	 */
	__insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);

#if CHIP_HAS_SN()
	/* Static network is not restricted. */
	__insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
#endif
#if CHIP_HAS_SN_PROC()
	__insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
	__insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
#endif

	/*
973 974 975
	 * Set the MPL for interrupt control 0 & 1 to the corresponding
	 * values.  This includes access to the SYSTEM_SAVE and EX_CONTEXT
	 * SPRs, as well as the interrupt mask.
976 977
	 */
	__insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
978
	__insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
979 980 981 982 983 984 985 986

	/* Initialize IRQ support for this cpu. */
	setup_irq_regs();

#ifdef CONFIG_HARDWALL
	/* Reset the network state on this cpu. */
	reset_network_state();
#endif
987 988

	init_super_pages();
989 990
}

991 992
#ifdef CONFIG_BLK_DEV_INITRD

993 994 995 996 997 998 999
/*
 * Note that the kernel can potentially support other compression
 * techniques than gz, though we don't do so by default.  If we ever
 * decide to do so we can either look for other filename extensions,
 * or just allow a file with this name to be compressed with an
 * arbitrary compressor (somewhat counterintuitively).
 */
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
static int __initdata set_initramfs_file;
static char __initdata initramfs_file[128] = "initramfs.cpio.gz";

static int __init setup_initramfs_file(char *str)
{
	if (str == NULL)
		return -EINVAL;
	strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
	set_initramfs_file = 1;

	return 0;
}
early_param("initramfs_file", setup_initramfs_file);

/*
1015
 * We look for an "initramfs.cpio.gz" file in the hvfs.
1016
 * If there is one, we allocate some memory for it and it will be
1017
 * unpacked to the initramfs.
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
 */
static void __init load_hv_initrd(void)
{
	HV_FS_StatInfo stat;
	int fd, rc;
	void *initrd;

	fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
	if (fd == HV_ENOENT) {
		if (set_initramfs_file)
1028 1029
			pr_warning("No such hvfs initramfs file '%s'\n",
				   initramfs_file);
1030 1031 1032 1033 1034 1035
		return;
	}
	BUG_ON(fd < 0);
	stat = hv_fs_fstat(fd);
	BUG_ON(stat.size < 0);
	if (stat.flags & HV_FS_ISDIR) {
1036 1037
		pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
			   initramfs_file);
1038 1039 1040 1041 1042
		return;
	}
	initrd = alloc_bootmem_pages(stat.size);
	rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
	if (rc != stat.size) {
1043
		pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
1044
		       stat.size, initramfs_file, rc);
1045
		free_initrd_mem((unsigned long) initrd, stat.size);
1046 1047 1048 1049 1050 1051 1052 1053
		return;
	}
	initrd_start = (unsigned long) initrd;
	initrd_end = initrd_start + stat.size;
}

void __init free_initrd_mem(unsigned long begin, unsigned long end)
{
1054
	free_bootmem(__pa(begin), end - begin);
1055 1056
}

1057 1058 1059 1060
#else
static inline void load_hv_initrd(void) {}
#endif /* CONFIG_BLK_DEV_INITRD */

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
static void __init validate_hv(void)
{
	/*
	 * It may already be too late, but let's check our built-in
	 * configuration against what the hypervisor is providing.
	 */
	unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
	int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
	int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
	HV_ASIDRange asid_range;

#ifndef CONFIG_SMP
	HV_Topology topology = hv_inquire_topology();
	BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
	if (topology.width != 1 || topology.height != 1) {
1076 1077 1078
		pr_warning("Warning: booting UP kernel on %dx%d grid;"
			   " will ignore all but first tile.\n",
			   topology.width, topology.height);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	}
#endif

	if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
		early_panic("Hypervisor glue size %ld is too big!\n",
			    glue_size);
	if (hv_page_size != PAGE_SIZE)
		early_panic("Hypervisor page size %#x != our %#lx\n",
			    hv_page_size, PAGE_SIZE);
	if (hv_hpage_size != HPAGE_SIZE)
		early_panic("Hypervisor huge page size %#x != our %#lx\n",
			    hv_hpage_size, HPAGE_SIZE);

