bpf_jit_comp.c 20.7 KB
Newer Older
1 2 3 4 5
#include <linux/moduleloader.h>
#include <linux/workqueue.h>
#include <linux/netdevice.h>
#include <linux/filter.h>
#include <linux/cache.h>
6
#include <linux/if_vlan.h>
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

#include <asm/cacheflush.h>
#include <asm/ptrace.h>

#include "bpf_jit.h"

int bpf_jit_enable __read_mostly;

static inline bool is_simm13(unsigned int value)
{
	return value + 0x1000 < 0x2000;
}

static void bpf_flush_icache(void *start_, void *end_)
{
#ifdef CONFIG_SPARC64
	/* Cheetah's I-cache is fully coherent.  */
	if (tlb_type == spitfire) {
		unsigned long start = (unsigned long) start_;
		unsigned long end = (unsigned long) end_;

		start &= ~7UL;
		end = (end + 7UL) & ~7UL;
		while (start < end) {
			flushi(start);
			start += 32;
		}
	}
#endif
}

#define SEEN_DATAREF 1 /* might call external helpers */
#define SEEN_XREG    2 /* ebx is used */
#define SEEN_MEM     4 /* use mem[] for temporary storage */

#define S13(X)		((X) & 0x1fff)
#define IMMED		0x00002000
#define RD(X)		((X) << 25)
#define RS1(X)		((X) << 14)
#define RS2(X)		((X))
#define OP(X)		((X) << 30)
#define OP2(X)		((X) << 22)
#define OP3(X)		((X) << 19)
#define COND(X)		((X) << 25)
#define F1(X)		OP(X)
#define F2(X, Y)	(OP(X) | OP2(Y))
#define F3(X, Y)	(OP(X) | OP3(Y))

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#define CONDN		COND(0x0)
#define CONDE		COND(0x1)
#define CONDLE		COND(0x2)
#define CONDL		COND(0x3)
#define CONDLEU		COND(0x4)
#define CONDCS		COND(0x5)
#define CONDNEG		COND(0x6)
#define CONDVC		COND(0x7)
#define CONDA		COND(0x8)
#define CONDNE		COND(0x9)
#define CONDG		COND(0xa)
#define CONDGE		COND(0xb)
#define CONDGU		COND(0xc)
#define CONDCC		COND(0xd)
#define CONDPOS		COND(0xe)
#define CONDVS		COND(0xf)
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

#define CONDGEU		CONDCC
#define CONDLU		CONDCS

#define WDISP22(X)	(((X) >> 2) & 0x3fffff)

#define BA		(F2(0, 2) | CONDA)
#define BGU		(F2(0, 2) | CONDGU)
#define BLEU		(F2(0, 2) | CONDLEU)
#define BGEU		(F2(0, 2) | CONDGEU)
#define BLU		(F2(0, 2) | CONDLU)
#define BE		(F2(0, 2) | CONDE)
#define BNE		(F2(0, 2) | CONDNE)

#ifdef CONFIG_SPARC64
86
#define BE_PTR		(F2(0, 1) | CONDE | (2 << 20))
87
#else
88
#define BE_PTR		BE
89 90 91 92 93 94 95 96 97 98 99
#endif

#define SETHI(K, REG)	\
	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
#define OR_LO(K, REG)	\
	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))

#define ADD		F3(2, 0x00)
#define AND		F3(2, 0x01)
#define ANDCC		F3(2, 0x11)
#define OR		F3(2, 0x02)
100
#define XOR		F3(2, 0x03)
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
#define SUB		F3(2, 0x04)
#define SUBCC		F3(2, 0x14)
#define MUL		F3(2, 0x0a)	/* umul */
#define DIV		F3(2, 0x0e)	/* udiv */
#define SLL		F3(2, 0x25)
#define SRL		F3(2, 0x26)
#define JMPL		F3(2, 0x38)
#define CALL		F1(1)
#define BR		F2(0, 0x01)
#define RD_Y		F3(2, 0x28)
#define WR_Y		F3(2, 0x30)

