soc-cache.c 36.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * soc-cache.c  --  ASoC register cache helpers
 *
 * Copyright 2009 Wolfson Microelectronics PLC.
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 */

14
#include <linux/i2c.h>
15
#include <linux/spi/spi.h>
16
#include <sound/soc.h>
17 18
#include <linux/lzo.h>
#include <linux/bitmap.h>
19
#include <linux/rbtree.h>
20

21 22 23
static unsigned int snd_soc_4_12_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
24 25
	int ret;
	unsigned int val;
26 27 28 29 30 31

	if (reg >= codec->driver->reg_cache_size ||
		snd_soc_codec_volatile_register(codec, reg)) {
			if (codec->cache_only)
				return -1;

32
			BUG_ON(!codec->hw_read);
33 34 35
			return codec->hw_read(codec, reg);
	}

36 37 38 39
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
40 41 42 43 44 45 46 47 48 49 50
}

static int snd_soc_4_12_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];
	int ret;

	data[0] = (reg << 4) | ((value >> 8) & 0x000f);
	data[1] = value & 0x00ff;

51
	if (!snd_soc_codec_volatile_register(codec, reg) &&
52 53 54 55 56
		reg < codec->driver->reg_cache_size) {
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}
57

58 59
	if (codec->cache_only) {
		codec->cache_sync = 1;
60
		return 0;
61
	}
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
	ret = codec->hw_write(codec->control_data, data, 2);
	if (ret == 2)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

#if defined(CONFIG_SPI_MASTER)
static int snd_soc_4_12_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[2];

	if (len <= 0)
		return 0;

	msg[0] = data[1];
	msg[1] = data[0];

	spi_message_init(&m);
88
	memset(&t, 0, sizeof t);
89 90 91 92 93 94 95 96 97 98 99 100 101

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_4_12_spi_write NULL
#endif

102 103 104
static unsigned int snd_soc_7_9_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
105 106
	int ret;
	unsigned int val;
107 108 109 110 111 112

	if (reg >= codec->driver->reg_cache_size ||
		snd_soc_codec_volatile_register(codec, reg)) {
			if (codec->cache_only)
				return -1;

113
			BUG_ON(!codec->hw_read);
114 115 116
			return codec->hw_read(codec, reg);
	}

117 118 119 120
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
121 122 123 124 125 126 127 128 129 130 131
}

static int snd_soc_7_9_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];
	int ret;

	data[0] = (reg << 1) | ((value >> 8) & 0x0001);
	data[1] = value & 0x00ff;

132
	if (!snd_soc_codec_volatile_register(codec, reg) &&
133 134 135 136 137
		reg < codec->driver->reg_cache_size) {
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}
138

139 140
	if (codec->cache_only) {
		codec->cache_sync = 1;
141
		return 0;
142
	}
143

144 145 146 147 148 149 150 151 152
	ret = codec->hw_write(codec->control_data, data, 2);
	if (ret == 2)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_7_9_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[2];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];

	spi_message_init(&m);
169
	memset(&t, 0, sizeof t);
170 171 172 173 174 175 176 177 178 179 180 181 182

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_7_9_spi_write NULL
#endif

183 184 185 186
static int snd_soc_8_8_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];
187
	int ret;
188

189 190
	reg &= 0xff;
	data[0] = reg;
191 192
	data[1] = value & 0xff;

193
	if (!snd_soc_codec_volatile_register(codec, reg) &&
194 195 196 197 198
		reg < codec->driver->reg_cache_size) {
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}
199

200 201
	if (codec->cache_only) {
		codec->cache_sync = 1;
202
		return 0;
203
	}
204

205 206 207 208 209 210 211 212 213
	if (codec->hw_write(codec->control_data, data, 2) == 2)
		return 0;
	else
		return -EIO;
}

static unsigned int snd_soc_8_8_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
214 215
	int ret;
	unsigned int val;
216

