fsl_ssi.c 30.2 KB
Newer Older
1 2 3 4 5
/*
 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
6 7 8 9 10
 * Copyright 2007-2010 Freescale Semiconductor, Inc.
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2.  This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 *
 *
 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
 *
 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
 * one FIFO which combines all valid receive slots. We cannot even select
 * which slots we want to receive. The WM9712 with which this driver
 * was developed with always sends GPIO status data in slot 12 which
 * we receive in our (PCM-) data stream. The only chance we have is to
 * manually skip this data in the FIQ handler. With sampling rates different
 * from 48000Hz not every frame has valid receive data, so the ratio
 * between pcm data and GPIO status data changes. Our FIQ handler is not
 * able to handle this, hence this driver only works with 48000Hz sampling
 * rate.
 * Reading and writing AC97 registers is another challenge. The core
 * provides us status bits when the read register is updated with *another*
 * value. When we read the same register two times (and the register still
 * contains the same value) these status bits are not set. We work
 * around this by not polling these bits but only wait a fixed delay.
31 32 33
 */

#include <linux/init.h>
34
#include <linux/io.h>
35 36
#include <linux/module.h>
#include <linux/interrupt.h>
37
#include <linux/clk.h>
38 39
#include <linux/device.h>
#include <linux/delay.h>
40
#include <linux/slab.h>
41 42
#include <linux/of_address.h>
#include <linux/of_irq.h>
43
#include <linux/of_platform.h>
44 45 46 47 48 49

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
50
#include <sound/dmaengine_pcm.h>
51 52

#include "fsl_ssi.h"
53
#include "imx-pcm.h"
54

55 56 57 58
#ifdef PPC
#define read_ssi(addr)			 in_be32(addr)
#define write_ssi(val, addr)		 out_be32(addr, val)
#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
59
#else
60 61 62 63 64 65 66 67 68 69 70 71 72 73
#define read_ssi(addr)			 readl(addr)
#define write_ssi(val, addr)		 writel(val, addr)
/*
 * FIXME: Proper locking should be added at write_ssi_mask caller level
 * to ensure this register read/modify/write sequence is race free.
 */
static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
{
	u32 val = readl(addr);
	val = (val & ~clear) | set;
	writel(val, addr);
}
#endif

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/**
 * FSLSSI_I2S_RATES: sample rates supported by the I2S
 *
 * This driver currently only supports the SSI running in I2S slave mode,
 * which means the codec determines the sample rate.  Therefore, we tell
 * ALSA that we support all rates and let the codec driver decide what rates
 * are really supported.
 */
#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
			  SNDRV_PCM_RATE_CONTINUOUS)

/**
 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
 *
 * This driver currently only supports the SSI running in I2S slave mode.
 *
 * The SSI has a limitation in that the samples must be in the same byte
 * order as the host CPU.  This is because when multiple bytes are written
 * to the STX register, the bytes and bits must be written in the same
 * order.  The STX is a shift register, so all the bits need to be aligned
 * (bit-endianness must match byte-endianness).  Processors typically write
 * the bits within a byte in the same order that the bytes of a word are
 * written in.  So if the host CPU is big-endian, then only big-endian
 * samples will be written to STX properly.
 */
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
#endif

109 110 111 112 113 114 115
/* SIER bitflag of interrupts to enable */
#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
		    CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
		    CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
		    CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
		    CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)

116 117 118 119 120 121 122 123 124 125 126
/**
 * fsl_ssi_private: per-SSI private data
 *
 * @ssi: pointer to the SSI's registers
 * @ssi_phys: physical address of the SSI registers
 * @irq: IRQ of this SSI
 * @playback: the number of playback streams opened
 * @capture: the number of capture streams opened
 * @cpu_dai: the CPU DAI for this device
 * @dev_attr: the sysfs device attribute structure
 * @stats: SSI statistics
127
 * @name: name for this device
128 129 130 131 132
 */
struct fsl_ssi_private {
	struct ccsr_ssi __iomem *ssi;
	dma_addr_t ssi_phys;
	unsigned int irq;
133
	unsigned int fifo_depth;
134
	struct snd_soc_dai_driver cpu_dai_drv;
135
	struct device_attribute dev_attr;
136
	struct platform_device *pdev;
137