#define LD32		F3(3, 0x00)
#define LD8		F3(3, 0x01)
#define LD16		F3(3, 0x02)
#define LD64		F3(3, 0x0b)
#define ST32		F3(3, 0x04)

#ifdef CONFIG_SPARC64
#define LDPTR		LD64
#define BASE_STACKFRAME	176
#else
#define LDPTR		LD32
#define BASE_STACKFRAME	96
#endif

#define LD32I		(LD32 | IMMED)
#define LD8I		(LD8 | IMMED)
#define LD16I		(LD16 | IMMED)
#define LD64I		(LD64 | IMMED)
#define LDPTRI		(LDPTR | IMMED)
#define ST32I		(ST32 | IMMED)

#define emit_nop()		\
do {				\
	*prog++ = SETHI(0, G0);	\
} while (0)

#define emit_neg()					\
do {	/* sub %g0, r_A, r_A */				\
	*prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);	\
} while (0)

#define emit_reg_move(FROM, TO)				\
do {	/* or %g0, FROM, TO */				\
	*prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);	\
} while (0)

#define emit_clear(REG)					\
do {	/* or %g0, %g0, REG */				\
	*prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);	\
} while (0)

#define emit_set_const(K, REG)					\
do {	/* sethi %hi(K), REG */					\
	*prog++ = SETHI(K, REG);				\
	/* or REG, %lo(K), REG */				\
	*prog++ = OR_LO(K, REG);				\
} while (0)

	/* Emit
	 *
163
	 *	OP	r_A, r_X, r_A
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	 */
#define emit_alu_X(OPCODE)					\
do {								\
	seen |= SEEN_XREG;					\
	*prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);	\
} while (0)

	/* Emit either:
	 *
	 *	OP	r_A, K, r_A
	 *
	 * or
	 *
	 *	sethi	%hi(K), r_TMP
	 *	or	r_TMP, %lo(K), r_TMP
	 *	OP	r_A, r_TMP, r_A
	 *
	 * depending upon whether K fits in a signed 13-bit
	 * immediate instruction field.  Emit nothing if K
	 * is zero.
	 */
#define emit_alu_K(OPCODE, K)					\
186
do {								\
187
	if (K || OPCODE == AND || OPCODE == MUL) {		\
188 189 190 191 192 193 194
		unsigned int _insn = OPCODE;			\
		_insn |= RS1(r_A) | RD(r_A);			\
		if (is_simm13(K)) {				\
			*prog++ = _insn | IMMED | S13(K);	\
		} else {					\
			emit_set_const(K, r_TMP);		\
			*prog++ = _insn | RS2(r_TMP);		\
195
		}						\
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
	}							\
} while (0)

#define emit_loadimm(K, DEST)						\
do {									\
	if (is_simm13(K)) {						\
		/* or %g0, K, DEST */					\
		*prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);	\
	} else {							\
		emit_set_const(K, DEST);				\
	}								\
} while (0)

#define emit_loadptr(BASE, STRUCT, FIELD, DEST)				\
do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *));	\
	*prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);		\
213
} while (0)
214 215 216 217 218

#define emit_load32(BASE, STRUCT, FIELD, DEST)				\
do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32));	\
	*prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);		\
219
} while (0)
220 221 222 223 224

#define emit_load16(BASE, STRUCT, FIELD, DEST)				\
do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16));	\
	*prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);		\
225
} while (0)
226 227 228 229

#define __emit_load8(BASE, STRUCT, FIELD, DEST)				\
do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
	*prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);		\
230
} while (0)
231 232 233 234

#define emit_load8(BASE, STRUCT, FIELD, DEST)				\
do {	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8));	\
	__emit_load8(BASE, STRUCT, FIELD, DEST);			\
235
} while (0)
236

237 238 239 240 241 242 243 244
#ifdef CONFIG_SPARC64
#define BIAS (STACK_BIAS - 4)
#else
#define BIAS (-4)
#endif

#define emit_ldmem(OFF, DEST)						\
do {	*prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST);	\
245
} while (0)
246

