mips.c 27.0 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * KVM/MIPS: MIPS specific KVM APIs
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10
 */
11 12 13 14 15 16 17 18 19 20 21 22 23

#include <linux/errno.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/bootmem.h>
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>

#include <linux/kvm_host.h>

24 25
#include "interrupt.h"
#include "commpage.h"
26 27 28 29 30 31 32 33

#define CREATE_TRACE_POINTS
#include "trace.h"

#ifndef VECTORSPACING
#define VECTORSPACING 0x100	/* for EI/VI mode */
#endif

34
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
35
struct kvm_stats_debugfs_item debugfs_entries[] = {
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
	{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
51 52 53 54 55 56
	{NULL}
};

static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
{
	int i;
57

58 59 60 61
	for_each_possible_cpu(i) {
		vcpu->arch.guest_kernel_asid[i] = 0;
		vcpu->arch.guest_user_asid[i] = 0;
	}
62

63 64 65
	return 0;
}

66 67 68
/*
 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
 * Config7, so we are "runnable" if interrupts are pending
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
 */
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
	return !!(vcpu->arch.pending_exceptions);
}

int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return 1;
}

int kvm_arch_hardware_enable(void *garbage)
{
	return 0;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
92
	*(int *)rtn = 0;
93 94 95 96 97 98
}

static void kvm_mips_init_tlbs(struct kvm *kvm)
{
	unsigned long wired;

99 100 101 102
	/*
	 * Add a wired entry to the TLB, it is used to map the commpage to
	 * the Guest kernel
	 */
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
	wired = read_c0_wired();
	write_c0_wired(wired + 1);
	mtc0_tlbw_hazard();
	kvm->arch.commpage_tlb = wired;

	kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
		  kvm->arch.commpage_tlb);
}

static void kvm_mips_init_vm_percpu(void *arg)
{
	struct kvm *kvm = (struct kvm *)arg;

	kvm_mips_init_tlbs(kvm);
	kvm_mips_callbacks->vm_init(kvm);

}

int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
	if (atomic_inc_return(&kvm_mips_instance) == 1) {
124 125
		kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
			  __func__);
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
		on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
	}

	return 0;
}

void kvm_mips_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	/* Put the pages we reserved for the guest pmap */
	for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
		if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
			kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
	}
142
	kfree(kvm->arch.guest_pmap);
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_arch_vcpu_free(vcpu);
	}

	mutex_lock(&kvm->lock);

	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);

	mutex_unlock(&kvm->lock);
}

static void kvm_mips_uninit_tlbs(void *arg)
{
	/* Restore wired count */
	write_c0_wired(0);
	mtc0_tlbw_hazard();
	/* Clear out all the TLBs */
	kvm_local_flush_tlb_all();
}

void kvm_arch_destroy_vm(struct kvm *kvm)
{
	kvm_mips_free_vcpus(kvm);

	/* If this is the last instance, restore wired count */
	if (atomic_dec_return(&kvm_mips_instance) == 0) {
173 174
		kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
			  __func__);
175 176 177 178
		on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
	}
}

179 180
long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
			unsigned long arg)
181
{
182
	return -ENOIOCTLCMD;
183 184
}

185 186
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
187 188 189 190 191
{
	return 0;
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
192 193 194
				   struct kvm_memory_slot *memslot,
				   struct kvm_userspace_memory_region *mem,
				   enum kvm_mr_change change)
195 196 197 198 199
{
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
200 201 202
				   struct kvm_userspace_memory_region *mem,
				   const struct kvm_memory_slot *old,
				   enum kvm_mr_change change)
203 204
{
	unsigned long npages = 0;
205
	int i;
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
		  __func__, kvm, mem->slot, mem->guest_phys_addr,
		  mem->memory_size, mem->userspace_addr);

	/* Setup Guest PMAP table */
	if (!kvm->arch.guest_pmap) {
		if (mem->slot == 0)
			npages = mem->memory_size >> PAGE_SHIFT;

		if (npages) {
			kvm->arch.guest_pmap_npages = npages;
			kvm->arch.guest_pmap =
			    kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);

			if (!kvm->arch.guest_pmap) {
				kvm_err("Failed to allocate guest PMAP");
223
				return;
224 225
			}