217
	reg &= 0xff;
218 219 220 221 222
	if (reg >= codec->driver->reg_cache_size ||
		snd_soc_codec_volatile_register(codec, reg)) {
			if (codec->cache_only)
				return -1;

223
			BUG_ON(!codec->hw_read);
224 225 226
			return codec->hw_read(codec, reg);
	}

227 228 229 230
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
231 232
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_8_8_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[2];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];

	spi_message_init(&m);
249
	memset(&t, 0, sizeof t);
250 251 252 253 254 255 256 257 258 259 260 261 262

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_8_8_spi_write NULL
#endif

263 264 265 266
static int snd_soc_8_16_write(struct snd_soc_codec *codec, unsigned int reg,
			      unsigned int value)
{
	u8 data[3];
267
	int ret;
268 269 270 271 272

	data[0] = reg;
	data[1] = (value >> 8) & 0xff;
	data[2] = value & 0xff;

273
	if (!snd_soc_codec_volatile_register(codec, reg) &&
274 275 276 277 278
		reg < codec->driver->reg_cache_size) {
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}
279

280 281
	if (codec->cache_only) {
		codec->cache_sync = 1;
282
		return 0;
283
	}
284

285 286 287 288 289 290 291 292 293
	if (codec->hw_write(codec->control_data, data, 3) == 3)
		return 0;
	else
		return -EIO;
}

static unsigned int snd_soc_8_16_read(struct snd_soc_codec *codec,
				      unsigned int reg)
{
294 295
	int ret;
	unsigned int val;
296

297
	if (reg >= codec->driver->reg_cache_size ||
298 299
	    snd_soc_codec_volatile_register(codec, reg)) {
		if (codec->cache_only)
300
			return -1;
301

302
		BUG_ON(!codec->hw_read);
303
		return codec->hw_read(codec, reg);
304
	}
305 306 307 308 309

	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
310 311
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_8_16_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[3];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];
	msg[2] = data[2];

	spi_message_init(&m);
329
	memset(&t, 0, sizeof t);
330 331 332 333 334 335 336 337 338 339 340 341 342

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_8_16_spi_write NULL
#endif

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_8_8_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	struct i2c_msg xfer[2];
	u8 reg = r;
	u8 data;
	int ret;
	struct i2c_client *client = codec->control_data;

	/* Write register */
	xfer[0].addr = client->addr;
	xfer[0].flags = 0;
	xfer[0].len = 1;
	xfer[0].buf = &reg;

	/* Read data */
	xfer[1].addr = client->addr;
	xfer[1].flags = I2C_M_RD;
	xfer[1].len = 1;
	xfer[1].buf = &data;

	ret = i2c_transfer(client->adapter, xfer, 2);
	if (ret != 2) {
		dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
		return 0;
	}

	return data;
}
#else
#define snd_soc_8_8_read_i2c NULL
#endif

R
Randy Dunlap 已提交
377
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
static unsigned int snd_soc_8_16_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	struct i2c_msg xfer[2];
	u8 reg = r;
	u16 data;
	int ret;
	struct i2c_client *client = codec->control_data;

	/* Write register */
	xfer[0].addr = client->addr;
	xfer[0].flags = 0;
	xfer[0].len = 1;
	xfer[0].buf = &reg;

	/* Read data */
	xfer[1].addr = client->addr;
	xfer[1].flags = I2C_M_RD;
	xfer[1].len = 2;
	xfer[1].buf = (u8 *)&data;

	ret = i2c_transfer(client->adapter, xfer, 2);
	if (ret != 2) {
		dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
		return 0;
	}

	return (data >> 8) | ((data & 0xff) << 8);
}
#else
#define snd_soc_8_16_read_i2c NULL
#endif
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_8_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	struct i2c_msg xfer[2];
	u16 reg = r;
	u8 data;
	int ret;
	struct i2c_client *client = codec->control_data;