247 248
#define emit_stmem(OFF, SRC)						\
do {	*prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC);	\
249
} while (0)
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

#ifdef CONFIG_SMP
#ifdef CONFIG_SPARC64
#define emit_load_cpu(REG)						\
	emit_load16(G6, struct thread_info, cpu, REG)
#else
#define emit_load_cpu(REG)						\
	emit_load32(G6, struct thread_info, cpu, REG)
#endif
#else
#define emit_load_cpu(REG)	emit_clear(REG)
#endif

#define emit_skb_loadptr(FIELD, DEST) \
	emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
#define emit_skb_load32(FIELD, DEST) \
	emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
#define emit_skb_load16(FIELD, DEST) \
	emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
#define __emit_skb_load8(FIELD, DEST) \
	__emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
#define emit_skb_load8(FIELD, DEST) \
	emit_load8(r_SKB, struct sk_buff, FIELD, DEST)

#define emit_jmpl(BASE, IMM_OFF, LREG) \
	*prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))

#define emit_call(FUNC)					\
do {	void *_here = image + addrs[i] - 8;		\
	unsigned int _off = (void *)(FUNC) - _here;	\
	*prog++ = CALL | (((_off) >> 2) & 0x3fffffff);	\
	emit_nop();					\
} while (0)

#define emit_branch(BR_OPC, DEST)			\
do {	unsigned int _here = addrs[i] - 8;		\
	*prog++ = BR_OPC | WDISP22((DEST) - _here);	\
287
} while (0)
288 289 290

#define emit_branch_off(BR_OPC, OFF)			\
do {	*prog++ = BR_OPC | WDISP22(OFF);		\
291
} while (0)
292 293 294

#define emit_jump(DEST)		emit_branch(BA, DEST)

295 296
#define emit_read_y(REG)	*prog++ = RD_Y | RD(REG)
#define emit_write_y(REG)	*prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

#define emit_cmp(R1, R2) \
	*prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))

#define emit_cmpi(R1, IMM) \
	*prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));

#define emit_btst(R1, R2) \
	*prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))

#define emit_btsti(R1, IMM) \
	*prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));

#define emit_sub(R1, R2, R3) \
	*prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))

#define emit_subi(R1, IMM, R3) \
	*prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))

#define emit_add(R1, R2, R3) \
	*prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))

#define emit_addi(R1, IMM, R3) \
	*prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))

322 323 324 325 326 327
#define emit_and(R1, R2, R3) \
	*prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))

#define emit_andi(R1, IMM, R3) \
	*prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))

328 329 330 331 332 333
#define emit_alloc_stack(SZ) \
	*prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))

#define emit_release_stack(SZ) \
	*prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/* A note about branch offset calculations.  The addrs[] array,
 * indexed by BPF instruction, records the address after all the
 * sparc instructions emitted for that BPF instruction.
 *
 * The most common case is to emit a branch at the end of such
 * a code sequence.  So this would be two instructions, the
 * branch and it's delay slot.
 *
 * Therefore by default the branch emitters calculate the branch
 * offset field as:
 *
 *	destination - (addrs[i] - 8)
 *
 * This "addrs[i] - 8" is the address of the branch itself or
 * what "." would be in assembler notation.  The "8" part is
 * how we take into consideration the branch and it's delay
 * slot mentioned above.
 *
 * Sometimes we need to emit a branch earlier in the code
 * sequence.  And in these situations we adjust "destination"
354
 * to accommodate this difference.  For example, if we needed
355 356 357 358 359 360 361 362
 * to emit a branch (and it's delay slot) right before the
 * final instruction emitted for a BPF opcode, we'd use
 * "destination + 4" instead of just plain "destination" above.
 *
 * This is why you see all of these funny emit_branch() and
 * emit_jump() calls with adjusted offsets.
 */

363
void bpf_jit_compile(struct bpf_prog *fp)
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
{
	unsigned int cleanup_addr, proglen, oldproglen = 0;
	u32 temp[8], *prog, *func, seen = 0, pass;
	const struct sock_filter *filter = fp->insns;
	int i, flen = fp->len, pc_ret0 = -1;
	unsigned int *addrs;
	void *image;

	if (!bpf_jit_enable)
		return;

	addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
	if (addrs == NULL)
		return;

