e1000_82575.c 41.1 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2009 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/* e1000_82575
 * e1000_82576
 */

#include <linux/types.h>
#include <linux/slab.h>
A
Alexander Duyck 已提交
34
#include <linux/if_ether.h>
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

#include "e1000_mac.h"
#include "e1000_82575.h"

static s32  igb_get_invariants_82575(struct e1000_hw *);
static s32  igb_acquire_phy_82575(struct e1000_hw *);
static void igb_release_phy_82575(struct e1000_hw *);
static s32  igb_acquire_nvm_82575(struct e1000_hw *);
static void igb_release_nvm_82575(struct e1000_hw *);
static s32  igb_check_for_link_82575(struct e1000_hw *);
static s32  igb_get_cfg_done_82575(struct e1000_hw *);
static s32  igb_init_hw_82575(struct e1000_hw *);
static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
static s32  igb_reset_hw_82575(struct e1000_hw *);
static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
static s32  igb_setup_copper_link_82575(struct e1000_hw *);
static s32  igb_setup_fiber_serdes_link_82575(struct e1000_hw *);
static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
static s32  igb_configure_pcs_link_82575(struct e1000_hw *);
static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
						 u16 *);
static s32  igb_get_phy_id_82575(struct e1000_hw *);
static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
static bool igb_sgmii_active_82575(struct e1000_hw *);
static s32  igb_reset_init_script_82575(struct e1000_hw *);
static s32  igb_read_mac_addr_82575(struct e1000_hw *);

static s32 igb_get_invariants_82575(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_mac_info *mac = &hw->mac;
70
	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
71 72 73 74 75 76 77 78 79 80 81
	u32 eecd;
	s32 ret_val;
	u16 size;
	u32 ctrl_ext = 0;

	switch (hw->device_id) {
	case E1000_DEV_ID_82575EB_COPPER:
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		mac->type = e1000_82575;
		break;
A
Alexander Duyck 已提交
82
	case E1000_DEV_ID_82576:
83
	case E1000_DEV_ID_82576_NS:
A
Alexander Duyck 已提交
84 85
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
86
	case E1000_DEV_ID_82576_QUAD_COPPER:
A
Alexander Duyck 已提交
87 88
		mac->type = e1000_82576;
		break;
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
	default:
		return -E1000_ERR_MAC_INIT;
		break;
	}

	/* Set media type */
	/*
	 * The 82575 uses bits 22:23 for link mode. The mode can be changed
	 * based on the EEPROM. We cannot rely upon device ID. There
	 * is no distinguishable difference between fiber and internal
	 * SerDes mode on the 82575. There can be an external PHY attached
	 * on the SGMII interface. For this, we'll set sgmii_active to true.
	 */
	phy->media_type = e1000_media_type_copper;
	dev_spec->sgmii_active = false;

	ctrl_ext = rd32(E1000_CTRL_EXT);
	if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) ==
	    E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) {
		hw->phy.media_type = e1000_media_type_internal_serdes;
		ctrl_ext |= E1000_CTRL_I2C_ENA;
	} else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) {
		dev_spec->sgmii_active = true;
		ctrl_ext |= E1000_CTRL_I2C_ENA;
	} else {
		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
	}
	wr32(E1000_CTRL_EXT, ctrl_ext);

	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
A
Alexander Duyck 已提交
122 123
	if (mac->type == e1000_82576)
		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
	/* Set if part includes ASF firmware */
	mac->asf_firmware_present = true;
	/* Set if manageability features are enabled. */
	mac->arc_subsystem_valid =
		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
			? true : false;

	/* physical interface link setup */
	mac->ops.setup_physical_interface =
		(hw->phy.media_type == e1000_media_type_copper)
			? igb_setup_copper_link_82575
			: igb_setup_fiber_serdes_link_82575;

	/* NVM initialization */
	eecd = rd32(E1000_EECD);

	nvm->opcode_bits        = 8;
	nvm->delay_usec         = 1;
	switch (nvm->override) {
	case e1000_nvm_override_spi_large:
		nvm->page_size    = 32;
		nvm->address_bits = 16;
		break;
	case e1000_nvm_override_spi_small:
		nvm->page_size    = 8;
		nvm->address_bits = 8;
		break;
	default:
		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
		break;
	}

	nvm->type = e1000_nvm_eeprom_spi;

	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
		     E1000_EECD_SIZE_EX_SHIFT);

	/*
	 * Added to a constant, "size" becomes the left-shift value
	 * for setting word_size.
	 */
	size += NVM_WORD_SIZE_BASE_SHIFT;
J
Jeff Kirsher 已提交
167 168 169 170

	/* EEPROM access above 16k is unsupported */
	if (size > 14)
		size = 14;
171 172 173 174 175 176 177 178 179 180 181 182 183
	nvm->word_size = 1 << size;

	/* setup PHY parameters */
	if (phy->media_type != e1000_media_type_copper) {
		phy->type = e1000_phy_none;
		return 0;
	}

	phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us      = 100;

	/* PHY function pointers */
	if (igb_sgmii_active_82575(hw)) {
A
Alexander Duyck 已提交
184 185 186
		phy->ops.reset              = igb_phy_hw_reset_sgmii_82575;
		phy->ops.read_reg           = igb_read_phy_reg_sgmii_82575;
		phy->ops.write_reg          = igb_write_phy_reg_sgmii_82575;
187
	} else {
A
Alexander Duyck 已提交
188 189 190
		phy->ops.reset              = igb_phy_hw_reset;
		phy->ops.read_reg           = igb_read_phy_reg_igp;
		phy->ops.write_reg          = igb_write_phy_reg_igp;
191 192
	}