138 139
	bool new_binding;
	bool ssi_on_imx;
140
	bool imx_ac97;
141
	bool use_dma;
142
	u8 i2s_mode;
143
	struct clk *clk;
144 145 146 147
	struct snd_dmaengine_dai_dma_data dma_params_tx;
	struct snd_dmaengine_dai_dma_data dma_params_rx;
	struct imx_dma_data filter_data_tx;
	struct imx_dma_data filter_data_rx;
148
	struct imx_pcm_fiq_params fiq_params;
149

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
	struct {
		unsigned int rfrc;
		unsigned int tfrc;
		unsigned int cmdau;
		unsigned int cmddu;
		unsigned int rxt;
		unsigned int rdr1;
		unsigned int rdr0;
		unsigned int tde1;
		unsigned int tde0;
		unsigned int roe1;
		unsigned int roe0;
		unsigned int tue1;
		unsigned int tue0;
		unsigned int tfs;
		unsigned int rfs;
		unsigned int tls;
		unsigned int rls;
		unsigned int rff1;
		unsigned int rff0;
		unsigned int tfe1;
		unsigned int tfe0;
	} stats;
173 174

	char name[1];
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
};

/**
 * fsl_ssi_isr: SSI interrupt handler
 *
 * Although it's possible to use the interrupt handler to send and receive
 * data to/from the SSI, we use the DMA instead.  Programming is more
 * complicated, but the performance is much better.
 *
 * This interrupt handler is used only to gather statistics.
 *
 * @irq: IRQ of the SSI device
 * @dev_id: pointer to the ssi_private structure for this SSI device
 */
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
	struct fsl_ssi_private *ssi_private = dev_id;
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	irqreturn_t ret = IRQ_NONE;
	__be32 sisr;
	__be32 sisr2 = 0;

	/* We got an interrupt, so read the status register to see what we
	   were interrupted for.  We mask it with the Interrupt Enable register
	   so that we only check for events that we're interested in.
	 */
201
	sisr = read_ssi(&ssi->sisr) & SIER_FLAGS;
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315

	if (sisr & CCSR_SSI_SISR_RFRC) {
		ssi_private->stats.rfrc++;
		sisr2 |= CCSR_SSI_SISR_RFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFRC) {
		ssi_private->stats.tfrc++;
		sisr2 |= CCSR_SSI_SISR_TFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDAU) {
		ssi_private->stats.cmdau++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDDU) {
		ssi_private->stats.cmddu++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RXT) {
		ssi_private->stats.rxt++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR1) {
		ssi_private->stats.rdr1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR0) {
		ssi_private->stats.rdr0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE1) {
		ssi_private->stats.tde1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE0) {
		ssi_private->stats.tde0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE1) {
		ssi_private->stats.roe1++;
		sisr2 |= CCSR_SSI_SISR_ROE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE0) {
		ssi_private->stats.roe0++;
		sisr2 |= CCSR_SSI_SISR_ROE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE1) {
		ssi_private->stats.tue1++;
		sisr2 |= CCSR_SSI_SISR_TUE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE0) {
		ssi_private->stats.tue0++;
		sisr2 |= CCSR_SSI_SISR_TUE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFS) {
		ssi_private->stats.tfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFS) {
		ssi_private->stats.rfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TLS) {
		ssi_private->stats.tls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RLS) {
		ssi_private->stats.rls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF1) {
		ssi_private->stats.rff1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF0) {
		ssi_private->stats.rff0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE1) {
		ssi_private->stats.tfe1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE0) {
		ssi_private->stats.tfe0++;
		ret = IRQ_HANDLED;
	}

	/* Clear the bits that we set */
	if (sisr2)
316
		write_ssi(sisr2, &ssi->sisr);
317 318 319 320

	return ret;
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
{
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

	/*
	 * Setup the clock control register
	 */
	write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
			&ssi->stccr);
	write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
			&ssi->srccr);