	/* Before first pass, make a rough estimation of addrs[]
	 * each bpf instruction is translated to less than 64 bytes
	 */
	for (proglen = 0, i = 0; i < flen; i++) {
		proglen += 64;
		addrs[i] = proglen;
	}
	cleanup_addr = proglen; /* epilogue address */
	image = NULL;
	for (pass = 0; pass < 10; pass++) {
		u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;

		/* no prologue/epilogue for trivial filters (RET something) */
		proglen = 0;
		prog = temp;

		/* Prologue */
		if (seen_or_pass0) {
			if (seen_or_pass0 & SEEN_MEM) {
				unsigned int sz = BASE_STACKFRAME;
				sz += BPF_MEMWORDS * sizeof(u32);
				emit_alloc_stack(sz);
			}

			/* Make sure we dont leek kernel memory. */
			if (seen_or_pass0 & SEEN_XREG)
				emit_clear(r_X);

			/* If this filter needs to access skb data,
408
			 * load %o4 and %o5 with:
409 410 411 412 413 414 415 416 417 418 419 420 421 422
			 *  %o4 = skb->len - skb->data_len
			 *  %o5 = skb->data
			 * And also back up %o7 into r_saved_O7 so we can
			 * invoke the stubs using 'call'.
			 */
			if (seen_or_pass0 & SEEN_DATAREF) {
				emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
				emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
				emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
				emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
			}
		}
		emit_reg_move(O7, r_saved_O7);

423 424
		/* Make sure we dont leak kernel information to the user. */
		if (bpf_needs_clear_a(&filter[0]))
425 426 427 428 429 430 431
			emit_clear(r_A); /* A = 0 */

		for (i = 0; i < flen; i++) {
			unsigned int K = filter[i].k;
			unsigned int t_offset;
			unsigned int f_offset;
			u32 t_op, f_op;
432
			u16 code = bpf_anc_helper(&filter[i]);
433 434
			int ilen;