193 194 195 196
	/* set lan id */
	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
	               E1000_STATUS_FUNC_SHIFT;

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
	/* Set phy->phy_addr and phy->id. */
	ret_val = igb_get_phy_id_82575(hw);
	if (ret_val)
		return ret_val;

	/* Verify phy id and set remaining function pointers */
	switch (phy->id) {
	case M88E1111_I_PHY_ID:
		phy->type                   = e1000_phy_m88;
		phy->ops.get_phy_info       = igb_get_phy_info_m88;
		phy->ops.get_cable_length   = igb_get_cable_length_m88;
		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
		break;
	case IGP03E1000_E_PHY_ID:
		phy->type                   = e1000_phy_igp_3;
		phy->ops.get_phy_info       = igb_get_phy_info_igp;
		phy->ops.get_cable_length   = igb_get_cable_length_igp_2;
		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575;
		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state;
		break;
	default:
		return -E1000_ERR_PHY;
	}

222 223 224 225
	/* if 82576 then initialize mailbox parameters */
	if (mac->type == e1000_82576)
		igb_init_mbx_params_pf(hw);

226 227 228 229
	return 0;
}

/**
230
 *  igb_acquire_phy_82575 - Acquire rights to access PHY
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
 *  @hw: pointer to the HW structure
 *
 *  Acquire access rights to the correct PHY.  This is a
 *  function pointer entry point called by the api module.
 **/
static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
{
	u16 mask;

	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;

	return igb_acquire_swfw_sync_82575(hw, mask);
}

/**
246
 *  igb_release_phy_82575 - Release rights to access PHY
247 248 249 250 251 252 253 254 255 256 257 258 259 260
 *  @hw: pointer to the HW structure
 *
 *  A wrapper to release access rights to the correct PHY.  This is a
 *  function pointer entry point called by the api module.
 **/
static void igb_release_phy_82575(struct e1000_hw *hw)
{
	u16 mask;

	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
	igb_release_swfw_sync_82575(hw, mask);
}

/**
261
 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
262 263 264 265 266 267 268 269 270 271 272 273 274 275
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset using the serial gigabit media independent
 *  interface and stores the retrieved information in data.
 **/
static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
					  u16 *data)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, i2ccmd = 0;

	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
276
		hw_dbg("PHY Address %u is out of range\n", offset);
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
		return -E1000_ERR_PARAM;
	}

	/*
	 * Set up Op-code, Phy Address, and register address in the I2CCMD
	 * register.  The MAC will take care of interfacing with the
	 * PHY to retrieve the desired data.
	 */
	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
		  (E1000_I2CCMD_OPCODE_READ));

	wr32(E1000_I2CCMD, i2ccmd);

	/* Poll the ready bit to see if the I2C read completed */
	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
		udelay(50);
		i2ccmd = rd32(E1000_I2CCMD);
		if (i2ccmd & E1000_I2CCMD_READY)
			break;
	}
	if (!(i2ccmd & E1000_I2CCMD_READY)) {
299
		hw_dbg("I2CCMD Read did not complete\n");
300 301 302
		return -E1000_ERR_PHY;
	}
	if (i2ccmd & E1000_I2CCMD_ERROR) {
303
		hw_dbg("I2CCMD Error bit set\n");
304 305 306 307 308 309 310 311 312 313
		return -E1000_ERR_PHY;
	}

	/* Need to byte-swap the 16-bit value. */
	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);

	return 0;
}

/**
314
 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes the data to PHY register at the offset using the serial gigabit
 *  media independent interface.
 **/
static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
					   u16 data)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, i2ccmd = 0;
	u16 phy_data_swapped;

	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
330
		hw_dbg("PHY Address %d is out of range\n", offset);
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
		return -E1000_ERR_PARAM;
	}

	/* Swap the data bytes for the I2C interface */
	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);

	/*
	 * Set up Op-code, Phy Address, and register address in the I2CCMD
	 * register.  The MAC will take care of interfacing with the
	 * PHY to retrieve the desired data.
	 */
	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
		  E1000_I2CCMD_OPCODE_WRITE |
		  phy_data_swapped);

	wr32(E1000_I2CCMD, i2ccmd);

	/* Poll the ready bit to see if the I2C read completed */
	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
		udelay(50);
		i2ccmd = rd32(E1000_I2CCMD);
		if (i2ccmd & E1000_I2CCMD_READY)
			break;
	}
	if (!(i2ccmd & E1000_I2CCMD_READY)) {
357
		hw_dbg("I2CCMD Write did not complete\n");
358 359 360
		return -E1000_ERR_PHY;
	}
	if (i2ccmd & E1000_I2CCMD_ERROR) {
361
		hw_dbg("I2CCMD Error bit set\n");
362 363 364 365 366 367 368
		return -E1000_ERR_PHY;
	}

	return 0;
}

/**
369
 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
370 371
 *  @hw: pointer to the HW structure
 *
372
 *  Retrieves the PHY address and ID for both PHY's which do and do not use
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
 *  sgmi interface.
 **/
static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32  ret_val = 0;
	u16 phy_id;

