hugetlbpage.c 19.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
 *
 * Copyright (C) 2003 David Gibson, IBM Corporation.
 *
 * Based on the IA-32 version:
 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 */

#include <linux/init.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/sysctl.h>
#include <asm/mman.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include <asm/machdep.h>
#include <asm/cputable.h>
25
#include <asm/spu.h>
L
Linus Torvalds 已提交
26

27 28 29
#define PAGE_SHIFT_64K	16
#define PAGE_SHIFT_16M	24
#define PAGE_SHIFT_16G	34
30

31 32
#define NUM_LOW_AREAS	(0x100000000UL >> SID_SHIFT)
#define NUM_HIGH_AREAS	(PGTABLE_RANGE >> HTLB_AREA_SHIFT)
33 34 35 36 37 38
#define MAX_NUMBER_GPAGES	1024

/* Tracks the 16G pages after the device tree is scanned and before the
 * huge_boot_pages list is ready.  */
static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
static unsigned nr_gpages;
39

40 41 42 43 44 45 46 47 48 49 50 51 52
/* Array of valid huge page sizes - non-zero value(hugepte_shift) is
 * stored for the huge page sizes that are valid.
 */
unsigned int mmu_huge_psizes[MMU_PAGE_COUNT] = { }; /* initialize all to 0 */

#define hugepte_shift			mmu_huge_psizes
#define PTRS_PER_HUGEPTE(psize)		(1 << hugepte_shift[psize])
#define HUGEPTE_TABLE_SIZE(psize)	(sizeof(pte_t) << hugepte_shift[psize])

#define HUGEPD_SHIFT(psize)		(mmu_psize_to_shift(psize) \
						+ hugepte_shift[psize])
#define HUGEPD_SIZE(psize)		(1UL << HUGEPD_SHIFT(psize))
#define HUGEPD_MASK(psize)		(~(HUGEPD_SIZE(psize)-1))
53

54 55 56 57 58
/* Subtract one from array size because we don't need a cache for 4K since
 * is not a huge page size */
#define huge_pgtable_cache(psize)	(pgtable_cache[HUGEPTE_CACHE_NUM \
							+ psize-1])
#define HUGEPTE_CACHE_NAME(psize)	(huge_pgtable_cache_name[psize])
59

60 61 62 63
static const char *huge_pgtable_cache_name[MMU_PAGE_COUNT] = {
	"unused_4K", "hugepte_cache_64K", "unused_64K_AP",
	"hugepte_cache_1M", "hugepte_cache_16M", "hugepte_cache_16G"
};
64 65 66 67 68 69 70 71 72 73

/* Flag to mark huge PD pointers.  This means pmd_bad() and pud_bad()
 * will choke on pointers to hugepte tables, which is handy for
 * catching screwups early. */
#define HUGEPD_OK	0x1

typedef struct { unsigned long pd; } hugepd_t;

#define hugepd_none(hpd)	((hpd).pd == 0)

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
static inline int shift_to_mmu_psize(unsigned int shift)
{
	switch (shift) {
#ifndef CONFIG_PPC_64K_PAGES
	case PAGE_SHIFT_64K:
	    return MMU_PAGE_64K;
#endif
	case PAGE_SHIFT_16M:
	    return MMU_PAGE_16M;
	case PAGE_SHIFT_16G:
	    return MMU_PAGE_16G;
	}
	return -1;
}

static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
{
	if (mmu_psize_defs[mmu_psize].shift)
		return mmu_psize_defs[mmu_psize].shift;
	BUG();
}

96 97 98 99 100 101
static inline pte_t *hugepd_page(hugepd_t hpd)
{
	BUG_ON(!(hpd.pd & HUGEPD_OK));
	return (pte_t *)(hpd.pd & ~HUGEPD_OK);
}