	/* Write register */
	xfer[0].addr = client->addr;
	xfer[0].flags = 0;
	xfer[0].len = 2;
	xfer[0].buf = (u8 *)&reg;

	/* Read data */
	xfer[1].addr = client->addr;
	xfer[1].flags = I2C_M_RD;
	xfer[1].len = 1;
	xfer[1].buf = &data;

	ret = i2c_transfer(client->adapter, xfer, 2);
	if (ret != 2) {
		dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
		return 0;
	}

	return data;
}
#else
#define snd_soc_16_8_read_i2c NULL
#endif

static unsigned int snd_soc_16_8_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
448 449
	int ret;
	unsigned int val;
450 451

	reg &= 0xff;
452 453 454 455 456
	if (reg >= codec->driver->reg_cache_size ||
		snd_soc_codec_volatile_register(codec, reg)) {
			if (codec->cache_only)
				return -1;

457
			BUG_ON(!codec->hw_read);
458 459 460
			return codec->hw_read(codec, reg);
	}

461 462 463 464
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
465 466 467 468 469 470 471 472 473 474 475 476 477
}

static int snd_soc_16_8_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[3];
	int ret;

	data[0] = (reg >> 8) & 0xff;
	data[1] = reg & 0xff;
	data[2] = value;

	reg &= 0xff;
478
	if (!snd_soc_codec_volatile_register(codec, reg) &&
479 480 481 482 483
		reg < codec->driver->reg_cache_size) {
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}
484

485 486
	if (codec->cache_only) {
		codec->cache_sync = 1;
487
		return 0;
488
	}
489

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
	ret = codec->hw_write(codec->control_data, data, 3);
	if (ret == 3)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

#if defined(CONFIG_SPI_MASTER)
static int snd_soc_16_8_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[3];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];
	msg[2] = data[2];

	spi_message_init(&m);
516
	memset(&t, 0, sizeof t);
517 518 519 520 521 522 523 524 525 526 527 528 529

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_16_8_spi_write NULL
#endif

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_16_read_i2c(struct snd_soc_codec *codec,
					   unsigned int r)
{
	struct i2c_msg xfer[2];
	u16 reg = cpu_to_be16(r);
	u16 data;
	int ret;
	struct i2c_client *client = codec->control_data;

	/* Write register */
	xfer[0].addr = client->addr;
	xfer[0].flags = 0;
	xfer[0].len = 2;
	xfer[0].buf = (u8 *)&reg;

	/* Read data */
	xfer[1].addr = client->addr;
	xfer[1].flags = I2C_M_RD;
	xfer[1].len = 2;
	xfer[1].buf = (u8 *)&data;

	ret = i2c_transfer(client->adapter, xfer, 2);
	if (ret != 2) {
		dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
		return 0;
	}

	return be16_to_cpu(data);
}
#else
#define snd_soc_16_16_read_i2c NULL
#endif

static unsigned int snd_soc_16_16_read(struct snd_soc_codec *codec,
				       unsigned int reg)
{
567 568
	int ret;
	unsigned int val;
569

570
	if (reg >= codec->driver->reg_cache_size ||
571 572
	    snd_soc_codec_volatile_register(codec, reg)) {
		if (codec->cache_only)
573
			return -1;
574

575
		BUG_ON(!codec->hw_read);
576 577 578
		return codec->hw_read(codec, reg);
	}

579 580 581 582 583
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;

	return val;
584 585 586 587 588 589 590 591 592 593 594 595 596
}

static int snd_soc_16_16_write(struct snd_soc_codec *codec, unsigned int reg,
			       unsigned int value)
{
	u8 data[4];
	int ret;

	data[0] = (reg >> 8) & 0xff;
	data[1] = reg & 0xff;
	data[2] = (value >> 8) & 0xff;
	data[3] = value & 0xff;