	/*
	 * For SGMII PHYs, we try the list of possible addresses until
	 * we find one that works.  For non-SGMII PHYs
	 * (e.g. integrated copper PHYs), an address of 1 should
	 * work.  The result of this function should mean phy->phy_addr
	 * and phy->id are set correctly.
	 */
	if (!(igb_sgmii_active_82575(hw))) {
		phy->addr = 1;
		ret_val = igb_get_phy_id(hw);
		goto out;
	}

	/*
	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
	 * Therefore, we need to test 1-7
	 */
	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
		if (ret_val == 0) {
401 402
			hw_dbg("Vendor ID 0x%08X read at address %u\n",
			       phy_id, phy->addr);
403 404 405 406 407 408 409
			/*
			 * At the time of this writing, The M88 part is
			 * the only supported SGMII PHY product.
			 */
			if (phy_id == M88_VENDOR)
				break;
		} else {
410
			hw_dbg("PHY address %u was unreadable\n", phy->addr);
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
		}
	}

	/* A valid PHY type couldn't be found. */
	if (phy->addr == 8) {
		phy->addr = 0;
		ret_val = -E1000_ERR_PHY;
		goto out;
	}

	ret_val = igb_get_phy_id(hw);

out:
	return ret_val;
}

/**
428
 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
429 430 431 432 433 434 435 436 437 438 439 440 441
 *  @hw: pointer to the HW structure
 *
 *  Resets the PHY using the serial gigabit media independent interface.
 **/
static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
{
	s32 ret_val;

	/*
	 * This isn't a true "hard" reset, but is the only reset
	 * available to us at this time.
	 */

442
	hw_dbg("Soft resetting SGMII attached PHY...\n");
443 444 445 446 447

	/*
	 * SFP documentation requires the following to configure the SPF module
	 * to work on SGMII.  No further documentation is given.
	 */
A
Alexander Duyck 已提交
448
	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
449 450 451 452 453 454 455 456 457 458
	if (ret_val)
		goto out;

	ret_val = igb_phy_sw_reset(hw);

out:
	return ret_val;
}

/**
459
 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

A
Alexander Duyck 已提交
477
	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
478 479 480 481 482
	if (ret_val)
		goto out;

	if (active) {
		data |= IGP02E1000_PM_D0_LPLU;
A
Alexander Duyck 已提交
483
		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
484
						 data);
485 486 487 488
		if (ret_val)
			goto out;

		/* When LPLU is enabled, we should disable SmartSpeed */
A
Alexander Duyck 已提交
489
		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
490
						&data);
491
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
A
Alexander Duyck 已提交
492
		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
493
						 data);
494 495 496 497
		if (ret_val)
			goto out;
	} else {
		data &= ~IGP02E1000_PM_D0_LPLU;
A
Alexander Duyck 已提交
498
		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
499
						 data);
500 501 502 503 504 505 506
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on) {
A
Alexander Duyck 已提交
507
			ret_val = phy->ops.read_reg(hw,
508
					IGP01E1000_PHY_PORT_CONFIG, &data);
509 510 511 512
			if (ret_val)
				goto out;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
A
Alexander Duyck 已提交
513
			ret_val = phy->ops.write_reg(hw,
514
					IGP01E1000_PHY_PORT_CONFIG, data);
515 516 517
			if (ret_val)
				goto out;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
A
Alexander Duyck 已提交
518
			ret_val = phy->ops.read_reg(hw,
519
					IGP01E1000_PHY_PORT_CONFIG, &data);
520 521 522 523
			if (ret_val)
				goto out;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
A
Alexander Duyck 已提交
524
			ret_val = phy->ops.write_reg(hw,
525
					IGP01E1000_PHY_PORT_CONFIG, data);
526 527 528 529 530 531 532 533 534 535
			if (ret_val)
				goto out;
		}
	}

out:
	return ret_val;
}

/**
536
 *  igb_acquire_nvm_82575 - Request for access to EEPROM
537 538
 *  @hw: pointer to the HW structure
 *
539
 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 *  Return successful if access grant bit set, else clear the request for
 *  EEPROM access and return -E1000_ERR_NVM (-1).
 **/
static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
{
	s32 ret_val;

	ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
	if (ret_val)
		goto out;

	ret_val = igb_acquire_nvm(hw);

	if (ret_val)
		igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);

out:
	return ret_val;
}

/**
562
 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
563 564 565 566 567 568 569 570 571 572 573 574
 *  @hw: pointer to the HW structure
 *
 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
 *  then release the semaphores acquired.
 **/
static void igb_release_nvm_82575(struct e1000_hw *hw)
{
	igb_release_nvm(hw);
	igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
}

/**
575
 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 *  will also specify which port we're acquiring the lock for.
 **/
static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;
	u32 swmask = mask;
	u32 fwmask = mask << 16;
	s32 ret_val = 0;
	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */

	while (i < timeout) {
		if (igb_get_hw_semaphore(hw)) {
			ret_val = -E1000_ERR_SWFW_SYNC;
			goto out;
		}

		swfw_sync = rd32(E1000_SW_FW_SYNC);
		if (!(swfw_sync & (fwmask | swmask)))
			break;