226 227
			kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
				  npages, kvm->arch.guest_pmap);
228 229

			/* Now setup the page table */
230
			for (i = 0; i < npages; i++)
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
				kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
		}
	}
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err, size, offset;
	void *gebase;
	int i;

	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);

	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);

	if (err)
		goto out_free_cpu;

254
	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
255

256 257
	/*
	 * Allocate space for host mode exception handlers that handle
258 259
	 * guest mode exits
	 */
260
	if (cpu_has_veic || cpu_has_vint)
261
		size = 0x200 + VECTORSPACING * 64;
262
	else
263
		size = 0x4000;
264 265 266 267 268 269 270 271 272 273

	/* Save Linux EBASE */
	vcpu->arch.host_ebase = (void *)read_c0_ebase();

	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);

	if (!gebase) {
		err = -ENOMEM;
		goto out_free_cpu;
	}
274 275
	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
		  ALIGN(size, PAGE_SIZE), gebase);
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

	/* Save new ebase */
	vcpu->arch.guest_ebase = gebase;

	/* Copy L1 Guest Exception handler to correct offset */

	/* TLB Refill, EXL = 0 */
	memcpy(gebase, mips32_exception,
	       mips32_exceptionEnd - mips32_exception);

	/* General Exception Entry point */
	memcpy(gebase + 0x180, mips32_exception,
	       mips32_exceptionEnd - mips32_exception);

	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
	for (i = 0; i < 8; i++) {
		kvm_debug("L1 Vectored handler @ %p\n",
			  gebase + 0x200 + (i * VECTORSPACING));
		memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
		       mips32_exceptionEnd - mips32_exception);
	}

	/* General handler, relocate to unmapped space for sanity's sake */
	offset = 0x2000;
300 301 302
	kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
		  gebase + offset,
		  mips32_GuestExceptionEnd - mips32_GuestException);
303 304 305 306 307

	memcpy(gebase + offset, mips32_GuestException,
	       mips32_GuestExceptionEnd - mips32_GuestException);

	/* Invalidate the icache for these ranges */
308 309
	local_flush_icache_range((unsigned long)gebase,
				(unsigned long)gebase + ALIGN(size, PAGE_SIZE));
310

311 312 313 314
	/*
	 * Allocate comm page for guest kernel, a TLB will be reserved for
	 * mapping GVA @ 0xFFFF8000 to this page
	 */
315 316 317 318 319 320 321
	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);

	if (!vcpu->arch.kseg0_commpage) {
		err = -ENOMEM;
		goto out_free_gebase;
	}

322
	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
323 324 325 326 327 328
	kvm_mips_commpage_init(vcpu);

	/* Init */
	vcpu->arch.last_sched_cpu = -1;

	/* Start off the timer */
329
	kvm_mips_init_count(vcpu);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

	return vcpu;

out_free_gebase:
	kfree(gebase);

out_free_cpu:
	kfree(vcpu);

out:
	return ERR_PTR(err);
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
	hrtimer_cancel(&vcpu->arch.comparecount_timer);

	kvm_vcpu_uninit(vcpu);

	kvm_mips_dump_stats(vcpu);

351 352
	kfree(vcpu->arch.guest_ebase);
	kfree(vcpu->arch.kseg0_commpage);
353
	kfree(vcpu);
354 355 356 357 358 359 360
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

361 362
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
363
{
364
	return -ENOIOCTLCMD;
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	int r = 0;
	sigset_t sigsaved;

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	if (vcpu->mmio_needed) {
		if (!vcpu->mmio_is_write)
			kvm_mips_complete_mmio_load(vcpu, run);
		vcpu->mmio_needed = 0;
	}

381
	local_irq_disable();
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
	/* Check if we have any exceptions/interrupts pending */
	kvm_mips_deliver_interrupts(vcpu,
				    kvm_read_c0_guest_cause(vcpu->arch.cop0));

	kvm_guest_enter();

	r = __kvm_mips_vcpu_run(run, vcpu);

	kvm_guest_exit();
	local_irq_enable();

