tick-broadcast.c 16.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * linux/kernel/time/tick-broadcast.c
 *
 * This file contains functions which emulate a local clock-event
 * device via a broadcast event source.
 *
 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 *
 * This code is licenced under the GPL version 2. For details see
 * kernel-base/COPYING.
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
17
#include <linux/interrupt.h>
18 19 20
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
21
#include <linux/smp.h>
22 23 24 25 26 27 28 29

#include "tick-internal.h"

/*
 * Broadcast support for broken x86 hardware, where the local apic
 * timer stops in C3 state.
 */

30
static struct tick_device tick_broadcast_device;
31 32 33
/* FIXME: Use cpumask_var_t. */
static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS);
static DECLARE_BITMAP(tmpmask, NR_CPUS);
34
static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
35
static int tick_broadcast_force;
36

37 38 39 40 41 42
#ifdef CONFIG_TICK_ONESHOT
static void tick_broadcast_clear_oneshot(int cpu);
#else
static inline void tick_broadcast_clear_oneshot(int cpu) { }
#endif

43 44 45 46 47 48 49 50
/*
 * Debugging: see timer_list.c
 */
struct tick_device *tick_get_broadcast_device(void)
{
	return &tick_broadcast_device;
}

51
struct cpumask *tick_get_broadcast_mask(void)
52
{
53
	return to_cpumask(tick_broadcast_mask);
54 55
}

56 57 58 59 60
/*
 * Start the device in periodic mode
 */
static void tick_broadcast_start_periodic(struct clock_event_device *bc)
{
T
Thomas Gleixner 已提交
61
	if (bc)
62 63 64 65 66 67 68 69
		tick_setup_periodic(bc, 1);
}

/*
 * Check, if the device can be utilized as broadcast device:
 */
int tick_check_broadcast_device(struct clock_event_device *dev)
{
70 71 72
	if ((tick_broadcast_device.evtdev &&
	     tick_broadcast_device.evtdev->rating >= dev->rating) ||
	     (dev->features & CLOCK_EVT_FEAT_C3STOP))
73 74
		return 0;

75
	clockevents_exchange_device(tick_broadcast_device.evtdev, dev);
76
	tick_broadcast_device.evtdev = dev;
77
	if (!cpumask_empty(tick_get_broadcast_mask()))
78 79 80 81 82 83 84 85 86 87 88 89
		tick_broadcast_start_periodic(dev);
	return 1;
}

/*
 * Check, if the device is the broadcast device
 */
int tick_is_broadcast_device(struct clock_event_device *dev)
{
	return (dev && tick_broadcast_device.evtdev == dev);
}

90 91 92 93 94
static void err_broadcast(const struct cpumask *mask)
{
	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
}

95 96 97 98 99 100 101 102 103 104 105
static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
{
	if (!dev->broadcast)
		dev->broadcast = tick_broadcast;
	if (!dev->broadcast) {
		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
			     dev->name);
		dev->broadcast = err_broadcast;
	}
}

106 107 108 109 110 111 112 113 114
/*
 * Check, if the device is disfunctional and a place holder, which
 * needs to be handled by the broadcast device.
 */
int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
{
	unsigned long flags;
	int ret = 0;

115
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
116 117 118 119 120 121 122 123 124

	/*
	 * Devices might be registered with both periodic and oneshot
	 * mode disabled. This signals, that the device needs to be
	 * operated from the broadcast device and is a placeholder for
	 * the cpu local device.
	 */
	if (!tick_device_is_functional(dev)) {
		dev->event_handler = tick_handle_periodic;
125
		tick_device_setup_broadcast_func(dev);
126
		cpumask_set_cpu(cpu, tick_get_broadcast_mask());
127 128
		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
		ret = 1;
129 130 131 132 133 134 135 136
	} else {
		/*
		 * When the new device is not affected by the stop
		 * feature and the cpu is marked in the broadcast mask
		 * then clear the broadcast bit.
		 */
		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
			int cpu = smp_processor_id();
137
			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
138
			tick_broadcast_clear_oneshot(cpu);
139 140
		} else {
			tick_device_setup_broadcast_func(dev);
141 142
		}
	}
143
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
144 145 146
	return ret;
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
int tick_receive_broadcast(void)
{
	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
	struct clock_event_device *evt = td->evtdev;

	if (!evt)
		return -ENODEV;

	if (!evt->event_handler)
		return -EINVAL;

	evt->event_handler(evt);
	return 0;
}
#endif

164
/*
165
 * Broadcast the event to the cpus, which are set in the mask (mangled).
166
 */
167
static void tick_do_broadcast(struct cpumask *mask)
168
{
169
	int cpu = smp_processor_id();
170 171 172 173 174
	struct tick_device *td;