		/*
		 * Firmware currently using resource (fwmask)
		 * or other software thread using resource (swmask)
		 */
		igb_put_hw_semaphore(hw);
		mdelay(5);
		i++;
	}

	if (i == timeout) {
610
		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
611 612 613 614 615 616 617 618 619 620 621 622 623 624
		ret_val = -E1000_ERR_SWFW_SYNC;
		goto out;
	}

	swfw_sync |= swmask;
	wr32(E1000_SW_FW_SYNC, swfw_sync);

	igb_put_hw_semaphore(hw);

out:
	return ret_val;
}

/**
625
 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 *  will also specify which port we're releasing the lock for.
 **/
static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;

	while (igb_get_hw_semaphore(hw) != 0);
	/* Empty */

	swfw_sync = rd32(E1000_SW_FW_SYNC);
	swfw_sync &= ~mask;
	wr32(E1000_SW_FW_SYNC, swfw_sync);

	igb_put_hw_semaphore(hw);
}

/**
647
 *  igb_get_cfg_done_82575 - Read config done bit
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
 *  @hw: pointer to the HW structure
 *
 *  Read the management control register for the config done bit for
 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
 *  to read the config done bit, so an error is *ONLY* logged and returns
 *  0.  If we were to return with error, EEPROM-less silicon
 *  would not be able to be reset or change link.
 **/
static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;
	s32 ret_val = 0;
	u32 mask = E1000_NVM_CFG_DONE_PORT_0;

	if (hw->bus.func == 1)
		mask = E1000_NVM_CFG_DONE_PORT_1;

	while (timeout) {
		if (rd32(E1000_EEMNGCTL) & mask)
			break;
		msleep(1);
		timeout--;
	}
	if (!timeout)
672
		hw_dbg("MNG configuration cycle has not completed.\n");
673 674 675 676 677 678 679 680 681 682

	/* If EEPROM is not marked present, init the PHY manually */
	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
	    (hw->phy.type == e1000_phy_igp_3))
		igb_phy_init_script_igp3(hw);

	return ret_val;
}

/**
683
 *  igb_check_for_link_82575 - Check for link
684 685 686 687 688 689 690 691 692 693 694 695
 *  @hw: pointer to the HW structure
 *
 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
 *  use the generic interface for determining link.
 **/
static s32 igb_check_for_link_82575(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 speed, duplex;

	/* SGMII link check is done through the PCS register. */
	if ((hw->phy.media_type != e1000_media_type_copper) ||
696
	    (igb_sgmii_active_82575(hw))) {
697
		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
A
Alexander Duyck 已提交
698
		                                             &duplex);
699 700 701 702 703 704 705
		/*
		 * Use this flag to determine if link needs to be checked or
		 * not.  If  we have link clear the flag so that we do not
		 * continue to check for link.
		 */
		hw->mac.get_link_status = !hw->mac.serdes_has_link;
	} else {
706
		ret_val = igb_check_for_copper_link(hw);
707
	}
708 709 710 711

	return ret_val;
}
/**
712
 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
713 714 715 716
 *  @hw: pointer to the HW structure
 *  @speed: stores the current speed
 *  @duplex: stores the current duplex
 *
717
 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
 *  duplex, then store the values in the pointers provided.
 **/
static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
						u16 *duplex)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 pcs;

	/* Set up defaults for the return values of this function */
	mac->serdes_has_link = false;
	*speed = 0;
	*duplex = 0;

	/*
	 * Read the PCS Status register for link state. For non-copper mode,
	 * the status register is not accurate. The PCS status register is
	 * used instead.
	 */
	pcs = rd32(E1000_PCS_LSTAT);

	/*
	 * The link up bit determines when link is up on autoneg. The sync ok
	 * gets set once both sides sync up and agree upon link. Stable link
	 * can be determined by checking for both link up and link sync ok
	 */
	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
		mac->serdes_has_link = true;

		/* Detect and store PCS speed */
		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
			*speed = SPEED_1000;
		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
			*speed = SPEED_100;
		} else {
			*speed = SPEED_10;
		}

		/* Detect and store PCS duplex */
		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
			*duplex = FULL_DUPLEX;
		} else {
			*duplex = HALF_DUPLEX;
		}
	}

	return 0;
}

/**
A
Alexander Duyck 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
 *  igb_init_rx_addrs_82575 - Initialize receive address's
 *  @hw: pointer to the HW structure
 *  @rar_count: receive address registers
 *
 *  Setups the receive address registers by setting the base receive address
 *  register to the devices MAC address and clearing all the other receive
 *  address registers to 0.
 **/
static void igb_init_rx_addrs_82575(struct e1000_hw *hw, u16 rar_count)
{
	u32 i;
	u8 addr[6] = {0,0,0,0,0,0};
	/*
	 * This function is essentially the same as that of
	 * e1000_init_rx_addrs_generic. However it also takes care
	 * of the special case where the register offset of the
	 * second set of RARs begins elsewhere. This is implicitly taken care by
	 * function e1000_rar_set_generic.
	 */

	hw_dbg("e1000_init_rx_addrs_82575");

	/* Setup the receive address */
	hw_dbg("Programming MAC Address into RAR[0]\n");
	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);

	/* Zero out the other (rar_entry_count - 1) receive addresses */
	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
	for (i = 1; i < rar_count; i++)
	    hw->mac.ops.rar_set(hw, addr, i);
}