597
	if (!snd_soc_codec_volatile_register(codec, reg) &&
598 599 600 601 602
		reg < codec->driver->reg_cache_size) {
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}
603 604 605 606 607 608 609 610 611 612 613 614 615 616

	if (codec->cache_only) {
		codec->cache_sync = 1;
		return 0;
	}

	ret = codec->hw_write(codec->control_data, data, 4);
	if (ret == 4)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}
617

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_16_16_spi_write(void *control_data, const char *data,
				 int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;
	u8 msg[4];

	if (len <= 0)
		return 0;

	msg[0] = data[0];
	msg[1] = data[1];
	msg[2] = data[2];
	msg[3] = data[3];

	spi_message_init(&m);
636
	memset(&t, 0, sizeof t);
637 638 639 640 641 642 643 644 645 646 647 648 649

	t.tx_buf = &msg[0];
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#else
#define snd_soc_16_16_spi_write NULL
#endif

650 651 652
static struct {
	int addr_bits;
	int data_bits;
653
	int (*write)(struct snd_soc_codec *codec, unsigned int, unsigned int);
654
	int (*spi_write)(void *, const char *, int);
655
	unsigned int (*read)(struct snd_soc_codec *, unsigned int);
656
	unsigned int (*i2c_read)(struct snd_soc_codec *, unsigned int);
657
} io_types[] = {
658 659 660 661 662
	{
		.addr_bits = 4, .data_bits = 12,
		.write = snd_soc_4_12_write, .read = snd_soc_4_12_read,
		.spi_write = snd_soc_4_12_spi_write,
	},
663 664 665
	{
		.addr_bits = 7, .data_bits = 9,
		.write = snd_soc_7_9_write, .read = snd_soc_7_9_read,
666
		.spi_write = snd_soc_7_9_spi_write,
667 668 669 670
	},
	{
		.addr_bits = 8, .data_bits = 8,
		.write = snd_soc_8_8_write, .read = snd_soc_8_8_read,
671
		.i2c_read = snd_soc_8_8_read_i2c,
672
		.spi_write = snd_soc_8_8_spi_write,
673 674 675 676 677
	},
	{
		.addr_bits = 8, .data_bits = 16,
		.write = snd_soc_8_16_write, .read = snd_soc_8_16_read,
		.i2c_read = snd_soc_8_16_read_i2c,
678
		.spi_write = snd_soc_8_16_spi_write,
679
	},
680 681 682 683 684 685
	{
		.addr_bits = 16, .data_bits = 8,
		.write = snd_soc_16_8_write, .read = snd_soc_16_8_read,
		.i2c_read = snd_soc_16_8_read_i2c,
		.spi_write = snd_soc_16_8_spi_write,
	},
686 687 688 689
	{
		.addr_bits = 16, .data_bits = 16,
		.write = snd_soc_16_16_write, .read = snd_soc_16_16_read,
		.i2c_read = snd_soc_16_16_read_i2c,
690
		.spi_write = snd_soc_16_16_spi_write,
691
	},
692 693 694 695 696 697 698 699 700
};

/**
 * snd_soc_codec_set_cache_io: Set up standard I/O functions.
 *
 * @codec: CODEC to configure.
 * @type: Type of cache.
 * @addr_bits: Number of bits of register address data.
 * @data_bits: Number of bits of data per register.
701
 * @control: Control bus used.
702 703 704 705 706 707 708 709 710 711 712 713 714
 *
 * Register formats are frequently shared between many I2C and SPI
 * devices.  In order to promote code reuse the ASoC core provides
 * some standard implementations of CODEC read and write operations
 * which can be set up using this function.
 *
 * The caller is responsible for allocating and initialising the
 * actual cache.
 *
 * Note that at present this code cannot be used by CODECs with
 * volatile registers.
 */
int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec,
715 716
			       int addr_bits, int data_bits,
			       enum snd_soc_control_type control)
717 718 719 720 721 722 723 724 725 726 727 728 729 730
{
	int i;

	for (i = 0; i < ARRAY_SIZE(io_types); i++)
		if (io_types[i].addr_bits == addr_bits &&
		    io_types[i].data_bits == data_bits)
			break;
	if (i == ARRAY_SIZE(io_types)) {
		printk(KERN_ERR
		       "No I/O functions for %d bit address %d bit data\n",
		       addr_bits, data_bits);
		return -EINVAL;
	}

