quirks.c 13.4 KB
Newer Older
1 2
#define pr_fmt(fmt) "efi: " fmt

3 4 5 6 7 8 9 10 11
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/types.h>
#include <linux/efi.h>
#include <linux/slab.h>
#include <linux/memblock.h>
#include <linux/bootmem.h>
12
#include <linux/acpi.h>
13
#include <linux/dmi.h>
14 15

#include <asm/e820/api.h>
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#include <asm/efi.h>
#include <asm/uv/uv.h>

#define EFI_MIN_RESERVE 5120

#define EFI_DUMMY_GUID \
	EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)

static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };

static bool efi_no_storage_paranoia;

/*
 * Some firmware implementations refuse to boot if there's insufficient
 * space in the variable store. The implementation of garbage collection
 * in some FW versions causes stale (deleted) variables to take up space
 * longer than intended and space is only freed once the store becomes
 * almost completely full.
 *
 * Enabling this option disables the space checks in
 * efi_query_variable_store() and forces garbage collection.
 *
 * Only enable this option if deleting EFI variables does not free up
 * space in your variable store, e.g. if despite deleting variables
 * you're unable to create new ones.
 */
static int __init setup_storage_paranoia(char *arg)
{
	efi_no_storage_paranoia = true;
	return 0;
}
early_param("efi_no_storage_paranoia", setup_storage_paranoia);

/*
 * Deleting the dummy variable which kicks off garbage collection
*/
void efi_delete_dummy_variable(void)
{
	efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
			 EFI_VARIABLE_NON_VOLATILE |
			 EFI_VARIABLE_BOOTSERVICE_ACCESS |
			 EFI_VARIABLE_RUNTIME_ACCESS,
			 0, NULL);
}

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/*
 * In the nonblocking case we do not attempt to perform garbage
 * collection if we do not have enough free space. Rather, we do the
 * bare minimum check and give up immediately if the available space
 * is below EFI_MIN_RESERVE.
 *
 * This function is intended to be small and simple because it is
 * invoked from crash handler paths.
 */
static efi_status_t
query_variable_store_nonblocking(u32 attributes, unsigned long size)
{
	efi_status_t status;
	u64 storage_size, remaining_size, max_size;

	status = efi.query_variable_info_nonblocking(attributes, &storage_size,
						     &remaining_size,
						     &max_size);
	if (status != EFI_SUCCESS)
		return status;

	if (remaining_size - size < EFI_MIN_RESERVE)
		return EFI_OUT_OF_RESOURCES;

	return EFI_SUCCESS;
}

88 89 90 91 92 93 94
/*
 * Some firmware implementations refuse to boot if there's insufficient space
 * in the variable store. Ensure that we never use more than a safe limit.
 *
 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
 * store.
 */
95 96
efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
				      bool nonblocking)
97 98 99 100 101 102 103
{
	efi_status_t status;
	u64 storage_size, remaining_size, max_size;

	if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
		return 0;

104 105 106
	if (nonblocking)
		return query_variable_store_nonblocking(attributes, size);

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
	status = efi.query_variable_info(attributes, &storage_size,
					 &remaining_size, &max_size);
	if (status != EFI_SUCCESS)
		return status;

	/*
	 * We account for that by refusing the write if permitting it would
	 * reduce the available space to under 5KB. This figure was provided by
	 * Samsung, so should be safe.
	 */
	if ((remaining_size - size < EFI_MIN_RESERVE) &&
		!efi_no_storage_paranoia) {

		/*
		 * Triggering garbage collection may require that the firmware
		 * generate a real EFI_OUT_OF_RESOURCES error. We can force
		 * that by attempting to use more space than is available.
		 */
		unsigned long dummy_size = remaining_size + 1024;
		void *dummy = kzalloc(dummy_size, GFP_ATOMIC);

		if (!dummy)
			return EFI_OUT_OF_RESOURCES;

		status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
					  EFI_VARIABLE_NON_VOLATILE |
					  EFI_VARIABLE_BOOTSERVICE_ACCESS |
					  EFI_VARIABLE_RUNTIME_ACCESS,
					  dummy_size, dummy);

		if (status == EFI_SUCCESS) {
			/*
			 * This should have failed, so if it didn't make sure
			 * that we delete it...
			 */
			efi_delete_dummy_variable();
		}

		kfree(dummy);

		/*
		 * The runtime code may now have triggered a garbage collection
		 * run, so check the variable info again
		 */
		status = efi.query_variable_info(attributes, &storage_size,
						 &remaining_size, &max_size);

		if (status != EFI_SUCCESS)
			return status;

		/*
		 * There still isn't enough room, so return an error
		 */
		if (remaining_size - size < EFI_MIN_RESERVE)
			return EFI_OUT_OF_RESOURCES;
	}

	return EFI_SUCCESS;
}
EXPORT_SYMBOL_GPL(efi_query_variable_store);