#ifdef CONFIG_SMP
	/*
	 * Some hypervisor APIs take a pointer to a bitmap array
	 * whose size is at least the number of cpus on the chip.
	 * We use a struct cpumask for this, so it must be big enough.
	 */
	if ((smp_height * smp_width) > nr_cpu_ids)
		early_panic("Hypervisor %d x %d grid too big for Linux"
			    " NR_CPUS %d\n", smp_height, smp_width,
			    nr_cpu_ids);
#endif

	/*
	 * Check that we're using allowed ASIDs, and initialize the
	 * various asid variables to their appropriate initial states.
	 */
	asid_range = hv_inquire_asid(0);
	__get_cpu_var(current_asid) = min_asid = asid_range.start;
	max_asid = asid_range.start + asid_range.size - 1;

	if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
		       sizeof(chip_model)) < 0) {
1114
		pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
		strlcpy(chip_model, "unknown", sizeof(chip_model));
	}
}

static void __init validate_va(void)
{
#ifndef __tilegx__   /* FIXME: GX: probably some validation relevant here */
	/*
	 * Similarly, make sure we're only using allowed VAs.
	 * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
	 * and 0 .. KERNEL_HIGH_VADDR.
	 * In addition, make sure we CAN'T use the end of memory, since
	 * we use the last chunk of each pgd for the pgd_list.
	 */
1129
	int i, user_kernel_ok = 0;
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	unsigned long max_va = 0;
	unsigned long list_va =
		((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);

	for (i = 0; ; ++i) {
		HV_VirtAddrRange range = hv_inquire_virtual(i);
		if (range.size == 0)
			break;
		if (range.start <= MEM_USER_INTRPT &&
		    range.start + range.size >= MEM_HV_INTRPT)
1140
			user_kernel_ok = 1;
1141 1142 1143 1144
		if (range.start == 0)
			max_va = range.size;
		BUG_ON(range.start + range.size > list_va);
	}
1145 1146
	if (!user_kernel_ok)
		early_panic("Hypervisor not configured for user/kernel VAs\n");
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	if (max_va == 0)
		early_panic("Hypervisor not configured for low VAs\n");
	if (max_va < KERNEL_HIGH_VADDR)
		early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
			    max_va, KERNEL_HIGH_VADDR);

	/* Kernel PCs must have their high bit set; see intvec.S. */
	if ((long)VMALLOC_START >= 0)
		early_panic(
			"Linux VMALLOC region below the 2GB line (%#lx)!\n"
			"Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
			"or smaller VMALLOC_RESERVE.\n",
			VMALLOC_START);
#endif
}

/*
 * cpu_lotar_map lists all the cpus that are valid for the supervisor
 * to cache data on at a page level, i.e. what cpus can be placed in
 * the LOTAR field of a PTE.  It is equivalent to the set of possible
 * cpus plus any other cpus that are willing to share their cache.
 * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
 */
struct cpumask __write_once cpu_lotar_map;
EXPORT_SYMBOL(cpu_lotar_map);

#if CHIP_HAS_CBOX_HOME_MAP()
/*
 * hash_for_home_map lists all the tiles that hash-for-home data
 * will be cached on.  Note that this may includes tiles that are not
 * valid for this supervisor to use otherwise (e.g. if a hypervisor
 * device is being shared between multiple supervisors).
 * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
 */
struct cpumask hash_for_home_map;
EXPORT_SYMBOL(hash_for_home_map);
#endif

/*
 * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1187
 * flush on our behalf.  It is set to cpu_possible_mask OR'ed with
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
 * hash_for_home_map, and it is what should be passed to
 * hv_flush_remote() to flush all caches.  Note that if there are
 * dedicated hypervisor driver tiles that have authorized use of their
 * cache, those tiles will only appear in cpu_lotar_map, NOT in
 * cpu_cacheable_map, as they are a special case.
 */
struct cpumask __write_once cpu_cacheable_map;
EXPORT_SYMBOL(cpu_cacheable_map);

static __initdata struct cpumask disabled_map;

static int __init disabled_cpus(char *str)
{
	int boot_cpu = smp_processor_id();

	if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
		return -EINVAL;
	if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1206
		pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1207 1208 1209 1210 1211 1212 1213
		cpumask_clear_cpu(boot_cpu, &disabled_map);
	}
	return 0;
}

early_param("disabled_cpus", disabled_cpus);