	/*
	 * Check, if the current cpu is in the mask
	 */
175 176
	if (cpumask_test_cpu(cpu, mask)) {
		cpumask_clear_cpu(cpu, mask);
177 178 179 180
		td = &per_cpu(tick_cpu_device, cpu);
		td->evtdev->event_handler(td->evtdev);
	}

181
	if (!cpumask_empty(mask)) {
182 183 184 185 186 187
		/*
		 * It might be necessary to actually check whether the devices
		 * have different broadcast functions. For now, just use the
		 * one of the first device. This works as long as we have this
		 * misfeature only on x86 (lapic)
		 */
188 189
		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
		td->evtdev->broadcast(mask);
190 191 192 193 194 195 196 197 198
	}
}

/*
 * Periodic broadcast:
 * - invoke the broadcast handlers
 */
static void tick_do_periodic_broadcast(void)
{
199
	raw_spin_lock(&tick_broadcast_lock);
200

201 202 203
	cpumask_and(to_cpumask(tmpmask),
		    cpu_online_mask, tick_get_broadcast_mask());
	tick_do_broadcast(to_cpumask(tmpmask));
204

205
	raw_spin_unlock(&tick_broadcast_lock);
206 207 208 209 210 211 212
}

/*
 * Event handler for periodic broadcast ticks
 */
static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
{
213 214
	ktime_t next;

215 216 217 218 219 220 221 222 223 224
	tick_do_periodic_broadcast();

	/*
	 * The device is in periodic mode. No reprogramming necessary:
	 */
	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
		return;

	/*
	 * Setup the next period for devices, which do not have
225
	 * periodic mode. We read dev->next_event first and add to it
226
	 * when the event already expired. clockevents_program_event()
227 228
	 * sets dev->next_event only when the event is really
	 * programmed to the device.
229
	 */
230 231
	for (next = dev->next_event; ;) {
		next = ktime_add(next, tick_period);
232

233
		if (!clockevents_program_event(dev, next, false))
234 235 236 237 238 239 240 241 242
			return;
		tick_do_periodic_broadcast();
	}
}

/*
 * Powerstate information: The system enters/leaves a state, where
 * affected devices might stop
 */
243
static void tick_do_broadcast_on_off(unsigned long *reason)
244 245 246
{
	struct clock_event_device *bc, *dev;
	struct tick_device *td;
247
	unsigned long flags;
248
	int cpu, bc_stopped;
249

250
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
251 252 253 254 255 256 257

	cpu = smp_processor_id();
	td = &per_cpu(tick_cpu_device, cpu);
	dev = td->evtdev;
	bc = tick_broadcast_device.evtdev;

	/*
258
	 * Is the device not affected by the powerstate ?
259
	 */
260
	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
261 262
		goto out;

263 264
	if (!tick_device_is_functional(dev))
		goto out;
265

266
	bc_stopped = cpumask_empty(tick_get_broadcast_mask());
267

268 269 270
	switch (*reason) {
	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
271 272
		if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
			cpumask_set_cpu(cpu, tick_get_broadcast_mask());
273 274
			if (tick_broadcast_device.mode ==
			    TICKDEV_MODE_PERIODIC)
275
				clockevents_shutdown(dev);
276
		}
277
		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
278
			tick_broadcast_force = 1;
279 280
		break;
	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
281
		if (!tick_broadcast_force &&
282 283
		    cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
284 285
			if (tick_broadcast_device.mode ==
			    TICKDEV_MODE_PERIODIC)
286 287
				tick_setup_periodic(dev, 0);
		}
288
		break;
289 290
	}

291
	if (cpumask_empty(tick_get_broadcast_mask())) {
292
		if (!bc_stopped)
293
			clockevents_shutdown(bc);
294
	} else if (bc_stopped) {
295 296
		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
			tick_broadcast_start_periodic(bc);
297 298
		else
			tick_broadcast_setup_oneshot(bc);
299 300
	}
out:
301
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
302 303 304 305 306 307 308 309
}

/*
 * Powerstate information: The system enters/leaves a state, where
 * affected devices might stop.
 */
void tick_broadcast_on_off(unsigned long reason, int *oncpu)
{
310
	if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
311
		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
312
		       "offline CPU #%d\n", *oncpu);
313
	else
314
		tick_do_broadcast_on_off(&reason);
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
}

/*
 * Set the periodic handler depending on broadcast on/off
 */
void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
{
	if (!broadcast)
		dev->event_handler = tick_handle_periodic;
	else
		dev->event_handler = tick_handle_periodic_broadcast;
}

/*
 * Remove a CPU from broadcasting
 */
void tick_shutdown_broadcast(unsigned int *cpup)
{
	struct clock_event_device *bc;
	unsigned long flags;
	unsigned int cpu = *cpup;