	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	return r;
}

399 400
int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
			     struct kvm_mips_interrupt *irq)
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
{
	int intr = (int)irq->irq;
	struct kvm_vcpu *dvcpu = NULL;

	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
			  (int)intr);

	if (irq->cpu == -1)
		dvcpu = vcpu;
	else
		dvcpu = vcpu->kvm->vcpus[irq->cpu];

	if (intr == 2 || intr == 3 || intr == 4) {
		kvm_mips_callbacks->queue_io_int(dvcpu, irq);

	} else if (intr == -2 || intr == -3 || intr == -4) {
		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
	} else {
		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
			irq->cpu, irq->irq);
		return -EINVAL;
	}

	dvcpu->arch.wait = 0;

427
	if (waitqueue_active(&dvcpu->wq))
428 429 430 431 432
		wake_up_interruptible(&dvcpu->wq);

	return 0;
}

433 434
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
435
{
436
	return -ENOIOCTLCMD;
437 438
}

439 440
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
441
{
442
	return -ENOIOCTLCMD;
443 444
}

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static u64 kvm_mips_get_one_regs[] = {
	KVM_REG_MIPS_R0,
	KVM_REG_MIPS_R1,
	KVM_REG_MIPS_R2,
	KVM_REG_MIPS_R3,
	KVM_REG_MIPS_R4,
	KVM_REG_MIPS_R5,
	KVM_REG_MIPS_R6,
	KVM_REG_MIPS_R7,
	KVM_REG_MIPS_R8,
	KVM_REG_MIPS_R9,
	KVM_REG_MIPS_R10,
	KVM_REG_MIPS_R11,
	KVM_REG_MIPS_R12,
	KVM_REG_MIPS_R13,
	KVM_REG_MIPS_R14,
	KVM_REG_MIPS_R15,
	KVM_REG_MIPS_R16,
	KVM_REG_MIPS_R17,
	KVM_REG_MIPS_R18,
	KVM_REG_MIPS_R19,
	KVM_REG_MIPS_R20,
	KVM_REG_MIPS_R21,
	KVM_REG_MIPS_R22,
	KVM_REG_MIPS_R23,
	KVM_REG_MIPS_R24,
	KVM_REG_MIPS_R25,
	KVM_REG_MIPS_R26,
	KVM_REG_MIPS_R27,
	KVM_REG_MIPS_R28,
	KVM_REG_MIPS_R29,
	KVM_REG_MIPS_R30,
	KVM_REG_MIPS_R31,

	KVM_REG_MIPS_HI,
	KVM_REG_MIPS_LO,
	KVM_REG_MIPS_PC,

	KVM_REG_MIPS_CP0_INDEX,
	KVM_REG_MIPS_CP0_CONTEXT,
485
	KVM_REG_MIPS_CP0_USERLOCAL,
486 487
	KVM_REG_MIPS_CP0_PAGEMASK,
	KVM_REG_MIPS_CP0_WIRED,
488
	KVM_REG_MIPS_CP0_HWRENA,
489
	KVM_REG_MIPS_CP0_BADVADDR,
490
	KVM_REG_MIPS_CP0_COUNT,
491
	KVM_REG_MIPS_CP0_ENTRYHI,
492
	KVM_REG_MIPS_CP0_COMPARE,
493 494
	KVM_REG_MIPS_CP0_STATUS,
	KVM_REG_MIPS_CP0_CAUSE,
495
	KVM_REG_MIPS_CP0_EPC,
496 497 498 499 500
	KVM_REG_MIPS_CP0_CONFIG,
	KVM_REG_MIPS_CP0_CONFIG1,
	KVM_REG_MIPS_CP0_CONFIG2,
	KVM_REG_MIPS_CP0_CONFIG3,
	KVM_REG_MIPS_CP0_CONFIG7,
501 502 503 504
	KVM_REG_MIPS_CP0_ERROREPC,