/**
800
 *  igb_update_mc_addr_list - Update Multicast addresses
A
Alexander Duyck 已提交
801 802 803 804 805 806 807 808 809 810 811
 *  @hw: pointer to the HW structure
 *  @mc_addr_list: array of multicast addresses to program
 *  @mc_addr_count: number of multicast addresses to program
 *  @rar_used_count: the first RAR register free to program
 *  @rar_count: total number of supported Receive Address Registers
 *
 *  Updates the Receive Address Registers and Multicast Table Array.
 *  The caller must have a packed mc_addr_list of multicast addresses.
 *  The parameter rar_count will usually be hw->mac.rar_entry_count
 *  unless there are workarounds that change this.
 **/
812 813 814
void igb_update_mc_addr_list(struct e1000_hw *hw,
                             u8 *mc_addr_list, u32 mc_addr_count,
                             u32 rar_used_count, u32 rar_count)
A
Alexander Duyck 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
{
	u32 hash_value;
	u32 i;
	u8 addr[6] = {0,0,0,0,0,0};
	/*
	 * This function is essentially the same as that of 
	 * igb_update_mc_addr_list_generic. However it also takes care 
	 * of the special case where the register offset of the 
	 * second set of RARs begins elsewhere. This is implicitly taken care by 
	 * function e1000_rar_set_generic.
	 */

	/*
	 * Load the first set of multicast addresses into the exact
	 * filters (RAR).  If there are not enough to fill the RAR
	 * array, clear the filters.
	 */
	for (i = rar_used_count; i < rar_count; i++) {
		if (mc_addr_count) {
			igb_rar_set(hw, mc_addr_list, i);
			mc_addr_count--;
			mc_addr_list += ETH_ALEN;
		} else {
			igb_rar_set(hw, addr, i);
		}
	}

	/* Clear the old settings from the MTA */
	hw_dbg("Clearing MTA\n");
	for (i = 0; i < hw->mac.mta_reg_count; i++) {
		array_wr32(E1000_MTA, i, 0);
		wrfl();
	}

	/* Load any remaining multicast addresses into the hash table. */
	for (; mc_addr_count > 0; mc_addr_count--) {
		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
		hw_dbg("Hash value = 0x%03X\n", hash_value);
853
		igb_mta_set(hw, hash_value);
A
Alexander Duyck 已提交
854 855 856 857 858 859
		mc_addr_list += ETH_ALEN;
	}
}

/**
 *  igb_shutdown_fiber_serdes_link_82575 - Remove link during power down
860 861
 *  @hw: pointer to the HW structure
 *
A
Alexander Duyck 已提交
862 863
 *  In the case of fiber serdes, shut down optics and PCS on driver unload
 *  when management pass thru is not enabled.
864
 **/
A
Alexander Duyck 已提交
865
void igb_shutdown_fiber_serdes_link_82575(struct e1000_hw *hw)
866
{
A
Alexander Duyck 已提交
867 868
	u32 reg;

869
	if (hw->phy.media_type != e1000_media_type_internal_serdes)
A
Alexander Duyck 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
		return;

	/* if the management interface is not enabled, then power down */
	if (!igb_enable_mng_pass_thru(hw)) {
		/* Disable PCS to turn off link */
		reg = rd32(E1000_PCS_CFG0);
		reg &= ~E1000_PCS_CFG_PCS_EN;
		wr32(E1000_PCS_CFG0, reg);

		/* shutdown the laser */
		reg = rd32(E1000_CTRL_EXT);
		reg |= E1000_CTRL_EXT_SDP7_DATA;
		wr32(E1000_CTRL_EXT, reg);

		/* flush the write to verify completion */
		wrfl();
		msleep(1);
	}
888 889 890 891 892

	return;
}

/**
893
 *  igb_reset_hw_82575 - Reset hardware
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
 *  @hw: pointer to the HW structure
 *
 *  This resets the hardware into a known state.  This is a
 *  function pointer entry point called by the api module.
 **/
static s32 igb_reset_hw_82575(struct e1000_hw *hw)
{
	u32 ctrl, icr;
	s32 ret_val;

	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = igb_disable_pcie_master(hw);
	if (ret_val)
910
		hw_dbg("PCI-E Master disable polling has failed.\n");
911

912
	hw_dbg("Masking off all interrupts\n");
913 914 915 916 917 918 919 920 921 922
	wr32(E1000_IMC, 0xffffffff);

	wr32(E1000_RCTL, 0);
	wr32(E1000_TCTL, E1000_TCTL_PSP);
	wrfl();

	msleep(10);

	ctrl = rd32(E1000_CTRL);

923
	hw_dbg("Issuing a global reset to MAC\n");
924 925 926 927 928 929 930 931 932
	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);

	ret_val = igb_get_auto_rd_done(hw);
	if (ret_val) {
		/*
		 * When auto config read does not complete, do not
		 * return with an error. This can happen in situations
		 * where there is no eeprom and prevents getting link.
		 */
933
		hw_dbg("Auto Read Done did not complete\n");
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
	}

	/* If EEPROM is not present, run manual init scripts */
	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
		igb_reset_init_script_82575(hw);

	/* Clear any pending interrupt events. */
	wr32(E1000_IMC, 0xffffffff);
	icr = rd32(E1000_ICR);

	igb_check_alt_mac_addr(hw);

	return ret_val;
}

/**
950
 *  igb_init_hw_82575 - Initialize hardware
951 952 953 954 955 956 957 958 959 960 961 962 963
 *  @hw: pointer to the HW structure
 *
 *  This inits the hardware readying it for operation.
 **/
static s32 igb_init_hw_82575(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	u16 i, rar_count = mac->rar_entry_count;