1214
void __init print_disabled_cpus(void)
1215 1216 1217 1218
{
	if (!cpumask_empty(&disabled_map)) {
		char buf[100];
		cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
1219
		pr_info("CPUs not available for Linux: %s\n", buf);
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	}
}

static void __init setup_cpu_maps(void)
{
	struct cpumask hv_disabled_map, cpu_possible_init;
	int boot_cpu = smp_processor_id();
	int cpus, i, rc;

	/* Learn which cpus are allowed by the hypervisor. */
	rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
			      (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
			      sizeof(cpu_cacheable_map));
	if (rc < 0)
		early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
	if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
		early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);

	/* Compute the cpus disabled by the hvconfig file. */
	cpumask_complement(&hv_disabled_map, &cpu_possible_init);

	/* Include them with the cpus disabled by "disabled_cpus". */
	cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);

	/*
	 * Disable every cpu after "setup_max_cpus".  But don't mark
	 * as disabled the cpus that are outside of our initial rectangle,
	 * since that turns out to be confusing.
	 */
	cpus = 1;                          /* this cpu */
	cpumask_set_cpu(boot_cpu, &disabled_map);   /* ignore this cpu */
	for (i = 0; cpus < setup_max_cpus; ++i)
		if (!cpumask_test_cpu(i, &disabled_map))
			++cpus;
	for (; i < smp_height * smp_width; ++i)
		cpumask_set_cpu(i, &disabled_map);
	cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
	for (i = smp_height * smp_width; i < NR_CPUS; ++i)
		cpumask_clear_cpu(i, &disabled_map);

	/*
	 * Setup cpu_possible map as every cpu allocated to us, minus
	 * the results of any "disabled_cpus" settings.
	 */
	cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
	init_cpu_possible(&cpu_possible_init);

	/* Learn which cpus are valid for LOTAR caching. */
	rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
			      (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
			      sizeof(cpu_lotar_map));
	if (rc < 0) {
1272
		pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1273
		cpu_lotar_map = *cpu_possible_mask;
1274 1275 1276 1277 1278 1279 1280 1281 1282
	}

#if CHIP_HAS_CBOX_HOME_MAP()
	/* Retrieve set of CPUs used for hash-for-home caching */
	rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
			      (HV_VirtAddr) hash_for_home_map.bits,
			      sizeof(hash_for_home_map));
	if (rc < 0)
		early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1283
	cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map);
1284
#else
1285
	cpu_cacheable_map = *cpu_possible_mask;
1286 1287 1288 1289 1290 1291
#endif
}


static int __init dataplane(char *str)
{
1292
	pr_warning("WARNING: dataplane support disabled in this kernel\n");
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	return 0;
}

early_param("dataplane", dataplane);

#ifdef CONFIG_CMDLINE_BOOL
static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
#endif

void __init setup_arch(char **cmdline_p)
{
	int len;

#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
	len = hv_get_command_line((HV_VirtAddr) boot_command_line,
				  COMMAND_LINE_SIZE);
	if (boot_command_line[0])
1310 1311
		pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
			   boot_command_line);
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
#else
	char *hv_cmdline;
#if defined(CONFIG_CMDLINE_BOOL)
	if (builtin_cmdline[0]) {
		int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
					  COMMAND_LINE_SIZE);
		if (builtin_len < COMMAND_LINE_SIZE-1)
			boot_command_line[builtin_len++] = ' ';
		hv_cmdline = &boot_command_line[builtin_len];
		len = COMMAND_LINE_SIZE - builtin_len;
	} else
#endif
	{
		hv_cmdline = boot_command_line;
		len = COMMAND_LINE_SIZE;
	}
	len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
	if (len < 0 || len > COMMAND_LINE_SIZE)
		early_panic("hv_get_command_line failed: %d\n", len);
#endif