102 103
static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr,
				    struct hstate *hstate)
104
{
105 106 107
	unsigned int shift = huge_page_shift(hstate);
	int psize = shift_to_mmu_psize(shift);
	unsigned long idx = ((addr >> shift) & (PTRS_PER_HUGEPTE(psize)-1));
108 109 110 111 112 113
	pte_t *dir = hugepd_page(*hpdp);

	return dir + idx;
}

static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
114
			   unsigned long address, unsigned int psize)
115
{
116
	pte_t *new = kmem_cache_zalloc(huge_pgtable_cache(psize),
117 118 119 120 121 122 123
				      GFP_KERNEL|__GFP_REPEAT);

	if (! new)
		return -ENOMEM;

	spin_lock(&mm->page_table_lock);
	if (!hugepd_none(*hpdp))
124
		kmem_cache_free(huge_pgtable_cache(psize), new);
125 126 127 128 129 130
	else
		hpdp->pd = (unsigned long)new | HUGEPD_OK;
	spin_unlock(&mm->page_table_lock);
	return 0;
}

131 132 133 134 135 136 137 138 139 140

static pud_t *hpud_offset(pgd_t *pgd, unsigned long addr, struct hstate *hstate)
{
	if (huge_page_shift(hstate) < PUD_SHIFT)
		return pud_offset(pgd, addr);
	else
		return (pud_t *) pgd;
}
static pud_t *hpud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long addr,
			 struct hstate *hstate)
141
{
142 143 144 145 146 147 148 149
	if (huge_page_shift(hstate) < PUD_SHIFT)
		return pud_alloc(mm, pgd, addr);
	else
		return (pud_t *) pgd;
}
static pmd_t *hpmd_offset(pud_t *pud, unsigned long addr, struct hstate *hstate)
{
	if (huge_page_shift(hstate) < PMD_SHIFT)
150 151 152 153
		return pmd_offset(pud, addr);
	else
		return (pmd_t *) pud;
}
154 155
static pmd_t *hpmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long addr,
			 struct hstate *hstate)
156
{
157
	if (huge_page_shift(hstate) < PMD_SHIFT)
158 159 160 161 162
		return pmd_alloc(mm, pud, addr);
	else
		return (pmd_t *) pud;
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
/* Build list of addresses of gigantic pages.  This function is used in early
 * boot before the buddy or bootmem allocator is setup.
 */
void add_gpage(unsigned long addr, unsigned long page_size,
	unsigned long number_of_pages)
{
	if (!addr)
		return;
	while (number_of_pages > 0) {
		gpage_freearray[nr_gpages] = addr;
		nr_gpages++;
		number_of_pages--;
		addr += page_size;
	}
}

179
/* Moves the gigantic page addresses from the temporary list to the
180 181 182
 * huge_boot_pages list.
 */
int alloc_bootmem_huge_page(struct hstate *hstate)
183 184 185 186 187 188 189
{
	struct huge_bootmem_page *m;
	if (nr_gpages == 0)
		return 0;
	m = phys_to_virt(gpage_freearray[--nr_gpages]);
	gpage_freearray[nr_gpages] = 0;
	list_add(&m->list, &huge_boot_pages);
190
	m->hstate = hstate;
191 192 193 194
	return 1;
}


195 196
/* Modelled after find_linux_pte() */
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
L
Linus Torvalds 已提交
197
{
198 199
	pgd_t *pg;
	pud_t *pu;
200
	pmd_t *pm;
L
Linus Torvalds 已提交
201

202 203 204 205 206 207 208 209
	unsigned int psize;
	unsigned int shift;
	unsigned long sz;
	struct hstate *hstate;
	psize = get_slice_psize(mm, addr);
	shift = mmu_psize_to_shift(psize);
	sz = ((1UL) << shift);
	hstate = size_to_hstate(sz);
L
Linus Torvalds 已提交
210