	/* Initialize identification LED */
	ret_val = igb_id_led_init(hw);
	if (ret_val) {
964
		hw_dbg("Error initializing identification LED\n");
965 966 967 968
		/* This is not fatal and we should not stop init due to this */
	}

	/* Disabling VLAN filtering */
969
	hw_dbg("Initializing the IEEE VLAN\n");
970 971 972
	igb_clear_vfta(hw);

	/* Setup the receive address */
A
Alexander Duyck 已提交
973
	igb_init_rx_addrs_82575(hw, rar_count);
974
	/* Zero out the Multicast HASH table */
975
	hw_dbg("Zeroing the MTA\n");
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
	for (i = 0; i < mac->mta_reg_count; i++)
		array_wr32(E1000_MTA, i, 0);

	/* Setup link and flow control */
	ret_val = igb_setup_link(hw);

	/*
	 * Clear all of the statistics registers (clear on read).  It is
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	igb_clear_hw_cntrs_82575(hw);

	return ret_val;
}

/**
994
 *  igb_setup_copper_link_82575 - Configure copper link settings
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
 *  @hw: pointer to the HW structure
 *
 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
 *  for link, once link is established calls to configure collision distance
 *  and flow control are called.
 **/
static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
{
	u32 ctrl, led_ctrl;
	s32  ret_val;
	bool link;

	ctrl = rd32(E1000_CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	wr32(E1000_CTRL, ctrl);

	switch (hw->phy.type) {
	case e1000_phy_m88:
		ret_val = igb_copper_link_setup_m88(hw);
		break;
	case e1000_phy_igp_3:
		ret_val = igb_copper_link_setup_igp(hw);
		/* Setup activity LED */
		led_ctrl = rd32(E1000_LEDCTL);
		led_ctrl &= IGP_ACTIVITY_LED_MASK;
		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
		wr32(E1000_LEDCTL, led_ctrl);
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		break;
	}

	if (ret_val)
		goto out;

	if (hw->mac.autoneg) {
		/*
		 * Setup autoneg and flow control advertisement
		 * and perform autonegotiation.
		 */
		ret_val = igb_copper_link_autoneg(hw);
		if (ret_val)
			goto out;
	} else {
		/*
		 * PHY will be set to 10H, 10F, 100H or 100F
		 * depending on user settings.
		 */
1045
		hw_dbg("Forcing Speed and Duplex\n");
A
Alexander Duyck 已提交
1046
		ret_val = hw->phy.ops.force_speed_duplex(hw);
1047
		if (ret_val) {
1048
			hw_dbg("Error Forcing Speed and Duplex\n");
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
			goto out;
		}
	}

	ret_val = igb_configure_pcs_link_82575(hw);
	if (ret_val)
		goto out;

	/*
	 * Check link status. Wait up to 100 microseconds for link to become
	 * valid.
	 */
1061
	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1062 1063 1064 1065
	if (ret_val)
		goto out;

	if (link) {
1066
		hw_dbg("Valid link established!!!\n");
1067 1068 1069 1070
		/* Config the MAC and PHY after link is up */
		igb_config_collision_dist(hw);
		ret_val = igb_config_fc_after_link_up(hw);
	} else {
1071
		hw_dbg("Unable to establish link!!!\n");
1072 1073 1074 1075 1076 1077 1078
	}

out:
	return ret_val;
}

/**
1079
 *  igb_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
 *  @hw: pointer to the HW structure
 *
 *  Configures speed and duplex for fiber and serdes links.
 **/
static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
{
	u32 reg;

	/*
	 * On the 82575, SerDes loopback mode persists until it is
	 * explicitly turned off or a power cycle is performed.  A read to
	 * the register does not indicate its status.  Therefore, we ensure
	 * loopback mode is disabled during initialization.
	 */
	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);

	/* Force link up, set 1gb, set both sw defined pins */
	reg = rd32(E1000_CTRL);
	reg |= E1000_CTRL_SLU |
	       E1000_CTRL_SPD_1000 |
	       E1000_CTRL_FRCSPD |
	       E1000_CTRL_SWDPIN0 |
	       E1000_CTRL_SWDPIN1;
	wr32(E1000_CTRL, reg);

1105 1106 1107 1108 1109 1110 1111
	/* Power on phy for 82576 fiber adapters */
	if (hw->mac.type == e1000_82576) {
		reg = rd32(E1000_CTRL_EXT);
		reg &= ~E1000_CTRL_EXT_SDP7_DATA;
		wr32(E1000_CTRL_EXT, reg);
	}

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	/* Set switch control to serdes energy detect */
	reg = rd32(E1000_CONNSW);
	reg |= E1000_CONNSW_ENRGSRC;
	wr32(E1000_CONNSW, reg);

	/*
	 * New SerDes mode allows for forcing speed or autonegotiating speed
	 * at 1gb. Autoneg should be default set by most drivers. This is the
	 * mode that will be compatible with older link partners and switches.
	 * However, both are supported by the hardware and some drivers/tools.
	 */
	reg = rd32(E1000_PCS_LCTL);