	*cmdline_p = boot_command_line;

	/* Set disabled_map and setup_max_cpus very early */
	parse_early_param();

	/* Make sure the kernel is compatible with the hypervisor. */
	validate_hv();
	validate_va();

	setup_cpu_maps();


#ifdef CONFIG_PCI
	/*
	 * Initialize the PCI structures.  This is done before memory
	 * setup so that we know whether or not a pci_reserve region
	 * is necessary.
	 */
	if (tile_pci_init() == 0)
		pci_reserve_mb = 0;

	/* PCI systems reserve a region just below 4GB for mapping iomem. */
	pci_reserve_end_pfn  = (1 << (32 - PAGE_SHIFT));
	pci_reserve_start_pfn = pci_reserve_end_pfn -
		(pci_reserve_mb << (20 - PAGE_SHIFT));
#endif

	init_mm.start_code = (unsigned long) _text;
	init_mm.end_code = (unsigned long) _etext;
	init_mm.end_data = (unsigned long) _edata;
	init_mm.brk = (unsigned long) _end;

	setup_memory();
	store_permanent_mappings();
	setup_bootmem_allocator();

	/*
	 * NOTE: before this point _nobody_ is allowed to allocate
	 * any memory using the bootmem allocator.
	 */

	paging_init();
	setup_numa_mapping();
	zone_sizes_init();
	set_page_homes();
1379
	setup_cpu(1);
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
	setup_clock();
	load_hv_initrd();
}


/*
 * Set up per-cpu memory.
 */

unsigned long __per_cpu_offset[NR_CPUS] __write_once;
EXPORT_SYMBOL(__per_cpu_offset);

static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };

/*
 * As the percpu code allocates pages, we return the pages from the
 * end of the node for the specified cpu.
 */
static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
{
	int nid = cpu_to_node(cpu);
	unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];

	BUG_ON(size % PAGE_SIZE != 0);
	pfn_offset[nid] += size / PAGE_SIZE;
1406 1407
	BUG_ON(node_percpu[nid] < size);
	node_percpu[nid] -= size;
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	if (percpu_pfn[cpu] == 0)
		percpu_pfn[cpu] = pfn;
	return pfn_to_kaddr(pfn);
}

/*
 * Pages reserved for percpu memory are not freeable, and in any case we are
 * on a short path to panic() in setup_per_cpu_area() at this point anyway.
 */
static void __init pcpu_fc_free(void *ptr, size_t size)
{
}

/*
 * Set up vmalloc page tables using bootmem for the percpu code.
 */
static void __init pcpu_fc_populate_pte(unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	BUG_ON(pgd_addr_invalid(addr));
1432 1433 1434 1435
	if (addr < VMALLOC_START || addr >= VMALLOC_END)
		panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
		      " try increasing CONFIG_VMALLOC_RESERVE\n",
		      addr, VMALLOC_START, VMALLOC_END);
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476

	pgd = swapper_pg_dir + pgd_index(addr);
	pud = pud_offset(pgd, addr);
	BUG_ON(!pud_present(*pud));
	pmd = pmd_offset(pud, addr);
	if (pmd_present(*pmd)) {
		BUG_ON(pmd_huge_page(*pmd));
	} else {
		pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
				      HV_PAGE_TABLE_ALIGN, 0);
		pmd_populate_kernel(&init_mm, pmd, pte);
	}
}

void __init setup_per_cpu_areas(void)
{
	struct page *pg;
	unsigned long delta, pfn, lowmem_va;
	unsigned long size = percpu_size();
	char *ptr;
	int rc, cpu, i;

	rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
				   pcpu_fc_free, pcpu_fc_populate_pte);
	if (rc < 0)
		panic("Cannot initialize percpu area (err=%d)", rc);

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu) {
		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];

		/* finv the copy out of cache so we can change homecache */
		ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
		__finv_buffer(ptr, size);
		pfn = percpu_pfn[cpu];

		/* Rewrite the page tables to cache on that cpu */
		pg = pfn_to_page(pfn);
		for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {

			/* Update the vmalloc mapping and page home. */
1477 1478
			unsigned long addr = (unsigned long)ptr + i;
			pte_t *ptep = virt_to_pte(NULL, addr);
1479 1480 1481 1482
			pte_t pte = *ptep;
			BUG_ON(pfn != pte_pfn(pte));
			pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
			pte = set_remote_cache_cpu(pte, cpu);
1483
			set_pte_at(&init_mm, addr, ptep, pte);
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

			/* Update the lowmem mapping for consistency. */
			lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
			ptep = virt_to_pte(NULL, lowmem_va);
			if (pte_huge(*ptep)) {
				printk(KERN_DEBUG "early shatter of huge page"
				       " at %#lx\n", lowmem_va);
				shatter_pmd((pmd_t *)ptep);
				ptep = virt_to_pte(NULL, lowmem_va);
				BUG_ON(pte_huge(*ptep));
			}
			BUG_ON(pfn != pte_pfn(*ptep));
1496
			set_pte_at(&init_mm, lowmem_va, ptep, pte);
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
		}
	}

	/* Set our thread pointer appropriately. */
	set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);

	/* Make sure the finv's have completed. */
	mb_incoherent();

	/* Flush the TLB so we reference it properly from here on out. */
	local_flush_tlb_all();
}

static struct resource data_resource = {
	.name	= "Kernel data",
	.start	= 0,
	.end	= 0,
	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
};

static struct resource code_resource = {
	.name	= "Kernel code",
	.start	= 0,
	.end	= 0,
	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
};

/*
 * We reserve all resources above 4GB so that PCI won't try to put
 * mappings above 4GB; the standard allows that for some devices but
 * the probing code trunates values to 32 bits.
 */
#ifdef CONFIG_PCI
static struct resource* __init
insert_non_bus_resource(void)
{
	struct resource *res =
		kzalloc(sizeof(struct resource), GFP_ATOMIC);
	res->name = "Non-Bus Physical Address Space";
	res->start = (1ULL << 32);
	res->end = -1LL;
	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
	if (insert_resource(&iomem_resource, res)) {
		kfree(res);
		return NULL;
	}
	return res;
}
#endif

static struct resource* __init
insert_ram_resource(u64 start_pfn, u64 end_pfn)
{
	struct resource *res =
		kzalloc(sizeof(struct resource), GFP_ATOMIC);
	res->name = "System RAM";
	res->start = start_pfn << PAGE_SHIFT;
	res->end = (end_pfn << PAGE_SHIFT) - 1;
	res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
	if (insert_resource(&iomem_resource, res)) {
		kfree(res);
		return NULL;
	}
	return res;
}

/*
 * Request address space for all standard resources
 *
 * If the system includes PCI root complex drivers, we need to create
 * a window just below 4GB where PCI BARs can be mapped.
 */
static int __init request_standard_resources(void)
{
	int i;
	enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };

	iomem_resource.end = -1LL;
#ifdef CONFIG_PCI
	insert_non_bus_resource();
#endif

	for_each_online_node(i) {
		u64 start_pfn = node_start_pfn[i];
		u64 end_pfn = node_end_pfn[i];

#ifdef CONFIG_PCI
		if (start_pfn <= pci_reserve_start_pfn &&
		    end_pfn > pci_reserve_start_pfn) {
			if (end_pfn > pci_reserve_end_pfn)
				insert_ram_resource(pci_reserve_end_pfn,
						     end_pfn);
			end_pfn = pci_reserve_start_pfn;
		}
#endif
		insert_ram_resource(start_pfn, end_pfn);
	}

	code_resource.start = __pa(_text - CODE_DELTA);
	code_resource.end = __pa(_etext - CODE_DELTA)-1;
	data_resource.start = __pa(_sdata);
	data_resource.end = __pa(_end)-1;

	insert_resource(&iomem_resource, &code_resource);
	insert_resource(&iomem_resource, &data_resource);

#ifdef CONFIG_KEXEC
	insert_resource(&iomem_resource, &crashk_res);
#endif

	return 0;
}

subsys_initcall(request_standard_resources);