	KVM_REG_MIPS_COUNT_CTL,
	KVM_REG_MIPS_COUNT_RESUME,
505
	KVM_REG_MIPS_COUNT_HZ,
506 507 508 509 510 511
};

static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
512
	int ret;
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
	s64 v;

	switch (reg->id) {
	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
		break;
	case KVM_REG_MIPS_HI:
		v = (long)vcpu->arch.hi;
		break;
	case KVM_REG_MIPS_LO:
		v = (long)vcpu->arch.lo;
		break;
	case KVM_REG_MIPS_PC:
		v = (long)vcpu->arch.pc;
		break;

	case KVM_REG_MIPS_CP0_INDEX:
		v = (long)kvm_read_c0_guest_index(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONTEXT:
		v = (long)kvm_read_c0_guest_context(cop0);
		break;
535 536 537
	case KVM_REG_MIPS_CP0_USERLOCAL:
		v = (long)kvm_read_c0_guest_userlocal(cop0);
		break;
538 539 540 541 542 543
	case KVM_REG_MIPS_CP0_PAGEMASK:
		v = (long)kvm_read_c0_guest_pagemask(cop0);
		break;
	case KVM_REG_MIPS_CP0_WIRED:
		v = (long)kvm_read_c0_guest_wired(cop0);
		break;
544 545 546
	case KVM_REG_MIPS_CP0_HWRENA:
		v = (long)kvm_read_c0_guest_hwrena(cop0);
		break;
547 548 549 550 551 552
	case KVM_REG_MIPS_CP0_BADVADDR:
		v = (long)kvm_read_c0_guest_badvaddr(cop0);
		break;
	case KVM_REG_MIPS_CP0_ENTRYHI:
		v = (long)kvm_read_c0_guest_entryhi(cop0);
		break;
553 554 555
	case KVM_REG_MIPS_CP0_COMPARE:
		v = (long)kvm_read_c0_guest_compare(cop0);
		break;
556 557 558 559 560 561
	case KVM_REG_MIPS_CP0_STATUS:
		v = (long)kvm_read_c0_guest_status(cop0);
		break;
	case KVM_REG_MIPS_CP0_CAUSE:
		v = (long)kvm_read_c0_guest_cause(cop0);
		break;
562 563 564
	case KVM_REG_MIPS_CP0_EPC:
		v = (long)kvm_read_c0_guest_epc(cop0);
		break;
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
	case KVM_REG_MIPS_CP0_ERROREPC:
		v = (long)kvm_read_c0_guest_errorepc(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG:
		v = (long)kvm_read_c0_guest_config(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG1:
		v = (long)kvm_read_c0_guest_config1(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG2:
		v = (long)kvm_read_c0_guest_config2(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG3:
		v = (long)kvm_read_c0_guest_config3(cop0);
		break;
	case KVM_REG_MIPS_CP0_CONFIG7:
		v = (long)kvm_read_c0_guest_config7(cop0);
		break;
583 584
	/* registers to be handled specially */
	case KVM_REG_MIPS_CP0_COUNT:
585 586
	case KVM_REG_MIPS_COUNT_CTL:
	case KVM_REG_MIPS_COUNT_RESUME:
587
	case KVM_REG_MIPS_COUNT_HZ:
588 589 590 591
		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
		if (ret)
			return ret;
		break;
592 593 594
	default:
		return -EINVAL;
	}
595 596
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
597

598 599 600 601
		return put_user(v, uaddr64);
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		u32 v32 = (u32)v;
602

603 604 605 606
		return put_user(v32, uaddr32);
	} else {
		return -EINVAL;
	}
607 608 609 610 611 612 613 614
}

static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
			    const struct kvm_one_reg *reg)
{
	struct mips_coproc *cop0 = vcpu->arch.cop0;
	u64 v;