	/*
	 * Enable AC97 mode and startup the SSI
	 */
	write_ssi(CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV,
			&ssi->sacnt);
	write_ssi(0xff, &ssi->saccdis);
	write_ssi(0x300, &ssi->saccen);

	/*
	 * Enable SSI, Transmit and Receive. AC97 has to communicate with the
	 * codec before a stream is started.
	 */
	write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN |
			CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);

	write_ssi(CCSR_SSI_SOR_WAIT(3), &ssi->sor);
}

351 352 353 354 355 356 357
static int fsl_ssi_setup(struct fsl_ssi_private *ssi_private)
{
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	u8 wm;
	int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;

	if (ssi_private->imx_ac97)
358
		ssi_private->i2s_mode = CCSR_SSI_SCR_I2S_MODE_NORMAL | CCSR_SSI_SCR_NET;
359
	else
360
		ssi_private->i2s_mode = CCSR_SSI_SCR_I2S_MODE_SLAVE;
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376

	/*
	 * Section 16.5 of the MPC8610 reference manual says that the SSI needs
	 * to be disabled before updating the registers we set here.
	 */
	write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);

	/*
	 * Program the SSI into I2S Slave Non-Network Synchronous mode. Also
	 * enable the transmit and receive FIFO.
	 *
	 * FIXME: Little-endian samples require a different shift dir
	 */
	write_ssi_mask(&ssi->scr,
		CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
		CCSR_SSI_SCR_TFR_CLK_DIS |
377
		ssi_private->i2s_mode |
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
		(synchronous ? CCSR_SSI_SCR_SYN : 0));

	write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
		 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
		 CCSR_SSI_STCR_TSCKP, &ssi->stcr);

	write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
		 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
		 CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
	/*
	 * The DC and PM bits are only used if the SSI is the clock master.
	 */

	/*
	 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
	 * use FIFO 1. We program the transmit water to signal a DMA transfer
	 * if there are only two (or fewer) elements left in the FIFO. Two
	 * elements equals one frame (left channel, right channel). This value,
	 * however, depends on the depth of the transmit buffer.
	 *
	 * We set the watermark on the same level as the DMA burstsize.  For
	 * fiq it is probably better to use the biggest possible watermark
	 * size.
	 */
	if (ssi_private->use_dma)
		wm = ssi_private->fifo_depth - 2;
	else
		wm = ssi_private->fifo_depth;

	write_ssi(CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
		CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm),
		&ssi->sfcsr);

	/*
	 * For ac97 interrupts are enabled with the startup of the substream
	 * because it is also running without an active substream. Normally SSI
	 * is only enabled when there is a substream.
	 */
416 417
	if (ssi_private->imx_ac97)
		fsl_ssi_setup_ac97(ssi_private);
418 419 420 421 422

	return 0;
}


423 424 425 426 427 428 429 430
/**
 * fsl_ssi_startup: create a new substream
 *
 * This is the first function called when a stream is opened.
 *
 * If this is the first stream open, then grab the IRQ and program most of
 * the SSI registers.
 */
431 432
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
433 434
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
435 436
	struct fsl_ssi_private *ssi_private =
		snd_soc_dai_get_drvdata(rtd->cpu_dai);
437

438 439 440
	/* First, we only do fsl_ssi_setup() when SSI is going to be active.
	 * Second, fsl_ssi_setup was already called by ac97_init earlier if
	 * the driver is in ac97 mode.
441
	 */
442 443
	if (!dai->active && !ssi_private->imx_ac97)
		fsl_ssi_setup(ssi_private);
444

445 446 447 448
	return 0;
}

/**
449
 * fsl_ssi_hw_params - program the sample size
450 451 452 453 454 455 456 457 458 459 460
 *
 * Most of the SSI registers have been programmed in the startup function,
 * but the word length must be programmed here.  Unfortunately, programming
 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 * cause a problem with supporting simultaneous playback and capture.  If
 * the SSI is already playing a stream, then that stream may be temporarily
 * stopped when you start capture.
 *
 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 * clock master.
 */
461 462
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
463
{
464
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
465
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
466
	unsigned int channels = params_channels(hw_params);
467 468 469
	unsigned int sample_size =
		snd_pcm_format_width(params_format(hw_params));
	u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
470
	int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
471