435 436
			switch (code) {
			case BPF_ALU | BPF_ADD | BPF_X:	/* A += X; */
437 438
				emit_alu_X(ADD);
				break;
439
			case BPF_ALU | BPF_ADD | BPF_K:	/* A += K; */
440 441
				emit_alu_K(ADD, K);
				break;
442
			case BPF_ALU | BPF_SUB | BPF_X:	/* A -= X; */
443 444
				emit_alu_X(SUB);
				break;
445
			case BPF_ALU | BPF_SUB | BPF_K:	/* A -= K */
446 447
				emit_alu_K(SUB, K);
				break;
448
			case BPF_ALU | BPF_AND | BPF_X:	/* A &= X */
449 450
				emit_alu_X(AND);
				break;
451
			case BPF_ALU | BPF_AND | BPF_K:	/* A &= K */
452 453
				emit_alu_K(AND, K);
				break;
454
			case BPF_ALU | BPF_OR | BPF_X:	/* A |= X */
455 456
				emit_alu_X(OR);
				break;
457
			case BPF_ALU | BPF_OR | BPF_K:	/* A |= K */
458 459
				emit_alu_K(OR, K);
				break;
460 461
			case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
			case BPF_ALU | BPF_XOR | BPF_X:
462 463
				emit_alu_X(XOR);
				break;
464
			case BPF_ALU | BPF_XOR | BPF_K:	/* A ^= K */
465 466
				emit_alu_K(XOR, K);
				break;
467
			case BPF_ALU | BPF_LSH | BPF_X:	/* A <<= X */
468 469
				emit_alu_X(SLL);
				break;
470
			case BPF_ALU | BPF_LSH | BPF_K:	/* A <<= K */
471 472
				emit_alu_K(SLL, K);
				break;
473
			case BPF_ALU | BPF_RSH | BPF_X:	/* A >>= X */
474 475
				emit_alu_X(SRL);
				break;
476
			case BPF_ALU | BPF_RSH | BPF_K:	/* A >>= K */
477 478
				emit_alu_K(SRL, K);
				break;
479
			case BPF_ALU | BPF_MUL | BPF_X:	/* A *= X; */
480 481
				emit_alu_X(MUL);
				break;
482
			case BPF_ALU | BPF_MUL | BPF_K:	/* A *= K */
483 484
				emit_alu_K(MUL, K);
				break;
485
			case BPF_ALU | BPF_DIV | BPF_K:	/* A /= K with K != 0*/
E
Eric Dumazet 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498
				if (K == 1)
					break;
				emit_write_y(G0);
#ifdef CONFIG_SPARC32
				/* The Sparc v8 architecture requires
				 * three instructions between a %y
				 * register write and the first use.
				 */
				emit_nop();
				emit_nop();
				emit_nop();
#endif
				emit_alu_K(DIV, K);
499
				break;
500
			case BPF_ALU | BPF_DIV | BPF_X:	/* A /= X; */
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
				emit_cmpi(r_X, 0);
				if (pc_ret0 > 0) {
					t_offset = addrs[pc_ret0 - 1];
#ifdef CONFIG_SPARC32
					emit_branch(BE, t_offset + 20);
#else
					emit_branch(BE, t_offset + 8);
#endif
					emit_nop(); /* delay slot */
				} else {
					emit_branch_off(BNE, 16);
					emit_nop();
#ifdef CONFIG_SPARC32
					emit_jump(cleanup_addr + 20);
#else
					emit_jump(cleanup_addr + 8);
#endif
					emit_clear(r_A);
				}
				emit_write_y(G0);
#ifdef CONFIG_SPARC32
522 523 524 525
				/* The Sparc v8 architecture requires
				 * three instructions between a %y
				 * register write and the first use.
				 */
526 527 528 529 530 531
				emit_nop();
				emit_nop();
				emit_nop();
#endif
				emit_alu_X(DIV);
				break;
532
			case BPF_ALU | BPF_NEG:
533 534
				emit_neg();
				break;
535
			case BPF_RET | BPF_K:
536 537 538 539 540 541 542 543
				if (!K) {
					if (pc_ret0 == -1)
						pc_ret0 = i;
					emit_clear(r_A);
				} else {
					emit_loadimm(K, r_A);
				}
				/* Fallthrough */
544
			case BPF_RET | BPF_A:
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
				if (seen_or_pass0) {
					if (i != flen - 1) {
						emit_jump(cleanup_addr);
						emit_nop();
						break;
					}
					if (seen_or_pass0 & SEEN_MEM) {
						unsigned int sz = BASE_STACKFRAME;
						sz += BPF_MEMWORDS * sizeof(u32);
						emit_release_stack(sz);
					}
				}
				/* jmpl %r_saved_O7 + 8, %g0 */
				emit_jmpl(r_saved_O7, 8, G0);
				emit_reg_move(r_A, O0); /* delay slot */
				break;
561
			case BPF_MISC | BPF_TAX:
562 563 564
				seen |= SEEN_XREG;
				emit_reg_move(r_A, r_X);
				break;
565
			case BPF_MISC | BPF_TXA:
566 567 568
				seen |= SEEN_XREG;
				emit_reg_move(r_X, r_A);
				break;
569
			case BPF_ANC | SKF_AD_CPU:
570 571
				emit_load_cpu(r_A);
				break;
572
			case BPF_ANC | SKF_AD_PROTOCOL:
573 574
				emit_skb_load16(protocol, r_A);
				break;
575
			case BPF_ANC | SKF_AD_PKTTYPE:
576 577
				__emit_skb_load8(__pkt_type_offset, r_A);
				emit_andi(r_A, PKT_TYPE_MAX, r_A);
578 579
				emit_alu_K(SRL, 5);
				break;
580
			case BPF_ANC | SKF_AD_IFINDEX:
581 582
				emit_skb_loadptr(dev, r_A);
				emit_cmpi(r_A, 0);
583
				emit_branch(BE_PTR, cleanup_addr + 4);
584 585 586
				emit_nop();
				emit_load32(r_A, struct net_device, ifindex, r_A);
				break;
587
			case BPF_ANC | SKF_AD_MARK:
588 589
				emit_skb_load32(mark, r_A);
				break;
590
			case BPF_ANC | SKF_AD_QUEUE:
591 592
				emit_skb_load16(queue_mapping, r_A);
				break;
593
			case BPF_ANC | SKF_AD_HATYPE:
594 595
				emit_skb_loadptr(dev, r_A);
				emit_cmpi(r_A, 0);
596
				emit_branch(BE_PTR, cleanup_addr + 4);
597 598 599
				emit_nop();
				emit_load16(r_A, struct net_device, type, r_A);
				break;
600
			case BPF_ANC | SKF_AD_RXHASH:
601
				emit_skb_load32(hash, r_A);
602
				break;
603 604
			case BPF_ANC | SKF_AD_VLAN_TAG:
			case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
605
				emit_skb_load16(vlan_tci, r_A);
606 607 608
				if (code != (BPF_ANC | SKF_AD_VLAN_TAG)) {
					emit_alu_K(SRL, 12);
					emit_andi(r_A, 1, r_A);
609
				} else {
610
					emit_loadimm(~VLAN_TAG_PRESENT, r_TMP);
611 612 613
					emit_and(r_A, r_TMP, r_A);
				}
				break;
614 615 616 617 618 619
			case BPF_LD | BPF_W | BPF_LEN:
				emit_skb_load32(len, r_A);
				break;
			case BPF_LDX | BPF_W | BPF_LEN:
				emit_skb_load32(len, r_X);
				break;
620
			case BPF_LD | BPF_IMM:
621 622
				emit_loadimm(K, r_A);
				break;
623
			case BPF_LDX | BPF_IMM:
624 625
				emit_loadimm(K, r_X);
				break;
626
			case BPF_LD | BPF_MEM:
627
				seen |= SEEN_MEM;
628 629
				emit_ldmem(K * 4, r_A);
				break;
630
			case BPF_LDX | BPF_MEM:
631
				seen |= SEEN_MEM | SEEN_XREG;
632 633
				emit_ldmem(K * 4, r_X);
				break;
634
			case BPF_ST:
635
				seen |= SEEN_MEM;
636 637
				emit_stmem(K * 4, r_A);
				break;
638
			case BPF_STX:
639
				seen |= SEEN_MEM | SEEN_XREG;
640 641 642 643 644 645
				emit_stmem(K * 4, r_X);
				break;