211
	addr &= hstate->mask;
212 213 214

	pg = pgd_offset(mm, addr);
	if (!pgd_none(*pg)) {
215
		pu = hpud_offset(pg, addr, hstate);
216
		if (!pud_none(*pu)) {
217
			pm = hpmd_offset(pu, addr, hstate);
218
			if (!pmd_none(*pm))
219 220
				return hugepte_offset((hugepd_t *)pm, addr,
						      hstate);
221 222
		}
	}
L
Linus Torvalds 已提交
223

224
	return NULL;
L
Linus Torvalds 已提交
225 226
}

227 228
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
L
Linus Torvalds 已提交
229
{
230 231
	pgd_t *pg;
	pud_t *pu;
232
	pmd_t *pm;
233
	hugepd_t *hpdp = NULL;
234 235 236
	struct hstate *hstate;
	unsigned int psize;
	hstate = size_to_hstate(sz);
L
Linus Torvalds 已提交
237

238 239
	psize = get_slice_psize(mm, addr);
	BUG_ON(!mmu_huge_psizes[psize]);
L
Linus Torvalds 已提交
240

241
	addr &= hstate->mask;
L
Linus Torvalds 已提交
242

243
	pg = pgd_offset(mm, addr);
244
	pu = hpud_alloc(mm, pg, addr, hstate);
L
Linus Torvalds 已提交
245

246
	if (pu) {
247
		pm = hpmd_alloc(mm, pu, addr, hstate);
248 249 250 251 252 253 254
		if (pm)
			hpdp = (hugepd_t *)pm;
	}

	if (! hpdp)
		return NULL;

255
	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, psize))
256 257
		return NULL;

258
	return hugepte_offset(hpdp, addr, hstate);
259 260
}

261 262 263 264 265
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}

266 267
static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp,
			       unsigned int psize)
268 269 270 271 272
{
	pte_t *hugepte = hugepd_page(*hpdp);

	hpdp->pd = 0;
	tlb->need_flush = 1;
273 274
	pgtable_free_tlb(tlb, pgtable_free_cache(hugepte,
						 HUGEPTE_CACHE_NUM+psize-1,
A
Adam Litke 已提交
275
						 PGF_CACHENUM_MASK));
276 277 278 279
}

static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				   unsigned long addr, unsigned long end,
280 281
				   unsigned long floor, unsigned long ceiling,
				   unsigned int psize)
282 283 284 285 286 287 288 289 290 291 292
{
	pmd_t *pmd;
	unsigned long next;
	unsigned long start;

	start = addr;
	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none(*pmd))
			continue;
293
		free_hugepte_range(tlb, (hugepd_t *)pmd, psize);
294 295 296 297 298 299 300 301 302
	} while (pmd++, addr = next, addr != end);

	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
303
	}
304 305
	if (end - 1 > ceiling - 1)
		return;
L
Linus Torvalds 已提交
306

307 308 309 310 311 312 313 314 315 316 317 318
	pmd = pmd_offset(pud, start);
	pud_clear(pud);
	pmd_free_tlb(tlb, pmd);
}

static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				   unsigned long addr, unsigned long end,
				   unsigned long floor, unsigned long ceiling)
{
	pud_t *pud;
	unsigned long next;
	unsigned long start;
319 320 321
	unsigned int shift;
	unsigned int psize = get_slice_psize(tlb->mm, addr);
	shift = mmu_psize_to_shift(psize);
322 323 324 325 326

	start = addr;
	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
327
		if (shift < PMD_SHIFT) {
328 329
			if (pud_none_or_clear_bad(pud))
				continue;
330 331
			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
					       ceiling, psize);
332 333 334
		} else {
			if (pud_none(*pud))
				continue;
335
			free_hugepte_range(tlb, (hugepd_t *)pud, psize);
336
		}
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
	} while (pud++, addr = next, addr != end);

	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
	pud_free_tlb(tlb, pud);
}

/*
 * This function frees user-level page tables of a process.
 *
 * Must be called with pagetable lock held.
 */
360
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
			    unsigned long addr, unsigned long end,
			    unsigned long floor, unsigned long ceiling)
{
	pgd_t *pgd;
	unsigned long next;
	unsigned long start;