472 473 474 475 476 477
	/*
	 * If we're in synchronous mode, and the SSI is already enabled,
	 * then STCCR is already set properly.
	 */
	if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
		return 0;
478

479 480 481 482 483 484 485 486 487
	/*
	 * FIXME: The documentation says that SxCCR[WL] should not be
	 * modified while the SSI is enabled.  The only time this can
	 * happen is if we're trying to do simultaneous playback and
	 * capture in asynchronous mode.  Unfortunately, I have been enable
	 * to get that to work at all on the P1022DS.  Therefore, we don't
	 * bother to disable/enable the SSI when setting SxCCR[WL], because
	 * the SSI will stop anyway.  Maybe one day, this will get fixed.
	 */
488

489 490 491
	/* In synchronous mode, the SSI uses STCCR for capture */
	if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
	    ssi_private->cpu_dai_drv.symmetric_rates)
492
		write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
493
	else
494
		write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
495

496 497 498 499 500
	if (!ssi_private->imx_ac97)
		write_ssi_mask(&ssi->scr,
				CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
				channels == 1 ? 0 : ssi_private->i2s_mode);

501 502 503 504 505 506 507 508 509 510 511 512
	return 0;
}

/**
 * fsl_ssi_trigger: start and stop the DMA transfer.
 *
 * This function is called by ALSA to start, stop, pause, and resume the DMA
 * transfer of data.
 *
 * The DMA channel is in external master start and pause mode, which
 * means the SSI completely controls the flow of data.
 */
513 514
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
515 516
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
517
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
518
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	unsigned int sier_bits;

	/*
	 *  Enable only the interrupts and DMA requests
	 *  that are needed for the channel. As the fiq
	 *  is polling for this bits, we have to ensure
	 *  that this are aligned with the preallocated
	 *  buffers
	 */

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
		if (ssi_private->use_dma)
			sier_bits = SIER_FLAGS;
		else
			sier_bits = CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TFE0_EN;
	} else {
		if (ssi_private->use_dma)
			sier_bits = SIER_FLAGS;
		else
			sier_bits = CCSR_SSI_SIER_RIE | CCSR_SSI_SIER_RFF0_EN;
	}
540 541 542 543

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
544
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
545
			write_ssi_mask(&ssi->scr, 0,
546
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
547
		else
548
			write_ssi_mask(&ssi->scr, 0,
549
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
550 551 552 553 554
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
555
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
556
		else
557
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
558

559 560
		if (!ssi_private->imx_ac97 && (read_ssi(&ssi->scr) &
					(CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE)) == 0)
561
			write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
562 563 564 565 566 567
		break;

	default:
		return -EINVAL;
	}

568 569
	write_ssi(sier_bits, &ssi->sier);

570 571 572
	return 0;
}

573 574 575 576
static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
{
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);

577
	if (ssi_private->ssi_on_imx && ssi_private->use_dma) {
578 579 580 581 582 583 584
		dai->playback_dma_data = &ssi_private->dma_params_tx;
		dai->capture_dma_data = &ssi_private->dma_params_rx;
	}

	return 0;
}

585
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
586 587 588 589 590
	.startup	= fsl_ssi_startup,
	.hw_params	= fsl_ssi_hw_params,
	.trigger	= fsl_ssi_trigger,
};

591 592
/* Template for the CPU dai driver structure */
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
593
	.probe = fsl_ssi_dai_probe,
594
	.playback = {
595
		.channels_min = 1,
596 597 598 599 600
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
	.capture = {
601
		.channels_min = 1,
602 603 604 605
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
606
	.ops = &fsl_ssi_dai_ops,
607 608
};

609 610 611 612
static const struct snd_soc_component_driver fsl_ssi_component = {
	.name		= "fsl-ssi",
};