#define CHOOSE_LOAD_FUNC(K, func) \
	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)

646
			case BPF_LD | BPF_W | BPF_ABS:
647 648 649 650 651
				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
common_load:			seen |= SEEN_DATAREF;
				emit_loadimm(K, r_OFF);
				emit_call(func);
				break;
652
			case BPF_LD | BPF_H | BPF_ABS:
653 654
				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
				goto common_load;
655
			case BPF_LD | BPF_B | BPF_ABS:
656 657
				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
				goto common_load;
658
			case BPF_LDX | BPF_B | BPF_MSH:
659 660
				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
				goto common_load;
661
			case BPF_LD | BPF_W | BPF_IND:
662 663 664 665 666 667 668 669 670 671 672 673 674 675
				func = bpf_jit_load_word;
common_load_ind:		seen |= SEEN_DATAREF | SEEN_XREG;
				if (K) {
					if (is_simm13(K)) {
						emit_addi(r_X, K, r_OFF);
					} else {
						emit_loadimm(K, r_TMP);
						emit_add(r_X, r_TMP, r_OFF);
					}
				} else {
					emit_reg_move(r_X, r_OFF);
				}
				emit_call(func);
				break;
676
			case BPF_LD | BPF_H | BPF_IND:
677 678
				func = bpf_jit_load_half;
				goto common_load_ind;
679
			case BPF_LD | BPF_B | BPF_IND:
680 681
				func = bpf_jit_load_byte;
				goto common_load_ind;
682
			case BPF_JMP | BPF_JA:
683 684 685 686 687 688 689 690 691 692
				emit_jump(addrs[i + K]);
				emit_nop();
				break;