	/*
	 * Comments below take from the normal free_pgd_range().  They
	 * apply here too.  The tests against HUGEPD_MASK below are
	 * essential, because we *don't* test for this at the bottom
	 * level.  Without them we'll attempt to free a hugepte table
	 * when we unmap just part of it, even if there are other
	 * active mappings using it.
	 *
	 * The next few lines have given us lots of grief...
	 *
	 * Why are we testing HUGEPD* at this top level?  Because
	 * often there will be no work to do at all, and we'd prefer
	 * not to go all the way down to the bottom just to discover
	 * that.
	 *
	 * Why all these "- 1"s?  Because 0 represents both the bottom
	 * of the address space and the top of it (using -1 for the
	 * top wouldn't help much: the masks would do the wrong thing).
	 * The rule is that addr 0 and floor 0 refer to the bottom of
	 * the address space, but end 0 and ceiling 0 refer to the top
	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
	 * that end 0 case should be mythical).
	 *
	 * Wherever addr is brought up or ceiling brought down, we
	 * must be careful to reject "the opposite 0" before it
	 * confuses the subsequent tests.  But what about where end is
	 * brought down by HUGEPD_SIZE below? no, end can't go down to
	 * 0 there.
	 *
	 * Whereas we round start (addr) and ceiling down, by different
	 * masks at different levels, in order to test whether a table
	 * now has no other vmas using it, so can be freed, we don't
	 * bother to round floor or end up - the tests don't need that.
	 */
402
	unsigned int psize = get_slice_psize(tlb->mm, addr);
403

404
	addr &= HUGEPD_MASK(psize);
405
	if (addr < floor) {
406
		addr += HUGEPD_SIZE(psize);
407 408 409 410
		if (!addr)
			return;
	}
	if (ceiling) {
411
		ceiling &= HUGEPD_MASK(psize);
412 413 414 415
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
416
		end -= HUGEPD_SIZE(psize);
417 418 419 420
	if (addr > end - 1)
		return;

	start = addr;
421
	pgd = pgd_offset(tlb->mm, addr);
422
	do {
423 424
		psize = get_slice_psize(tlb->mm, addr);
		BUG_ON(!mmu_huge_psizes[psize]);
425
		next = pgd_addr_end(addr, end);
426 427 428 429 430 431 432 433 434
		if (mmu_psize_to_shift(psize) < PUD_SHIFT) {
			if (pgd_none_or_clear_bad(pgd))
				continue;
			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
		} else {
			if (pgd_none(*pgd))
				continue;
			free_hugepte_range(tlb, (hugepd_t *)pgd, psize);
		}
435
	} while (pgd++, addr = next, addr != end);
L
Linus Torvalds 已提交
436 437
}

438 439 440 441
void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
		     pte_t *ptep, pte_t pte)
{
	if (pte_present(*ptep)) {
442
		/* We open-code pte_clear because we need to pass the right
443 444 445
		 * argument to hpte_need_flush (huge / !huge). Might not be
		 * necessary anymore if we make hpte_need_flush() get the
		 * page size from the slices
446
		 */
447 448 449 450 451
		unsigned int psize = get_slice_psize(mm, addr);
		unsigned int shift = mmu_psize_to_shift(psize);
		unsigned long sz = ((1UL) << shift);
		struct hstate *hstate = size_to_hstate(sz);
		pte_update(mm, addr & hstate->mask, ptep, ~0UL, 1);
452
	}
453
	*ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
L
Linus Torvalds 已提交
454 455
}

456 457
pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
			      pte_t *ptep)
L
Linus Torvalds 已提交
458
{
459
	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1);
460
	return __pte(old);
L
Linus Torvalds 已提交
461 462 463 464 465 466 467
}

struct page *
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
{
	pte_t *ptep;
	struct page *page;
468
	unsigned int mmu_psize = get_slice_psize(mm, address);
L
Linus Torvalds 已提交
469