731 732
	codec->write = io_types[i].write;
	codec->read = io_types[i].read;
733

734 735 736 737 738
	switch (control) {
	case SND_SOC_CUSTOM:
		break;

	case SND_SOC_I2C:
R
Randy Dunlap 已提交
739
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
740 741
		codec->hw_write = (hw_write_t)i2c_master_send;
#endif
742 743
		if (io_types[i].i2c_read)
			codec->hw_read = io_types[i].i2c_read;
744 745 746 747

		codec->control_data = container_of(codec->dev,
						   struct i2c_client,
						   dev);
748 749 750
		break;

	case SND_SOC_SPI:
751 752
		if (io_types[i].spi_write)
			codec->hw_write = io_types[i].spi_write;
753 754 755 756

		codec->control_data = container_of(codec->dev,
						   struct spi_device,
						   dev);
757 758 759
		break;
	}

760 761 762
	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_codec_set_cache_io);
763

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
struct snd_soc_rbtree_node {
	struct rb_node node;
	unsigned int reg;
	unsigned int value;
	unsigned int defval;
} __attribute__ ((packed));

struct snd_soc_rbtree_ctx {
	struct rb_root root;
};

static struct snd_soc_rbtree_node *snd_soc_rbtree_lookup(
	struct rb_root *root, unsigned int reg)
{
	struct rb_node *node;
	struct snd_soc_rbtree_node *rbnode;

	node = root->rb_node;
	while (node) {
		rbnode = container_of(node, struct snd_soc_rbtree_node, node);
		if (rbnode->reg < reg)
			node = node->rb_left;
		else if (rbnode->reg > reg)
			node = node->rb_right;
		else
			return rbnode;
	}

	return NULL;
}

static int snd_soc_rbtree_insert(struct rb_root *root,
				 struct snd_soc_rbtree_node *rbnode)
{
	struct rb_node **new, *parent;
	struct snd_soc_rbtree_node *rbnode_tmp;

	parent = NULL;
	new = &root->rb_node;
	while (*new) {
		rbnode_tmp = container_of(*new, struct snd_soc_rbtree_node,
					  node);
		parent = *new;
		if (rbnode_tmp->reg < rbnode->reg)
			new = &((*new)->rb_left);
		else if (rbnode_tmp->reg > rbnode->reg)
			new = &((*new)->rb_right);
		else
			return 0;
	}

	/* insert the node into the rbtree */
	rb_link_node(&rbnode->node, parent, new);
	rb_insert_color(&rbnode->node, root);

	return 1;
}

static int snd_soc_rbtree_cache_sync(struct snd_soc_codec *codec)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct rb_node *node;
	struct snd_soc_rbtree_node *rbnode;
	unsigned int val;
828
	int ret;
829 830 831 832 833 834

	rbtree_ctx = codec->reg_cache;
	for (node = rb_first(&rbtree_ctx->root); node; node = rb_next(node)) {
		rbnode = rb_entry(node, struct snd_soc_rbtree_node, node);
		if (rbnode->value == rbnode->defval)
			continue;
835 836 837 838 839 840
		ret = snd_soc_cache_read(codec, rbnode->reg, &val);
		if (ret)
			return ret;
		ret = snd_soc_write(codec, rbnode->reg, val);
		if (ret)
			return ret;
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			rbnode->reg, val);
	}

	return 0;
}

static int snd_soc_rbtree_cache_write(struct snd_soc_codec *codec,
				      unsigned int reg, unsigned int value)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbnode;