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;

		if (get_user(v, uaddr64) != 0)
			return -EFAULT;
	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
		s32 v32;

		if (get_user(v32, uaddr32) != 0)
			return -EFAULT;
		v = (s64)v32;
	} else {
		return -EINVAL;
	}
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653

	switch (reg->id) {
	case KVM_REG_MIPS_R0:
		/* Silently ignore requests to set $0 */
		break;
	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
		break;
	case KVM_REG_MIPS_HI:
		vcpu->arch.hi = v;
		break;
	case KVM_REG_MIPS_LO:
		vcpu->arch.lo = v;
		break;
	case KVM_REG_MIPS_PC:
		vcpu->arch.pc = v;
		break;

	case KVM_REG_MIPS_CP0_INDEX:
		kvm_write_c0_guest_index(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_CONTEXT:
		kvm_write_c0_guest_context(cop0, v);
		break;
654 655 656
	case KVM_REG_MIPS_CP0_USERLOCAL:
		kvm_write_c0_guest_userlocal(cop0, v);
		break;
657 658 659 660 661 662
	case KVM_REG_MIPS_CP0_PAGEMASK:
		kvm_write_c0_guest_pagemask(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_WIRED:
		kvm_write_c0_guest_wired(cop0, v);
		break;
663 664 665
	case KVM_REG_MIPS_CP0_HWRENA:
		kvm_write_c0_guest_hwrena(cop0, v);
		break;
666 667 668 669 670 671 672 673 674
	case KVM_REG_MIPS_CP0_BADVADDR:
		kvm_write_c0_guest_badvaddr(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_ENTRYHI:
		kvm_write_c0_guest_entryhi(cop0, v);
		break;
	case KVM_REG_MIPS_CP0_STATUS:
		kvm_write_c0_guest_status(cop0, v);
		break;
675 676 677
	case KVM_REG_MIPS_CP0_EPC:
		kvm_write_c0_guest_epc(cop0, v);
		break;
678 679 680
	case KVM_REG_MIPS_CP0_ERROREPC:
		kvm_write_c0_guest_errorepc(cop0, v);
		break;
681 682 683
	/* registers to be handled specially */
	case KVM_REG_MIPS_CP0_COUNT:
	case KVM_REG_MIPS_CP0_COMPARE:
684
	case KVM_REG_MIPS_CP0_CAUSE:
685 686
	case KVM_REG_MIPS_COUNT_CTL:
	case KVM_REG_MIPS_COUNT_RESUME:
687
	case KVM_REG_MIPS_COUNT_HZ:
688
		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
689 690 691 692 693 694
	default:
		return -EINVAL;
	}
	return 0;
}

695 696
long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
			 unsigned long arg)
697 698 699 700 701 702
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {
703 704 705
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
706

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_mips_set_reg(vcpu, &reg);
		else
			return kvm_mips_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		u64 __user *reg_dest;
		struct kvm_reg_list reg_list;
		unsigned n;

		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		reg_dest = user_list->reg;
		if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
				 sizeof(kvm_mips_get_one_regs)))
			return -EFAULT;
		return 0;
	}
734 735 736 737 738 739 740
	case KVM_NMI:
		/* Treat the NMI as a CPU reset */
		r = kvm_mips_reset_vcpu(vcpu);
		break;
	case KVM_INTERRUPT:
		{
			struct kvm_mips_interrupt irq;
741

742 743 744 745 746 747 748 749 750 751 752
			r = -EFAULT;
			if (copy_from_user(&irq, argp, sizeof(irq)))
				goto out;

			kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
				  irq.irq);

			r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
			break;
		}
	default:
753
		r = -ENOIOCTLCMD;
754 755 756 757 758 759
	}

out:
	return r;
}

760
/* Get (and clear) the dirty memory log for a memory slot. */
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
	struct kvm_memory_slot *memslot;
	unsigned long ga, ga_end;
	int is_dirty = 0;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		memslot = &kvm->memslots->memslots[log->slot];

		ga = memslot->base_gfn << PAGE_SHIFT;
		ga_end = ga + (memslot->npages << PAGE_SHIFT);

782 783
		kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
			 ga_end);
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;

}

long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
{
	long r;

	switch (ioctl) {
	default:
802
		r = -ENOIOCTLCMD;
803 804 805 806 807 808 809 810 811 812 813 814
	}

	return r;
}

int kvm_arch_init(void *opaque)
{
	if (kvm_mips_callbacks) {
		kvm_err("kvm: module already exists\n");
		return -EEXIST;
	}