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * The UEFI specification makes it clear that the operating system is
 * free to do whatever it wants with boot services code after
 * ExitBootServices() has been called. Ignoring this recommendation a
 * significant bunch of EFI implementations continue calling into boot
 * services code (SetVirtualAddressMap). In order to work around such
 * buggy implementations we reserve boot services region during EFI
 * init and make sure it stays executable. Then, after
 * SetVirtualAddressMap(), it is discarded.
 *
 * However, some boot services regions contain data that is required
 * by drivers, so we need to track which memory ranges can never be
 * freed. This is done by tagging those regions with the
 * EFI_MEMORY_RUNTIME attribute.
 *
 * Any driver that wants to mark a region as reserved must use
 * efi_mem_reserve() which will insert a new EFI memory descriptor
 * into efi.memmap (splitting existing regions if necessary) and tag
 * it with EFI_MEMORY_RUNTIME.
 */
void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
{
	phys_addr_t new_phys, new_size;
	struct efi_mem_range mr;
	efi_memory_desc_t md;
	int num_entries;
	void *new;

	if (efi_mem_desc_lookup(addr, &md)) {
		pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
		return;
	}

	if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
		pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
		return;
	}

206 207 208 209
	size += addr % EFI_PAGE_SIZE;
	size = round_up(size, EFI_PAGE_SIZE);
	addr = round_down(addr, EFI_PAGE_SIZE);

210
	mr.range.start = addr;
211
	mr.range.end = addr + size - 1;
212 213 214 215 216 217 218
	mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;

	num_entries = efi_memmap_split_count(&md, &mr.range);
	num_entries += efi.memmap.nr_map;

	new_size = efi.memmap.desc_size * num_entries;

219
	new_phys = efi_memmap_alloc(num_entries);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	if (!new_phys) {
		pr_err("Could not allocate boot services memmap\n");
		return;
	}

	new = early_memremap(new_phys, new_size);
	if (!new) {
		pr_err("Failed to map new boot services memmap\n");
		return;
	}

	efi_memmap_insert(&efi.memmap, new, &mr);
	early_memunmap(new, new_size);

	efi_memmap_install(new_phys, num_entries);
}

237 238 239 240 241 242 243 244
/*
 * Helper function for efi_reserve_boot_services() to figure out if we
 * can free regions in efi_free_boot_services().
 *
 * Use this function to ensure we do not free regions owned by somebody
 * else. We must only reserve (and then free) regions:
 *
 * - Not within any part of the kernel
245
 * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc)
246 247 248 249 250 251
 */
static bool can_free_region(u64 start, u64 size)
{
	if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
		return false;

252
	if (!e820__mapped_all(start, start+size, E820_TYPE_RAM))
253 254 255 256 257
		return false;

	return true;
}

258 259
void __init efi_reserve_boot_services(void)
{
260
	efi_memory_desc_t *md;
261

262
	for_each_efi_memory_desc(md) {
263 264
		u64 start = md->phys_addr;
		u64 size = md->num_pages << EFI_PAGE_SHIFT;
265
		bool already_reserved;
266 267 268 269

		if (md->type != EFI_BOOT_SERVICES_CODE &&
		    md->type != EFI_BOOT_SERVICES_DATA)
			continue;
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

		already_reserved = memblock_is_region_reserved(start, size);

		/*
		 * Because the following memblock_reserve() is paired
		 * with free_bootmem_late() for this region in
		 * efi_free_boot_services(), we must be extremely
		 * careful not to reserve, and subsequently free,
		 * critical regions of memory (like the kernel image) or
		 * those regions that somebody else has already
		 * reserved.
		 *
		 * A good example of a critical region that must not be
		 * freed is page zero (first 4Kb of memory), which may
		 * contain boot services code/data but is marked
285
		 * E820_TYPE_RESERVED by trim_bios_range().
286 287
		 */
		if (!already_reserved) {
288
			memblock_reserve(start, size);
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

			/*
			 * If we are the first to reserve the region, no
			 * one else cares about it. We own it and can
			 * free it later.
			 */
			if (can_free_region(start, size))
				continue;
		}

		/*
		 * We don't own the region. We must not free it.
		 *
		 * Setting this bit for a boot services region really
		 * doesn't make sense as far as the firmware is
		 * concerned, but it does provide us with a way to tag
		 * those regions that must not be paired with
		 * free_bootmem_late().
		 */
		md->attribute |= EFI_MEMORY_RUNTIME;
309 310 311 312 313
	}
}

void __init efi_free_boot_services(void)
{
314
	phys_addr_t new_phys, new_size;
315
	efi_memory_desc_t *md;
316 317
	int num_entries = 0;
	void *new, *new_md;
318

319
	for_each_efi_memory_desc(md) {
320 321
		unsigned long long start = md->phys_addr;
		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
322
		size_t rm_size;
323 324

		if (md->type != EFI_BOOT_SERVICES_CODE &&
325 326
		    md->type != EFI_BOOT_SERVICES_DATA) {
			num_entries++;
327
			continue;
328
		}
329