	rbtree_ctx = codec->reg_cache;
	rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
	if (rbnode) {
		if (rbnode->value == value)
			return 0;
		rbnode->value = value;
	} else {
		/* bail out early, no need to create the rbnode yet */
		if (!value)
			return 0;
		/*
		 * for uninitialized registers whose value is changed
		 * from the default zero, create an rbnode and insert
		 * it into the tree.
		 */
		rbnode = kzalloc(sizeof *rbnode, GFP_KERNEL);
		if (!rbnode)
			return -ENOMEM;
		rbnode->reg = reg;
		rbnode->value = value;
		snd_soc_rbtree_insert(&rbtree_ctx->root, rbnode);
	}

	return 0;
}

static int snd_soc_rbtree_cache_read(struct snd_soc_codec *codec,
				     unsigned int reg, unsigned int *value)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbnode;

	rbtree_ctx = codec->reg_cache;
	rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
	if (rbnode) {
		*value = rbnode->value;
	} else {
		/* uninitialized registers default to 0 */
		*value = 0;
	}

	return 0;
}

static int snd_soc_rbtree_cache_exit(struct snd_soc_codec *codec)
{
	struct rb_node *next;
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbtree_node;

	/* if we've already been called then just return */
	rbtree_ctx = codec->reg_cache;
	if (!rbtree_ctx)
		return 0;

	/* free up the rbtree */
	next = rb_first(&rbtree_ctx->root);
	while (next) {
		rbtree_node = rb_entry(next, struct snd_soc_rbtree_node, node);
		next = rb_next(&rbtree_node->node);
		rb_erase(&rbtree_node->node, &rbtree_ctx->root);
		kfree(rbtree_node);
	}

	/* release the resources */
	kfree(codec->reg_cache);
	codec->reg_cache = NULL;

	return 0;
}

static int snd_soc_rbtree_cache_init(struct snd_soc_codec *codec)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;

	codec->reg_cache = kmalloc(sizeof *rbtree_ctx, GFP_KERNEL);
	if (!codec->reg_cache)
		return -ENOMEM;

	rbtree_ctx = codec->reg_cache;
	rbtree_ctx->root = RB_ROOT;

936
	if (!codec->reg_def_copy)
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
		return 0;

/*
 * populate the rbtree with the initialized registers.  All other
 * registers will be inserted into the tree when they are first written.
 *
 * The reasoning behind this, is that we need to step through and
 * dereference the cache in u8/u16 increments without sacrificing
 * portability.  This could also be done using memcpy() but that would
 * be slightly more cryptic.
 */
#define snd_soc_rbtree_populate(cache)					\
({									\
	int ret, i;							\
	struct snd_soc_rbtree_node *rbtree_node;			\
									\
	ret = 0;							\
954
	cache = codec->reg_def_copy;					\
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	for (i = 0; i < codec->driver->reg_cache_size; ++i) {		\
		if (!cache[i])						\
			continue;					\
		rbtree_node = kzalloc(sizeof *rbtree_node, GFP_KERNEL);	\
		if (!rbtree_node) {					\
			ret = -ENOMEM;					\
			snd_soc_cache_exit(codec);			\
			break;						\
		}							\
		rbtree_node->reg = i;					\
		rbtree_node->value = cache[i];				\
		rbtree_node->defval = cache[i];				\
		snd_soc_rbtree_insert(&rbtree_ctx->root,		\
				      rbtree_node);			\
	}								\
	ret;								\
})

	switch (codec->driver->reg_word_size) {
	case 1: {
		const u8 *cache;

		return snd_soc_rbtree_populate(cache);
	}
	case 2: {
		const u16 *cache;

		return snd_soc_rbtree_populate(cache);
	}
	default:
		BUG();
	}

	return 0;
}

991
#ifdef CONFIG_SND_SOC_CACHE_LZO
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
struct snd_soc_lzo_ctx {
	void *wmem;
	void *dst;
	const void *src;
	size_t src_len;
	size_t dst_len;
	size_t decompressed_size;
	unsigned long *sync_bmp;
	int sync_bmp_nbits;
};