815
	return kvm_mips_emulation_init(&kvm_mips_callbacks);
816 817 818 819 820 821 822
}

void kvm_arch_exit(void)
{
	kvm_mips_callbacks = NULL;
}

823 824
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
825
{
826
	return -ENOIOCTLCMD;
827 828
}

829 830
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
831
{
832
	return -ENOIOCTLCMD;
833 834 835 836 837 838 839 840 841
}

int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
842
	return -ENOIOCTLCMD;
843 844 845 846
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
847
	return -ENOIOCTLCMD;
848 849 850 851 852 853 854
}

int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}

855
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
856 857 858 859
{
	int r;

	switch (ext) {
860 861 862
	case KVM_CAP_ONE_REG:
		r = 1;
		break;
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
	default:
		r = 0;
		break;
	}
	return r;
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
	return kvm_mips_pending_timer(vcpu);
}

int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
{
	int i;
	struct mips_coproc *cop0;

	if (!vcpu)
		return -1;

886 887 888
	kvm_debug("VCPU Register Dump:\n");
	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
889 890

	for (i = 0; i < 32; i += 4) {
891
		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
892 893 894 895
		       vcpu->arch.gprs[i],
		       vcpu->arch.gprs[i + 1],
		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
	}
896 897
	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
898 899

	cop0 = vcpu->arch.cop0;
900 901 902
	kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
		  kvm_read_c0_guest_status(cop0),
		  kvm_read_c0_guest_cause(cop0));
903

904
	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
905 906 907 908 909 910 911 912

	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

913
	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
914
		vcpu->arch.gprs[i] = regs->gpr[i];
915
	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
916 917 918 919
	vcpu->arch.hi = regs->hi;
	vcpu->arch.lo = regs->lo;
	vcpu->arch.pc = regs->pc;

920
	return 0;
921 922 923 924 925 926
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

927
	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
928
		regs->gpr[i] = vcpu->arch.gprs[i];
929 930 931 932 933

	regs->hi = vcpu->arch.hi;
	regs->lo = vcpu->arch.lo;
	regs->pc = vcpu->arch.pc;

934
	return 0;
935 936
}

937
static void kvm_mips_comparecount_func(unsigned long data)
938 939 940 941 942 943
{
	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;

	kvm_mips_callbacks->queue_timer_int(vcpu);

	vcpu->arch.wait = 0;
944
	if (waitqueue_active(&vcpu->wq))
945 946 947
		wake_up_interruptible(&vcpu->wq);
}

948
/* low level hrtimer wake routine */
949
static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
950 951 952 953 954
{
	struct kvm_vcpu *vcpu;

	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
	kvm_mips_comparecount_func((unsigned long) vcpu);
955
	return kvm_mips_count_timeout(vcpu);
956 957 958 959 960 961 962 963 964 965 966
}

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
	kvm_mips_callbacks->vcpu_init(vcpu);
	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
		     HRTIMER_MODE_REL);
	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
	return 0;
}

967 968
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
969 970 971 972 973 974 975 976 977 978
{
	return 0;
}

/* Initial guest state */
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	return kvm_mips_callbacks->vcpu_setup(vcpu);
}

979
static void kvm_mips_set_c0_status(void)
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
{
	uint32_t status = read_c0_status();

	if (cpu_has_fpu)
		status |= (ST0_CU1);

	if (cpu_has_dsp)
		status |= (ST0_MX);

	write_c0_status(status);
	ehb();
}

/*
 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
 */
int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
	uint32_t cause = vcpu->arch.host_cp0_cause;
	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
	uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
	enum emulation_result er = EMULATE_DONE;
	int ret = RESUME_GUEST;

	/* Set a default exit reason */
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

1009 1010 1011 1012
	/*
	 * Set the appropriate status bits based on host CPU features,
	 * before we hit the scheduler
	 */
1013 1014 1015 1016 1017 1018 1019
	kvm_mips_set_c0_status();

	local_irq_enable();

	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
			cause, opc, run, vcpu);