337
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
338 339

	bc = tick_broadcast_device.evtdev;
340
	cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
341 342

	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
343
		if (bc && cpumask_empty(tick_get_broadcast_mask()))
344
			clockevents_shutdown(bc);
345 346
	}

347
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
348
}
349

350 351 352 353 354
void tick_suspend_broadcast(void)
{
	struct clock_event_device *bc;
	unsigned long flags;

355
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
356 357

	bc = tick_broadcast_device.evtdev;
T
Thomas Gleixner 已提交
358
	if (bc)
359
		clockevents_shutdown(bc);
360

361
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
362 363 364 365 366 367 368 369
}

int tick_resume_broadcast(void)
{
	struct clock_event_device *bc;
	unsigned long flags;
	int broadcast = 0;

370
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
371 372 373

	bc = tick_broadcast_device.evtdev;

374
	if (bc) {
T
Thomas Gleixner 已提交
375 376
		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);

377 378
		switch (tick_broadcast_device.mode) {
		case TICKDEV_MODE_PERIODIC:
379
			if (!cpumask_empty(tick_get_broadcast_mask()))
380
				tick_broadcast_start_periodic(bc);
381 382
			broadcast = cpumask_test_cpu(smp_processor_id(),
						     tick_get_broadcast_mask());
383 384
			break;
		case TICKDEV_MODE_ONESHOT:
385 386
			if (!cpumask_empty(tick_get_broadcast_mask()))
				broadcast = tick_resume_broadcast_oneshot(bc);
387 388
			break;
		}
389
	}
390
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
391 392 393 394 395

	return broadcast;
}


396 397
#ifdef CONFIG_TICK_ONESHOT

398 399
/* FIXME: use cpumask_var_t. */
static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS);
400

401
/*
402
 * Exposed for debugging: see timer_list.c
403
 */
404
struct cpumask *tick_get_broadcast_oneshot_mask(void)
405
{
406
	return to_cpumask(tick_broadcast_oneshot_mask);
407 408
}

409 410 411
static int tick_broadcast_set_event(ktime_t expires, int force)
{
	struct clock_event_device *bc = tick_broadcast_device.evtdev;
412

413 414 415
	if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);

416
	return clockevents_program_event(bc, expires, force);
417 418
}

419 420 421
int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
{
	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
422
	return 0;
423 424
}

425 426 427 428 429 430
/*
 * Called from irq_enter() when idle was interrupted to reenable the
 * per cpu device.
 */
void tick_check_oneshot_broadcast(int cpu)
{
431
	if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) {
432 433 434 435 436 437
		struct tick_device *td = &per_cpu(tick_cpu_device, cpu);

		clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
	}
}

438 439 440 441 442 443
/*
 * Handle oneshot mode broadcasting
 */
static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
{
	struct tick_device *td;
444
	ktime_t now, next_event;
445 446
	int cpu;

447
	raw_spin_lock(&tick_broadcast_lock);
448 449
again:
	dev->next_event.tv64 = KTIME_MAX;
450
	next_event.tv64 = KTIME_MAX;
451
	cpumask_clear(to_cpumask(tmpmask));
452 453
	now = ktime_get();
	/* Find all expired events */
454
	for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) {
455 456
		td = &per_cpu(tick_cpu_device, cpu);
		if (td->evtdev->next_event.tv64 <= now.tv64)
457
			cpumask_set_cpu(cpu, to_cpumask(tmpmask));
458 459
		else if (td->evtdev->next_event.tv64 < next_event.tv64)
			next_event.tv64 = td->evtdev->next_event.tv64;
460 461 462
	}

	/*
463 464
	 * Wakeup the cpus which have an expired event.
	 */
465
	tick_do_broadcast(to_cpumask(tmpmask));
466 467 468 469 470 471 472 473 474 475

	/*
	 * Two reasons for reprogram:
	 *
	 * - The global event did not expire any CPU local
	 * events. This happens in dyntick mode, as the maximum PIT
	 * delta is quite small.
	 *
	 * - There are pending events on sleeping CPUs which were not
	 * in the event mask
476
	 */
477
	if (next_event.tv64 != KTIME_MAX) {
478
		/*
479 480
		 * Rearm the broadcast device. If event expired,
		 * repeat the above
481
		 */
482
		if (tick_broadcast_set_event(next_event, 0))
483 484
			goto again;
	}
485
	raw_spin_unlock(&tick_broadcast_lock);
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
}

/*
 * Powerstate information: The system enters/leaves a state, where
 * affected devices might stop
 */
void tick_broadcast_oneshot_control(unsigned long reason)
{
	struct clock_event_device *bc, *dev;
	struct tick_device *td;
	unsigned long flags;
	int cpu;