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
/**
 * fsl_ssi_ac97_trigger: start and stop the AC97 receive/transmit.
 *
 * This function is called by ALSA to start, stop, pause, and resume the
 * transfer of data.
 */
static int fsl_ssi_ac97_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(
			rtd->cpu_dai);
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			write_ssi_mask(&ssi->sier, 0, CCSR_SSI_SIER_TIE |
					CCSR_SSI_SIER_TFE0_EN);
		else
			write_ssi_mask(&ssi->sier, 0, CCSR_SSI_SIER_RIE |
					CCSR_SSI_SIER_RFF0_EN);
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			write_ssi_mask(&ssi->sier, CCSR_SSI_SIER_TIE |
					CCSR_SSI_SIER_TFE0_EN, 0);
		else
			write_ssi_mask(&ssi->sier, CCSR_SSI_SIER_RIE |
					CCSR_SSI_SIER_RFF0_EN, 0);
		break;

	default:
		return -EINVAL;
	}

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
		write_ssi(CCSR_SSI_SOR_TX_CLR, &ssi->sor);
	else
		write_ssi(CCSR_SSI_SOR_RX_CLR, &ssi->sor);

	return 0;
}

static const struct snd_soc_dai_ops fsl_ssi_ac97_dai_ops = {
	.startup	= fsl_ssi_startup,
	.trigger	= fsl_ssi_ac97_trigger,
};

static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
	.ac97_control = 1,
	.playback = {
		.stream_name = "AC97 Playback",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_8000_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
	.capture = {
		.stream_name = "AC97 Capture",
		.channels_min = 2,
		.channels_max = 2,
		.rates = SNDRV_PCM_RATE_48000,
		.formats = SNDRV_PCM_FMTBIT_S16_LE,
	},
	.ops = &fsl_ssi_ac97_dai_ops,
};


static struct fsl_ssi_private *fsl_ac97_data;

static void fsl_ssi_ac97_init(void)
{
	fsl_ssi_setup(fsl_ac97_data);
}

692
static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
		unsigned short val)
{
	struct ccsr_ssi *ssi = fsl_ac97_data->ssi;
	unsigned int lreg;
	unsigned int lval;

	if (reg > 0x7f)
		return;


	lreg = reg <<  12;
	write_ssi(lreg, &ssi->sacadd);

	lval = val << 4;
	write_ssi(lval , &ssi->sacdat);

	write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
			CCSR_SSI_SACNT_WR);
	udelay(100);
}

714
static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
		unsigned short reg)
{
	struct ccsr_ssi *ssi = fsl_ac97_data->ssi;

	unsigned short val = -1;
	unsigned int lreg;

	lreg = (reg & 0x7f) <<  12;
	write_ssi(lreg, &ssi->sacadd);
	write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
			CCSR_SSI_SACNT_RD);

	udelay(100);

	val = (read_ssi(&ssi->sacdat) >> 4) & 0xffff;

	return val;
}

static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
	.read		= fsl_ssi_ac97_read,
	.write		= fsl_ssi_ac97_write,
};

739 740 741 742 743 744 745 746 747 748 749 750
/* Show the statistics of a flag only if its interrupt is enabled.  The
 * compiler will optimze this code to a no-op if the interrupt is not
 * enabled.
 */
#define SIER_SHOW(flag, name) \
	do { \
		if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
			length += sprintf(buf + length, #name "=%u\n", \
				ssi_private->stats.name); \
	} while (0)


751 752 753
/**
 * fsl_sysfs_ssi_show: display SSI statistics
 *
754 755
 * Display the statistics for the current SSI device.  To avoid confusion,
 * we only show those counts that are enabled.
756 757 758 759 760
 */
static ssize_t fsl_sysfs_ssi_show(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct fsl_ssi_private *ssi_private =
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
		container_of(attr, struct fsl_ssi_private, dev_attr);
	ssize_t length = 0;