	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);

	if (hw->mac.autoneg) {
		/* Set PCS register for autoneg */
		reg |= E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
		       E1000_PCS_LCTL_AN_ENABLE |     /* Enable Autoneg */
		       E1000_PCS_LCTL_AN_RESTART;     /* Restart autoneg */
1134
		hw_dbg("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
1135 1136 1137 1138 1139 1140 1141
	} else {
		/* Set PCS register for forced speed */
		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
		       E1000_PCS_LCTL_FSD |           /* Force Speed */
		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1142
		hw_dbg("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
1143
	}
1144 1145 1146 1147 1148 1149

	if (hw->mac.type == e1000_82576) {
		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
		igb_force_mac_fc(hw);
	}

1150 1151 1152 1153 1154 1155
	wr32(E1000_PCS_LCTL, reg);

	return 0;
}

/**
1156
 *  igb_configure_pcs_link_82575 - Configure PCS link
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
 *  @hw: pointer to the HW structure
 *
 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
 *  only used on copper connections where the serialized gigabit media
 *  independent interface (sgmii) is being used.  Configures the link
 *  for auto-negotiation or forces speed/duplex.
 **/
static s32 igb_configure_pcs_link_82575(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 reg = 0;

	if (hw->phy.media_type != e1000_media_type_copper ||
	    !(igb_sgmii_active_82575(hw)))
		goto out;

	/* For SGMII, we need to issue a PCS autoneg restart */
	reg = rd32(E1000_PCS_LCTL);

	/* AN time out should be disabled for SGMII mode */
	reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);

	if (mac->autoneg) {
		/* Make sure forced speed and force link are not set */
		reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);

		/*
		 * The PHY should be setup prior to calling this function.
		 * All we need to do is restart autoneg and enable autoneg.
		 */
		reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE;
	} else {
1189
		/* Set PCS register for forced speed */
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209

		/* Turn off bits for full duplex, speed, and autoneg */
		reg &= ~(E1000_PCS_LCTL_FSV_1000 |
			 E1000_PCS_LCTL_FSV_100 |
			 E1000_PCS_LCTL_FDV_FULL |
			 E1000_PCS_LCTL_AN_ENABLE);

		/* Check for duplex first */
		if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX)
			reg |= E1000_PCS_LCTL_FDV_FULL;

		/* Now set speed */
		if (mac->forced_speed_duplex & E1000_ALL_100_SPEED)
			reg |= E1000_PCS_LCTL_FSV_100;

		/* Force speed and force link */
		reg |= E1000_PCS_LCTL_FSD |
		       E1000_PCS_LCTL_FORCE_LINK |
		       E1000_PCS_LCTL_FLV_LINK_UP;

1210
		hw_dbg("Wrote 0x%08X to PCS_LCTL to configure forced link\n",
1211 1212 1213 1214 1215 1216 1217 1218 1219
		       reg);
	}
	wr32(E1000_PCS_LCTL, reg);

out:
	return 0;
}

/**
1220
 *  igb_sgmii_active_82575 - Return sgmii state
1221 1222 1223 1224 1225 1226 1227 1228
 *  @hw: pointer to the HW structure
 *
 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
 *  which can be enabled for use in the embedded applications.  Simply
 *  return the current state of the sgmii interface.
 **/
static bool igb_sgmii_active_82575(struct e1000_hw *hw)
{
1229 1230
	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
	return dev_spec->sgmii_active;
1231 1232 1233
}

/**
1234
 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1235 1236 1237 1238 1239 1240 1241 1242
 *  @hw: pointer to the HW structure
 *
 *  Inits recommended HW defaults after a reset when there is no EEPROM
 *  detected. This is only for the 82575.
 **/
static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
{
	if (hw->mac.type == e1000_82575) {
1243
		hw_dbg("Running reset init script for 82575\n");
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
		/* SerDes configuration via SERDESCTRL */
		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);

		/* CCM configuration via CCMCTL register */
		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);

		/* PCIe lanes configuration */
		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);

		/* PCIe PLL Configuration */
		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
	}

	return 0;
}

/**
1270
 *  igb_read_mac_addr_82575 - Read device MAC address
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
 *  @hw: pointer to the HW structure
 **/
static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
{
	s32 ret_val = 0;

	if (igb_check_alt_mac_addr(hw))
		ret_val = igb_read_mac_addr(hw);

	return ret_val;
}

/**
1284
 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
 *  @hw: pointer to the HW structure
 *
 *  Clears the hardware counters by reading the counter registers.
 **/
static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
{
	u32 temp;

	igb_clear_hw_cntrs_base(hw);

	temp = rd32(E1000_PRC64);
	temp = rd32(E1000_PRC127);
	temp = rd32(E1000_PRC255);
	temp = rd32(E1000_PRC511);
	temp = rd32(E1000_PRC1023);
	temp = rd32(E1000_PRC1522);
	temp = rd32(E1000_PTC64);
	temp = rd32(E1000_PTC127);
	temp = rd32(E1000_PTC255);
	temp = rd32(E1000_PTC511);
	temp = rd32(E1000_PTC1023);
	temp = rd32(E1000_PTC1522);

	temp = rd32(E1000_ALGNERRC);
	temp = rd32(E1000_RXERRC);
	temp = rd32(E1000_TNCRS);
	temp = rd32(E1000_CEXTERR);
	temp = rd32(E1000_TSCTC);
	temp = rd32(E1000_TSCTFC);

	temp = rd32(E1000_MGTPRC);
	temp = rd32(E1000_MGTPDC);
	temp = rd32(E1000_MGTPTC);