1020 1021
	/*
	 * Do a privilege check, if in UM most of these exit conditions end up
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	 * causing an exception to be delivered to the Guest Kernel
	 */
	er = kvm_mips_check_privilege(cause, opc, run, vcpu);
	if (er == EMULATE_PRIV_FAIL) {
		goto skip_emul;
	} else if (er == EMULATE_FAIL) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		goto skip_emul;
	}

	switch (exccode) {
	case T_INT:
		kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);

		++vcpu->stat.int_exits;
		trace_kvm_exit(vcpu, INT_EXITS);

1040
		if (need_resched())
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
			cond_resched();

		ret = RESUME_GUEST;
		break;

	case T_COP_UNUSABLE:
		kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);

		++vcpu->stat.cop_unusable_exits;
		trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
		/* XXXKYMA: Might need to return to user space */
1053
		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
			ret = RESUME_HOST;
		break;

	case T_TLB_MOD:
		++vcpu->stat.tlbmod_exits;
		trace_kvm_exit(vcpu, TLBMOD_EXITS);
		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
		break;

	case T_TLB_ST_MISS:
1064 1065 1066
		kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
			  badvaddr);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

		++vcpu->stat.tlbmiss_st_exits;
		trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
		break;

	case T_TLB_LD_MISS:
		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
			  cause, opc, badvaddr);

		++vcpu->stat.tlbmiss_ld_exits;
		trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
		break;

	case T_ADDR_ERR_ST:
		++vcpu->stat.addrerr_st_exits;
		trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
		break;

	case T_ADDR_ERR_LD:
		++vcpu->stat.addrerr_ld_exits;
		trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
		break;

	case T_SYSCALL:
		++vcpu->stat.syscall_exits;
		trace_kvm_exit(vcpu, SYSCALL_EXITS);
		ret = kvm_mips_callbacks->handle_syscall(vcpu);
		break;

	case T_RES_INST:
		++vcpu->stat.resvd_inst_exits;
		trace_kvm_exit(vcpu, RESVD_INST_EXITS);
		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
		break;

	case T_BREAK:
		++vcpu->stat.break_inst_exits;
		trace_kvm_exit(vcpu, BREAK_INST_EXITS);
		ret = kvm_mips_callbacks->handle_break(vcpu);
		break;

	default:
1113 1114 1115
		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
			exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
			kvm_read_c0_guest_status(vcpu->arch.cop0));
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
		kvm_arch_vcpu_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		ret = RESUME_HOST;
		break;

	}

skip_emul:
	local_irq_disable();

	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
		kvm_mips_deliver_interrupts(vcpu, cause);

	if (!(ret & RESUME_HOST)) {
1130
		/* Only check for signals if not already exiting to userspace */
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		if (signal_pending(current)) {
			run->exit_reason = KVM_EXIT_INTR;
			ret = (-EINTR << 2) | RESUME_HOST;
			++vcpu->stat.signal_exits;
			trace_kvm_exit(vcpu, SIGNAL_EXITS);
		}
	}

	return ret;
}

int __init kvm_mips_init(void)
{
	int ret;

	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);

	if (ret)
		return ret;

1151 1152 1153
	/*
	 * On MIPS, kernel modules are executed from "mapped space", which
	 * requires TLBs. The TLB handling code is statically linked with
1154
	 * the rest of the kernel (tlb.c) to avoid the possibility of
1155 1156 1157
	 * double faulting. The issue is that the TLB code references
	 * routines that are part of the the KVM module, which are only
	 * available once the module is loaded.
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	 */
	kvm_mips_gfn_to_pfn = gfn_to_pfn;
	kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
	kvm_mips_is_error_pfn = is_error_pfn;

	pr_info("KVM/MIPS Initialized\n");
	return 0;
}

void __exit kvm_mips_exit(void)
{
	kvm_exit();

	kvm_mips_gfn_to_pfn = NULL;
	kvm_mips_release_pfn_clean = NULL;
	kvm_mips_is_error_pfn = NULL;

	pr_info("KVM/MIPS unloaded\n");
}

module_init(kvm_mips_init);
module_exit(kvm_mips_exit);

EXPORT_TRACEPOINT_SYMBOL(kvm_exit);