	SIER_SHOW(RFRC_EN, rfrc);
	SIER_SHOW(TFRC_EN, tfrc);
	SIER_SHOW(CMDAU_EN, cmdau);
	SIER_SHOW(CMDDU_EN, cmddu);
	SIER_SHOW(RXT_EN, rxt);
	SIER_SHOW(RDR1_EN, rdr1);
	SIER_SHOW(RDR0_EN, rdr0);
	SIER_SHOW(TDE1_EN, tde1);
	SIER_SHOW(TDE0_EN, tde0);
	SIER_SHOW(ROE1_EN, roe1);
	SIER_SHOW(ROE0_EN, roe0);
	SIER_SHOW(TUE1_EN, tue1);
	SIER_SHOW(TUE0_EN, tue0);
	SIER_SHOW(TFS_EN, tfs);
	SIER_SHOW(RFS_EN, rfs);
	SIER_SHOW(TLS_EN, tls);
	SIER_SHOW(RLS_EN, rls);
	SIER_SHOW(RFF1_EN, rff1);
	SIER_SHOW(RFF0_EN, rff0);
	SIER_SHOW(TFE1_EN, tfe1);
	SIER_SHOW(TFE0_EN, tfe0);
785 786 787 788 789

	return length;
}

/**
790
 * Make every character in a string lower-case
791
 */
792 793 794 795 796 797 798 799 800 801 802 803
static void make_lowercase(char *s)
{
	char *p = s;
	char c;

	while ((c = *p)) {
		if ((c >= 'A') && (c <= 'Z'))
			*p = c + ('a' - 'A');
		p++;
	}
}

804
static int fsl_ssi_probe(struct platform_device *pdev)
805 806 807
{
	struct fsl_ssi_private *ssi_private;
	int ret = 0;
808
	struct device_attribute *dev_attr = NULL;
809
	struct device_node *np = pdev->dev.of_node;
810
	const char *p, *sprop;
811
	const uint32_t *iprop;
812 813
	struct resource res;
	char name[64];
814
	bool shared;
815
	bool ac97 = false;
816

817 818 819
	/* SSIs that are not connected on the board should have a
	 *      status = "disabled"
	 * property in their device tree nodes.
820
	 */
821
	if (!of_device_is_available(np))
822 823 824 825
		return -ENODEV;

	/* We only support the SSI in "I2S Slave" mode */
	sprop = of_get_property(np, "fsl,mode", NULL);
826 827 828 829 830 831 832
	if (!sprop) {
		dev_err(&pdev->dev, "fsl,mode property is necessary\n");
		return -EINVAL;
	}
	if (!strcmp(sprop, "ac97-slave")) {
		ac97 = true;
	} else if (strcmp(sprop, "i2s-slave")) {
833
		dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
834 835 836 837 838
		return -ENODEV;
	}

	/* The DAI name is the last part of the full name of the node. */
	p = strrchr(np->full_name, '/') + 1;
839
	ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private) + strlen(p),
840
			      GFP_KERNEL);
841
	if (!ssi_private) {
842
		dev_err(&pdev->dev, "could not allocate DAI object\n");
843
		return -ENOMEM;
844 845
	}

846
	strcpy(ssi_private->name, p);
847

848 849 850
	ssi_private->use_dma = !of_property_read_bool(np,
			"fsl,fiq-stream-filter");

851 852 853 854 855 856 857 858 859 860 861 862 863
	if (ac97) {
		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
				sizeof(fsl_ssi_ac97_dai));

		fsl_ac97_data = ssi_private;
		ssi_private->imx_ac97 = true;

		snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
	} else {
		/* Initialize this copy of the CPU DAI driver structure */
		memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
		       sizeof(fsl_ssi_dai_template));
	}
864 865 866 867 868
	ssi_private->cpu_dai_drv.name = ssi_private->name;

	/* Get the addresses and IRQ */
	ret = of_address_to_resource(np, 0, &res);
	if (ret) {
869
		dev_err(&pdev->dev, "could not determine device resources\n");
870
		return ret;
871
	}
872 873 874
	ssi_private->ssi = of_iomap(np, 0);
	if (!ssi_private->ssi) {
		dev_err(&pdev->dev, "could not map device resources\n");
875
		return -ENOMEM;
876
	}
877
	ssi_private->ssi_phys = res.start;
878