470 471
	/* Verify it is a huge page else bail. */
	if (!mmu_huge_psizes[mmu_psize])
L
Linus Torvalds 已提交
472 473 474 475
		return ERR_PTR(-EINVAL);

	ptep = huge_pte_offset(mm, address);
	page = pte_page(*ptep);
476 477 478 479 480
	if (page) {
		unsigned int shift = mmu_psize_to_shift(mmu_psize);
		unsigned long sz = ((1UL) << shift);
		page += (address % sz) / PAGE_SIZE;
	}
L
Linus Torvalds 已提交
481 482 483 484 485 486 487 488 489

	return page;
}

int pmd_huge(pmd_t pmd)
{
	return 0;
}

A
Andi Kleen 已提交
490 491 492 493 494
int pud_huge(pud_t pud)
{
	return 0;
}

L
Linus Torvalds 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507
struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	BUG();
	return NULL;
}


unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
					unsigned long len, unsigned long pgoff,
					unsigned long flags)
{
508 509 510
	struct hstate *hstate = hstate_file(file);
	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
L
Linus Torvalds 已提交
511 512
}

513 514 515 516
/*
 * Called by asm hashtable.S for doing lazy icache flush
 */
static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
517
					pte_t pte, int trap, unsigned long sz)
518 519 520 521 522 523 524 525 526 527 528 529
{
	struct page *page;
	int i;

	if (!pfn_valid(pte_pfn(pte)))
		return rflags;

	page = pte_page(pte);

	/* page is dirty */
	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
		if (trap == 0x400) {
530
			for (i = 0; i < (sz / PAGE_SIZE); i++)
531 532 533 534 535 536 537 538 539
				__flush_dcache_icache(page_address(page+i));
			set_bit(PG_arch_1, &page->flags);
		} else {
			rflags |= HPTE_R_N;
		}
	}
	return rflags;
}

L
Linus Torvalds 已提交
540
int hash_huge_page(struct mm_struct *mm, unsigned long access,
541 542
		   unsigned long ea, unsigned long vsid, int local,
		   unsigned long trap)
L
Linus Torvalds 已提交
543 544
{
	pte_t *ptep;
545
	unsigned long old_pte, new_pte;
546
	unsigned long va, rflags, pa, sz;
L
Linus Torvalds 已提交
547 548
	long slot;
	int err = 1;
P
Paul Mackerras 已提交
549
	int ssize = user_segment_size(ea);
550 551 552
	unsigned int mmu_psize;
	int shift;
	mmu_psize = get_slice_psize(mm, ea);
L
Linus Torvalds 已提交
553

554 555
	if (!mmu_huge_psizes[mmu_psize])
		goto out;
L
Linus Torvalds 已提交
556 557 558
	ptep = huge_pte_offset(mm, ea);

	/* Search the Linux page table for a match with va */
P
Paul Mackerras 已提交
559
	va = hpt_va(ea, vsid, ssize);
L
Linus Torvalds 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586

	/*
	 * If no pte found or not present, send the problem up to
	 * do_page_fault
	 */
	if (unlikely(!ptep || pte_none(*ptep)))
		goto out;

	/* 
	 * Check the user's access rights to the page.  If access should be
	 * prevented then send the problem up to do_page_fault.
	 */
	if (unlikely(access & ~pte_val(*ptep)))
		goto out;
	/*
	 * At this point, we have a pte (old_pte) which can be used to build
	 * or update an HPTE. There are 2 cases:
	 *
	 * 1. There is a valid (present) pte with no associated HPTE (this is 
	 *	the most common case)
	 * 2. There is a valid (present) pte with an associated HPTE. The
	 *	current values of the pp bits in the HPTE prevent access
	 *	because we are doing software DIRTY bit management and the
	 *	page is currently not DIRTY. 
	 */