#define COND_SEL(CODE, TOP, FOP)	\
	case CODE:			\
		t_op = TOP;		\
		f_op = FOP;		\
		goto cond_branch

693 694 695 696 697 698 699 700
			COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
			COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
			COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
			COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
			COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
			COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
			COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
			COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
701 702 703 704 705 706 707 708 709 710 711

cond_branch:			f_offset = addrs[i + filter[i].jf];
				t_offset = addrs[i + filter[i].jt];

				/* same targets, can avoid doing the test :) */
				if (filter[i].jt == filter[i].jf) {
					emit_jump(t_offset);
					emit_nop();
					break;
				}

712 713 714 715
				switch (code) {
				case BPF_JMP | BPF_JGT | BPF_X:
				case BPF_JMP | BPF_JGE | BPF_X:
				case BPF_JMP | BPF_JEQ | BPF_X:
716 717 718
					seen |= SEEN_XREG;
					emit_cmp(r_A, r_X);
					break;
719
				case BPF_JMP | BPF_JSET | BPF_X:
720 721 722
					seen |= SEEN_XREG;
					emit_btst(r_A, r_X);
					break;
723 724 725
				case BPF_JMP | BPF_JEQ | BPF_K:
				case BPF_JMP | BPF_JGT | BPF_K:
				case BPF_JMP | BPF_JGE | BPF_K:
726 727 728 729 730 731 732
					if (is_simm13(K)) {
						emit_cmpi(r_A, K);
					} else {
						emit_loadimm(K, r_TMP);
						emit_cmp(r_A, r_TMP);
					}
					break;
733
				case BPF_JMP | BPF_JSET | BPF_K:
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
					if (is_simm13(K)) {
						emit_btsti(r_A, K);
					} else {
						emit_loadimm(K, r_TMP);
						emit_btst(r_A, r_TMP);
					}
					break;
				}
				if (filter[i].jt != 0) {
					if (filter[i].jf)
						t_offset += 8;
					emit_branch(t_op, t_offset);
					emit_nop(); /* delay slot */
					if (filter[i].jf) {
						emit_jump(f_offset);
						emit_nop();
					}
					break;
				}
				emit_branch(f_op, f_offset);
				emit_nop(); /* delay slot */
				break;

			default:
				/* hmm, too complex filter, give up with jit compiler */
				goto out;
			}
			ilen = (void *) prog - (void *) temp;
			if (image) {
				if (unlikely(proglen + ilen > oldproglen)) {
					pr_err("bpb_jit_compile fatal error\n");
					kfree(addrs);
766
					module_memfree(image);
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
					return;
				}
				memcpy(image + proglen, temp, ilen);
			}
			proglen += ilen;
			addrs[i] = proglen;
			prog = temp;
		}
		/* last bpf instruction is always a RET :
		 * use it to give the cleanup instruction(s) addr
		 */
		cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
		if (seen_or_pass0 & SEEN_MEM)
			cleanup_addr -= 4; /* add %sp, X, %sp; */

		if (image) {
			if (proglen != oldproglen)
				pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
				       proglen, oldproglen);
			break;
		}
		if (proglen == oldproglen) {
789
			image = module_alloc(proglen);
790 791 792 793 794 795 796
			if (!image)
				goto out;
		}
		oldproglen = proglen;
	}

	if (bpf_jit_enable > 1)
797
		bpf_jit_dump(flen, proglen, pass + 1, image);
798 799 800 801

	if (image) {
		bpf_flush_icache(image, image + proglen);
		fp->bpf_func = (void *)image;
802
		fp->jited = 1;
803 804 805 806 807 808
	}
out:
	kfree(addrs);
	return;
}

809
void bpf_jit_free(struct bpf_prog *fp)
810
{
811
	if (fp->jited)
812
		module_memfree(fp->bpf_func);
813 814

	bpf_prog_unlock_free(fp);
815
}