879
	ssi_private->irq = irq_of_parse_and_map(np, 0);
880
	if (!ssi_private->irq) {
881
		dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
882
		return -ENXIO;
883 884
	}

885
	/* Are the RX and the TX clocks locked? */
886
	if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
887
		ssi_private->cpu_dai_drv.symmetric_rates = 1;
888 889 890
		ssi_private->cpu_dai_drv.symmetric_channels = 1;
		ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
	}
891

892 893 894
	/* Determine the FIFO depth. */
	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
	if (iprop)
895
		ssi_private->fifo_depth = be32_to_cpup(iprop);
896 897 898 899
	else
                /* Older 8610 DTs didn't have the fifo-depth property */
		ssi_private->fifo_depth = 8;

900 901 902
	if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx21-ssi")) {
		u32 dma_events[2];
		ssi_private->ssi_on_imx = true;
903

904
		ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
905 906 907
		if (IS_ERR(ssi_private->clk)) {
			ret = PTR_ERR(ssi_private->clk);
			dev_err(&pdev->dev, "could not get clock: %d\n", ret);
908
			goto error_irqmap;
909
		}
910 911 912 913 914 915
		ret = clk_prepare_enable(ssi_private->clk);
		if (ret) {
			dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n",
				ret);
			goto error_irqmap;
		}
916

917 918 919 920
		/*
		 * We have burstsize be "fifo_depth - 2" to match the SSI
		 * watermark setting in fsl_ssi_startup().
		 */
921
		ssi_private->dma_params_tx.maxburst =
922
			ssi_private->fifo_depth - 2;
923
		ssi_private->dma_params_rx.maxburst =
924
			ssi_private->fifo_depth - 2;
925
		ssi_private->dma_params_tx.addr =
926
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
927
		ssi_private->dma_params_rx.addr =
928
			ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
929 930 931 932
		ssi_private->dma_params_tx.filter_data =
			&ssi_private->filter_data_tx;
		ssi_private->dma_params_rx.filter_data =
			&ssi_private->filter_data_rx;
933 934 935 936 937 938 939 940
		if (!of_property_read_bool(pdev->dev.of_node, "dmas") &&
				ssi_private->use_dma) {
			/*
			 * FIXME: This is a temporary solution until all
			 * necessary dma drivers support the generic dma
			 * bindings.
			 */
			ret = of_property_read_u32_array(pdev->dev.of_node,
941
					"fsl,ssi-dma-events", dma_events, 2);
942 943 944 945
			if (ret && ssi_private->use_dma) {
				dev_err(&pdev->dev, "could not get dma events but fsl-ssi is configured to use DMA\n");
				goto error_clk;
			}
946
		}
947 948 949 950

		shared = of_device_is_compatible(of_get_parent(np),
			    "fsl,spba-bus");

951
		imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx,
952
			dma_events[0], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
953
		imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx,
954
			dma_events[1], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
955 956 957 958 959 960 961 962 963 964
	} else if (ssi_private->use_dma) {
		/* The 'name' should not have any slashes in it. */
		ret = devm_request_irq(&pdev->dev, ssi_private->irq,
					fsl_ssi_isr, 0, ssi_private->name,
					ssi_private);
		if (ret < 0) {
			dev_err(&pdev->dev, "could not claim irq %u\n",
					ssi_private->irq);
			goto error_irqmap;
		}
965 966
	}

967
	/* Initialize the the device_attribute structure */
968
	dev_attr = &ssi_private->dev_attr;
969
	sysfs_attr_init(&dev_attr->attr);
970
	dev_attr->attr.name = "statistics";
971 972 973
	dev_attr->attr.mode = S_IRUGO;
	dev_attr->show = fsl_sysfs_ssi_show;

974
	ret = device_create_file(&pdev->dev, dev_attr);
975
	if (ret) {
976
		dev_err(&pdev->dev, "could not create sysfs %s file\n",
977
			ssi_private->dev_attr.attr.name);
978
		goto error_clk;
979 980
	}

981
	/* Register with ASoC */
982
	dev_set_drvdata(&pdev->dev, ssi_private);
M
Mark Brown 已提交
983