587 588 589 590
	do {
		old_pte = pte_val(*ptep);
		if (old_pte & _PAGE_BUSY)
			goto out;
591
		new_pte = old_pte | _PAGE_BUSY | _PAGE_ACCESSED;
592 593 594 595
	} while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
					 old_pte, new_pte));

	rflags = 0x2 | (!(new_pte & _PAGE_RW));
L
Linus Torvalds 已提交
596
 	/* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
597
	rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
598 599
	shift = mmu_psize_to_shift(mmu_psize);
	sz = ((1UL) << shift);
600 601 602 603
	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
		/* No CPU has hugepages but lacks no execute, so we
		 * don't need to worry about that case */
		rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
604
						       trap, sz);
L
Linus Torvalds 已提交
605 606

	/* Check if pte already has an hpte (case 2) */
607
	if (unlikely(old_pte & _PAGE_HASHPTE)) {
L
Linus Torvalds 已提交
608 609 610
		/* There MIGHT be an HPTE for this pte */
		unsigned long hash, slot;

611
		hash = hpt_hash(va, shift, ssize);
612
		if (old_pte & _PAGE_F_SECOND)
L
Linus Torvalds 已提交
613 614
			hash = ~hash;
		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
615
		slot += (old_pte & _PAGE_F_GIX) >> 12;
L
Linus Torvalds 已提交
616

617
		if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_psize,
P
Paul Mackerras 已提交
618
					 ssize, local) == -1)
619
			old_pte &= ~_PAGE_HPTEFLAGS;
L
Linus Torvalds 已提交
620 621
	}

622
	if (likely(!(old_pte & _PAGE_HASHPTE))) {
623
		unsigned long hash = hpt_hash(va, shift, ssize);
L
Linus Torvalds 已提交
624 625
		unsigned long hpte_group;

626
		pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
L
Linus Torvalds 已提交
627 628 629 630 631

repeat:
		hpte_group = ((hash & htab_hash_mask) *
			      HPTES_PER_GROUP) & ~0x7UL;

632
		/* clear HPTE slot informations in new PTE */
633 634 635
#ifdef CONFIG_PPC_64K_PAGES
		new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HPTE_SUB0;
#else
636
		new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
637
#endif
L
Linus Torvalds 已提交
638
		/* Add in WIMG bits */
639 640
		rflags |= (new_pte & (_PAGE_WRITETHRU | _PAGE_NO_CACHE |
				      _PAGE_COHERENT | _PAGE_GUARDED));
L
Linus Torvalds 已提交
641

642 643
		/* Insert into the hash table, primary slot */
		slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
644
					  mmu_psize, ssize);
L
Linus Torvalds 已提交
645 646 647 648 649

		/* Primary is full, try the secondary */
		if (unlikely(slot == -1)) {
			hpte_group = ((~hash & htab_hash_mask) *
				      HPTES_PER_GROUP) & ~0x7UL; 
650
			slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
651
						  HPTE_V_SECONDARY,
652
						  mmu_psize, ssize);
L
Linus Torvalds 已提交
653 654
			if (slot == -1) {
				if (mftb() & 0x1)
655 656
					hpte_group = ((hash & htab_hash_mask) *
						      HPTES_PER_GROUP)&~0x7UL;
L
Linus Torvalds 已提交
657 658 659 660 661 662 663 664 665

				ppc_md.hpte_remove(hpte_group);
				goto repeat;
                        }
		}

		if (unlikely(slot == -2))
			panic("hash_huge_page: pte_insert failed\n");

I
Ishizaki Kou 已提交
666
		new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX);
L
Linus Torvalds 已提交
667 668
	}

669
	/*
H
Hugh Dickins 已提交
670
	 * No need to use ldarx/stdcx here
671 672 673
	 */
	*ptep = __pte(new_pte & ~_PAGE_BUSY);