	/*
	 * Periodic mode does not care about the enter/exit of power
	 * states
	 */
	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
504
		return;
505

506 507 508 509
	/*
	 * We are called with preemtion disabled from the depth of the
	 * idle code, so we can't be moved away.
	 */
510 511 512 513 514
	cpu = smp_processor_id();
	td = &per_cpu(tick_cpu_device, cpu);
	dev = td->evtdev;

	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
515 516 517
		return;

	bc = tick_broadcast_device.evtdev;
518

519
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
520
	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
521 522
		if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
			cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask());
523 524 525 526 527
			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
			if (dev->next_event.tv64 < bc->next_event.tv64)
				tick_broadcast_set_event(dev->next_event, 1);
		}
	} else {
528 529 530
		if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
			cpumask_clear_cpu(cpu,
					  tick_get_broadcast_oneshot_mask());
531 532 533 534 535
			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
			if (dev->next_event.tv64 != KTIME_MAX)
				tick_program_event(dev->next_event, 1);
		}
	}
536
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
537 538
}

539 540 541 542 543 544 545
/*
 * Reset the one shot broadcast for a cpu
 *
 * Called with tick_broadcast_lock held
 */
static void tick_broadcast_clear_oneshot(int cpu)
{
546
	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
547 548
}

549 550
static void tick_broadcast_init_next_event(struct cpumask *mask,
					   ktime_t expires)
551 552 553 554
{
	struct tick_device *td;
	int cpu;

555
	for_each_cpu(cpu, mask) {
556 557 558 559 560 561
		td = &per_cpu(tick_cpu_device, cpu);
		if (td->evtdev)
			td->evtdev->next_event = expires;
	}
}

562
/**
563
 * tick_broadcast_setup_oneshot - setup the broadcast device
564 565 566
 */
void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
{
567 568
	int cpu = smp_processor_id();

569 570
	/* Set it up only once ! */
	if (bc->event_handler != tick_handle_oneshot_broadcast) {
571 572
		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;

573
		bc->event_handler = tick_handle_oneshot_broadcast;
574 575

		/* Take the do_timer update */
576 577
		if (!tick_nohz_extended_cpu(cpu))
			tick_do_timer_cpu = cpu;
578 579 580 581 582 583 584

		/*
		 * We must be careful here. There might be other CPUs
		 * waiting for periodic broadcast. We need to set the
		 * oneshot_mask bits for those and program the
		 * broadcast device to fire.
		 */
585 586 587 588 589 590 591
		cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask());
		cpumask_clear_cpu(cpu, to_cpumask(tmpmask));
		cpumask_or(tick_get_broadcast_oneshot_mask(),
			   tick_get_broadcast_oneshot_mask(),
			   to_cpumask(tmpmask));

		if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) {
592
			clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
593 594
			tick_broadcast_init_next_event(to_cpumask(tmpmask),
						       tick_next_period);
595 596 597
			tick_broadcast_set_event(tick_next_period, 1);
		} else
			bc->next_event.tv64 = KTIME_MAX;
598 599 600 601 602 603 604 605 606
	} else {
		/*
		 * The first cpu which switches to oneshot mode sets
		 * the bit for all other cpus which are in the general
		 * (periodic) broadcast mask. So the bit is set and
		 * would prevent the first broadcast enter after this
		 * to program the bc device.
		 */
		tick_broadcast_clear_oneshot(cpu);
607
	}
608 609 610 611 612 613 614 615 616 617
}

/*
 * Select oneshot operating mode for the broadcast device
 */
void tick_broadcast_switch_to_oneshot(void)
{
	struct clock_event_device *bc;
	unsigned long flags;

618
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
619 620

	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
621 622 623
	bc = tick_broadcast_device.evtdev;
	if (bc)
		tick_broadcast_setup_oneshot(bc);
624

625
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
626 627 628 629 630 631 632 633 634 635 636
}


/*
 * Remove a dead CPU from broadcasting
 */
void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
{
	unsigned long flags;
	unsigned int cpu = *cpup;

637
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
638

639 640 641 642
	/*
	 * Clear the broadcast mask flag for the dead cpu, but do not
	 * stop the broadcast device!
	 */
643
	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
644

645
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
646 647
}

648 649 650 651 652 653 654 655
/*
 * Check, whether the broadcast device is in one shot mode
 */
int tick_broadcast_oneshot_active(void)
{
	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
}

656 657 658 659 660 661 662 663 664 665
/*
 * Check whether the broadcast device supports oneshot.
 */
bool tick_broadcast_oneshot_available(void)
{
	struct clock_event_device *bc = tick_broadcast_device.evtdev;

	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
}

666
#endif