984 985
	ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
					 &ssi_private->cpu_dai_drv, 1);
986
	if (ret) {
987
		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
988
		goto error_dev;
989 990
	}

991
	if (ssi_private->ssi_on_imx) {
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
		if (!ssi_private->use_dma) {

			/*
			 * Some boards use an incompatible codec. To get it
			 * working, we are using imx-fiq-pcm-audio, that
			 * can handle those codecs. DMA is not possible in this
			 * situation.
			 */

			ssi_private->fiq_params.irq = ssi_private->irq;
			ssi_private->fiq_params.base = ssi_private->ssi;
			ssi_private->fiq_params.dma_params_rx =
				&ssi_private->dma_params_rx;
			ssi_private->fiq_params.dma_params_tx =
				&ssi_private->dma_params_tx;

			ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
			if (ret)
				goto error_dev;
		} else {
			ret = imx_pcm_dma_init(pdev);
			if (ret)
				goto error_dev;
		}
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	}

	/*
	 * If codec-handle property is missing from SSI node, we assume
	 * that the machine driver uses new binding which does not require
	 * SSI driver to trigger machine driver's probe.
	 */
	if (!of_get_property(np, "codec-handle", NULL)) {
		ssi_private->new_binding = true;
		goto done;
	}

1028
	/* Trigger the machine driver's probe function.  The platform driver
1029
	 * name of the machine driver is taken from /compatible property of the
1030 1031 1032
	 * device tree.  We also pass the address of the CPU DAI driver
	 * structure.
	 */
1033 1034
	sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
	/* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1035 1036 1037 1038 1039 1040 1041
	p = strrchr(sprop, ',');
	if (p)
		sprop = p + 1;
	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
	make_lowercase(name);

	ssi_private->pdev =
1042
		platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1043 1044
	if (IS_ERR(ssi_private->pdev)) {
		ret = PTR_ERR(ssi_private->pdev);
1045
		dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1046
		goto error_dai;
M
Mark Brown 已提交
1047
	}
1048

1049
done:
1050 1051 1052
	if (ssi_private->imx_ac97)
		fsl_ssi_ac97_init();

1053
	return 0;
1054

1055
error_dai:
1056
	snd_soc_unregister_component(&pdev->dev);
1057 1058 1059 1060

error_dev:
	device_remove_file(&pdev->dev, dev_attr);

1061
error_clk:
1062
	if (ssi_private->ssi_on_imx)
1063
		clk_disable_unprepare(ssi_private->clk);
1064 1065

error_irqmap:
1066
	irq_dispose_mapping(ssi_private->irq);
1067

1068
	return ret;
1069 1070
}

1071
static int fsl_ssi_remove(struct platform_device *pdev)
1072
{
1073
	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1074

1075 1076
	if (!ssi_private->new_binding)
		platform_device_unregister(ssi_private->pdev);
1077
	snd_soc_unregister_component(&pdev->dev);
1078
	device_remove_file(&pdev->dev, &ssi_private->dev_attr);
1079 1080
	if (ssi_private->ssi_on_imx)
		clk_disable_unprepare(ssi_private->clk);
1081
	irq_dispose_mapping(ssi_private->irq);
1082 1083

	return 0;
1084
}
1085 1086 1087

static const struct of_device_id fsl_ssi_ids[] = {
	{ .compatible = "fsl,mpc8610-ssi", },
1088
	{ .compatible = "fsl,imx21-ssi", },
1089 1090 1091 1092
	{}
};
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);

1093
static struct platform_driver fsl_ssi_driver = {
1094 1095 1096 1097 1098 1099 1100 1101
	.driver = {
		.name = "fsl-ssi-dai",
		.owner = THIS_MODULE,
		.of_match_table = fsl_ssi_ids,
	},
	.probe = fsl_ssi_probe,
	.remove = fsl_ssi_remove,
};
1102

1103
module_platform_driver(fsl_ssi_driver);
1104

1105
MODULE_ALIAS("platform:fsl-ssi-dai");
1106 1107
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1108
MODULE_LICENSE("GPL v2");