330
		/* Do not free, someone else owns it: */
331 332
		if (md->attribute & EFI_MEMORY_RUNTIME) {
			num_entries++;
333
			continue;
334
		}
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
		/*
		 * Nasty quirk: if all sub-1MB memory is used for boot
		 * services, we can get here without having allocated the
		 * real mode trampoline.  It's too late to hand boot services
		 * memory back to the memblock allocator, so instead
		 * try to manually allocate the trampoline if needed.
		 *
		 * I've seen this on a Dell XPS 13 9350 with firmware
		 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
		 * grub2-efi on a hard disk.  (And no, I don't know why
		 * this happened, but Linux should still try to boot rather
		 * panicing early.)
		 */
		rm_size = real_mode_size_needed();
		if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
			set_real_mode_mem(start, rm_size);
			start += rm_size;
			size -= rm_size;
		}

356 357
		free_bootmem_late(start, size);
	}
358 359

	new_size = efi.memmap.desc_size * num_entries;
360
	new_phys = efi_memmap_alloc(num_entries);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	if (!new_phys) {
		pr_err("Failed to allocate new EFI memmap\n");
		return;
	}

	new = memremap(new_phys, new_size, MEMREMAP_WB);
	if (!new) {
		pr_err("Failed to map new EFI memmap\n");
		return;
	}

	/*
	 * Build a new EFI memmap that excludes any boot services
	 * regions that are not tagged EFI_MEMORY_RUNTIME, since those
	 * regions have now been freed.
	 */
	new_md = new;
	for_each_efi_memory_desc(md) {
		if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
		    (md->type == EFI_BOOT_SERVICES_CODE ||
		     md->type == EFI_BOOT_SERVICES_DATA))
			continue;

		memcpy(new_md, md, efi.memmap.desc_size);
		new_md += efi.memmap.desc_size;
	}

	memunmap(new);

	if (efi_memmap_install(new_phys, num_entries)) {
		pr_err("Could not install new EFI memmap\n");
		return;
	}
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
}

/*
 * A number of config table entries get remapped to virtual addresses
 * after entering EFI virtual mode. However, the kexec kernel requires
 * their physical addresses therefore we pass them via setup_data and
 * correct those entries to their respective physical addresses here.
 *
 * Currently only handles smbios which is necessary for some firmware
 * implementation.
 */
int __init efi_reuse_config(u64 tables, int nr_tables)
{
	int i, sz, ret = 0;
	void *p, *tablep;
	struct efi_setup_data *data;

	if (!efi_setup)
		return 0;

	if (!efi_enabled(EFI_64BIT))
		return 0;

	data = early_memremap(efi_setup, sizeof(*data));
	if (!data) {
		ret = -ENOMEM;
		goto out;
	}

	if (!data->smbios)
		goto out_memremap;

	sz = sizeof(efi_config_table_64_t);

	p = tablep = early_memremap(tables, nr_tables * sz);
	if (!p) {
		pr_err("Could not map Configuration table!\n");
		ret = -ENOMEM;
		goto out_memremap;
	}

	for (i = 0; i < efi.systab->nr_tables; i++) {
		efi_guid_t guid;

		guid = ((efi_config_table_64_t *)p)->guid;

		if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
			((efi_config_table_64_t *)p)->table = data->smbios;
		p += sz;
	}
444
	early_memunmap(tablep, nr_tables * sz);
445 446

out_memremap:
447
	early_memunmap(data, sizeof(*data));
448 449 450 451
out:
	return ret;
}

452 453 454 455 456 457 458 459 460 461
static const struct dmi_system_id sgi_uv1_dmi[] = {
	{ NULL, "SGI UV1",
		{	DMI_MATCH(DMI_PRODUCT_NAME,	"Stoutland Platform"),
			DMI_MATCH(DMI_PRODUCT_VERSION,	"1.0"),
			DMI_MATCH(DMI_BIOS_VENDOR,	"SGI.COM"),
		}
	},
	{ } /* NULL entry stops DMI scanning */
};

462 463 464 465 466 467 468 469
void __init efi_apply_memmap_quirks(void)
{
	/*
	 * Once setup is done earlier, unmap the EFI memory map on mismatched
	 * firmware/kernel architectures since there is no support for runtime
	 * services.
	 */
	if (!efi_runtime_supported()) {
470
		pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
471
		efi_memmap_unmap();
472 473
	}

474 475
	/* UV2+ BIOS has a fix for this issue.  UV1 still needs the quirk. */
	if (dmi_check_system(sgi_uv1_dmi))
476 477
		set_bit(EFI_OLD_MEMMAP, &efi.flags);
}
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

/*
 * For most modern platforms the preferred method of powering off is via
 * ACPI. However, there are some that are known to require the use of
 * EFI runtime services and for which ACPI does not work at all.
 *
 * Using EFI is a last resort, to be used only if no other option
 * exists.
 */
bool efi_reboot_required(void)
{
	if (!acpi_gbl_reduced_hardware)
		return false;

	efi_reboot_quirk_mode = EFI_RESET_WARM;
	return true;
}

bool efi_poweroff_required(void)
{
498
	return acpi_gbl_reduced_hardware || acpi_no_s5;
499
}