L
Linus Torvalds 已提交
674 675 676 677 678
	err = 0;

 out:
	return err;
}
679

680 681 682 683
void set_huge_psize(int psize)
{
	/* Check that it is a page size supported by the hardware and
	 * that it fits within pagetable limits. */
684 685
	if (mmu_psize_defs[psize].shift &&
		mmu_psize_defs[psize].shift < SID_SHIFT_1T &&
686
		(mmu_psize_defs[psize].shift > MIN_HUGEPTE_SHIFT ||
687 688
		 mmu_psize_defs[psize].shift == PAGE_SHIFT_64K ||
		 mmu_psize_defs[psize].shift == PAGE_SHIFT_16G)) {
689 690 691 692
		/* Return if huge page size has already been setup or is the
		 * same as the base page size. */
		if (mmu_huge_psizes[psize] ||
		   mmu_psize_defs[psize].shift == PAGE_SHIFT)
693
			return;
694
		hugetlb_add_hstate(mmu_psize_defs[psize].shift - PAGE_SHIFT);
695

696
		switch (mmu_psize_defs[psize].shift) {
697 698 699 700
		case PAGE_SHIFT_64K:
		    /* We only allow 64k hpages with 4k base page,
		     * which was checked above, and always put them
		     * at the PMD */
701
		    hugepte_shift[psize] = PMD_SHIFT;
702 703 704 705 706
		    break;
		case PAGE_SHIFT_16M:
		    /* 16M pages can be at two different levels
		     * of pagestables based on base page size */
		    if (PAGE_SHIFT == PAGE_SHIFT_64K)
707
			    hugepte_shift[psize] = PMD_SHIFT;
708
		    else /* 4k base page */
709
			    hugepte_shift[psize] = PUD_SHIFT;
710 711 712
		    break;
		case PAGE_SHIFT_16G:
		    /* 16G pages are always at PGD level */
713
		    hugepte_shift[psize] = PGDIR_SHIFT;
714 715
		    break;
		}
716
		hugepte_shift[psize] -= mmu_psize_defs[psize].shift;
717
	} else
718
		hugepte_shift[psize] = 0;
719 720 721 722 723
}

static int __init hugepage_setup_sz(char *str)
{
	unsigned long long size;
724
	int mmu_psize;
725 726 727 728 729
	int shift;

	size = memparse(str, &str);

	shift = __ffs(size);
730 731
	mmu_psize = shift_to_mmu_psize(shift);
	if (mmu_psize >= 0 && mmu_psize_defs[mmu_psize].shift)
732 733 734 735 736 737 738 739
		set_huge_psize(mmu_psize);
	else
		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);

	return 1;
}
__setup("hugepagesz=", hugepage_setup_sz);

740 741
static int __init hugetlbpage_init(void)
{
742 743
	unsigned int psize;

744 745
	if (!cpu_has_feature(CPU_FTR_16M_PAGE))
		return -ENODEV;
746

747 748 749 750 751 752 753
	/* Add supported huge page sizes.  Need to change HUGE_MAX_HSTATE
	 * and adjust PTE_NONCACHE_NUM if the number of supported huge page
	 * sizes changes.
	 */
	set_huge_psize(MMU_PAGE_16M);
	set_huge_psize(MMU_PAGE_16G);

754 755 756 757 758 759 760
	/* Temporarily disable support for 64K huge pages when 64K SPU local
	 * store support is enabled as the current implementation conflicts.
	 */
#ifndef CONFIG_SPU_FS_64K_LS
	set_huge_psize(MMU_PAGE_64K);
#endif

761 762 763 764 765 766 767
	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
		if (mmu_huge_psizes[psize]) {
			huge_pgtable_cache(psize) = kmem_cache_create(
						HUGEPTE_CACHE_NAME(psize),
						HUGEPTE_TABLE_SIZE(psize),
						HUGEPTE_TABLE_SIZE(psize),
						0,
768
						NULL);
769 770 771 772 773
			if (!huge_pgtable_cache(psize))
				panic("hugetlbpage_init(): could not create %s"\
				      "\n", HUGEPTE_CACHE_NAME(psize));
		}
	}
774 775 776 777 778

	return 0;
}

module_init(hugetlbpage_init);