	temp = rd32(E1000_IAC);
	temp = rd32(E1000_ICRXOC);

	temp = rd32(E1000_ICRXPTC);
	temp = rd32(E1000_ICRXATC);
	temp = rd32(E1000_ICTXPTC);
	temp = rd32(E1000_ICTXATC);
	temp = rd32(E1000_ICTXQEC);
	temp = rd32(E1000_ICTXQMTC);
	temp = rd32(E1000_ICRXDMTC);

	temp = rd32(E1000_CBTMPC);
	temp = rd32(E1000_HTDPMC);
	temp = rd32(E1000_CBRMPC);
	temp = rd32(E1000_RPTHC);
	temp = rd32(E1000_HGPTC);
	temp = rd32(E1000_HTCBDPC);
	temp = rd32(E1000_HGORCL);
	temp = rd32(E1000_HGORCH);
	temp = rd32(E1000_HGOTCL);
	temp = rd32(E1000_HGOTCH);
	temp = rd32(E1000_LENERRS);

	/* This register should not be read in copper configurations */
	if (hw->phy.media_type == e1000_media_type_internal_serdes)
		temp = rd32(E1000_SCVPC);
}

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
/**
 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
 *  @hw: pointer to the HW structure
 *
 *  After rx enable if managability is enabled then there is likely some
 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
 *  function clears the fifos and flushes any packets that came in as rx was
 *  being enabled.
 **/
void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
{
	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
	int i, ms_wait;

	if (hw->mac.type != e1000_82575 ||
	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
		return;

	/* Disable all RX queues */
	for (i = 0; i < 4; i++) {
		rxdctl[i] = rd32(E1000_RXDCTL(i));
		wr32(E1000_RXDCTL(i),
		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
	}
	/* Poll all queues to verify they have shut down */
	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
		msleep(1);
		rx_enabled = 0;
		for (i = 0; i < 4; i++)
			rx_enabled |= rd32(E1000_RXDCTL(i));
		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
			break;
	}

	if (ms_wait == 10)
		hw_dbg("Queue disable timed out after 10ms\n");

	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
	 * incoming packets are rejected.  Set enable and wait 2ms so that
	 * any packet that was coming in as RCTL.EN was set is flushed
	 */
	rfctl = rd32(E1000_RFCTL);
	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);

	rlpml = rd32(E1000_RLPML);
	wr32(E1000_RLPML, 0);

	rctl = rd32(E1000_RCTL);
	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
	temp_rctl |= E1000_RCTL_LPE;

	wr32(E1000_RCTL, temp_rctl);
	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
	wrfl();
	msleep(2);

	/* Enable RX queues that were previously enabled and restore our
	 * previous state
	 */
	for (i = 0; i < 4; i++)
		wr32(E1000_RXDCTL(i), rxdctl[i]);
	wr32(E1000_RCTL, rctl);
	wrfl();

	wr32(E1000_RLPML, rlpml);
	wr32(E1000_RFCTL, rfctl);

	/* Flush receive errors generated by workaround */
	rd32(E1000_ROC);
	rd32(E1000_RNBC);
	rd32(E1000_MPC);
}

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
/**
 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
 *  @hw: pointer to the hardware struct
 *  @enable: state to enter, either enabled or disabled
 *
 *  enables/disables L2 switch loopback functionality.
 **/
void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
{
	u32 dtxswc = rd32(E1000_DTXSWC);

	if (enable)
		dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
	else
		dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;

	wr32(E1000_DTXSWC, dtxswc);
}

/**
 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
 *  @hw: pointer to the hardware struct
 *  @enable: state to enter, either enabled or disabled
 *
 *  enables/disables replication of packets across multiple pools.
 **/
void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
{
	u32 vt_ctl = rd32(E1000_VT_CTL);

	if (enable)
		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
	else
		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;

	wr32(E1000_VT_CTL, vt_ctl);
}

1458 1459 1460 1461
static struct e1000_mac_operations e1000_mac_ops_82575 = {
	.reset_hw             = igb_reset_hw_82575,
	.init_hw              = igb_init_hw_82575,
	.check_for_link       = igb_check_for_link_82575,
A
Alexander Duyck 已提交
1462
	.rar_set              = igb_rar_set,
1463 1464 1465 1466 1467
	.read_mac_addr        = igb_read_mac_addr_82575,
	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
};

static struct e1000_phy_operations e1000_phy_ops_82575 = {
A
Alexander Duyck 已提交
1468
	.acquire              = igb_acquire_phy_82575,
1469
	.get_cfg_done         = igb_get_cfg_done_82575,
A
Alexander Duyck 已提交
1470
	.release              = igb_release_phy_82575,
1471 1472 1473
};

static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
A
Alexander Duyck 已提交
1474 1475 1476 1477
	.acquire              = igb_acquire_nvm_82575,
	.read                 = igb_read_nvm_eerd,
	.release              = igb_release_nvm_82575,
	.write                = igb_write_nvm_spi,
1478 1479 1480 1481 1482 1483 1484 1485 1486
};

const struct e1000_info e1000_82575_info = {
	.get_invariants = igb_get_invariants_82575,
	.mac_ops = &e1000_mac_ops_82575,
	.phy_ops = &e1000_phy_ops_82575,
	.nvm_ops = &e1000_nvm_ops_82575,
};