#define LZO_BLOCK_NUM 8
static int snd_soc_lzo_block_count(void)
{
	return LZO_BLOCK_NUM;
}

static int snd_soc_lzo_prepare(struct snd_soc_lzo_ctx *lzo_ctx)
{
	lzo_ctx->wmem = kmalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
	if (!lzo_ctx->wmem)
		return -ENOMEM;
	return 0;
}

static int snd_soc_lzo_compress(struct snd_soc_lzo_ctx *lzo_ctx)
{
	size_t compress_size;
	int ret;

	ret = lzo1x_1_compress(lzo_ctx->src, lzo_ctx->src_len,
			       lzo_ctx->dst, &compress_size, lzo_ctx->wmem);
	if (ret != LZO_E_OK || compress_size > lzo_ctx->dst_len)
		return -EINVAL;
	lzo_ctx->dst_len = compress_size;
	return 0;
}

static int snd_soc_lzo_decompress(struct snd_soc_lzo_ctx *lzo_ctx)
{
	size_t dst_len;
	int ret;

	dst_len = lzo_ctx->dst_len;
	ret = lzo1x_decompress_safe(lzo_ctx->src, lzo_ctx->src_len,
				    lzo_ctx->dst, &dst_len);
	if (ret != LZO_E_OK || dst_len != lzo_ctx->dst_len)
		return -EINVAL;
	return 0;
}

static int snd_soc_lzo_compress_cache_block(struct snd_soc_codec *codec,
		struct snd_soc_lzo_ctx *lzo_ctx)
{
	int ret;

	lzo_ctx->dst_len = lzo1x_worst_compress(PAGE_SIZE);
	lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
	if (!lzo_ctx->dst) {
		lzo_ctx->dst_len = 0;
		return -ENOMEM;
	}

	ret = snd_soc_lzo_compress(lzo_ctx);
	if (ret < 0)
		return ret;
	return 0;
}

static int snd_soc_lzo_decompress_cache_block(struct snd_soc_codec *codec,
		struct snd_soc_lzo_ctx *lzo_ctx)
{
	int ret;

	lzo_ctx->dst_len = lzo_ctx->decompressed_size;
	lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
	if (!lzo_ctx->dst) {
		lzo_ctx->dst_len = 0;
		return -ENOMEM;
	}

	ret = snd_soc_lzo_decompress(lzo_ctx);
	if (ret < 0)
		return ret;
	return 0;
}

static inline int snd_soc_lzo_get_blkindex(struct snd_soc_codec *codec,
		unsigned int reg)
{
1082
	const struct snd_soc_codec_driver *codec_drv;
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	size_t reg_size;

	codec_drv = codec->driver;
	reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;
	return (reg * codec_drv->reg_word_size) /
	       DIV_ROUND_UP(reg_size, snd_soc_lzo_block_count());
}

static inline int snd_soc_lzo_get_blkpos(struct snd_soc_codec *codec,
		unsigned int reg)
{
1094
	const struct snd_soc_codec_driver *codec_drv;
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	size_t reg_size;

	codec_drv = codec->driver;
	reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;
	return reg % (DIV_ROUND_UP(reg_size, snd_soc_lzo_block_count()) /
		      codec_drv->reg_word_size);
}

static inline int snd_soc_lzo_get_blksize(struct snd_soc_codec *codec)
{
1105
	const struct snd_soc_codec_driver *codec_drv;
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	size_t reg_size;

	codec_drv = codec->driver;
	reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;
	return DIV_ROUND_UP(reg_size, snd_soc_lzo_block_count());
}

static int snd_soc_lzo_cache_sync(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
	unsigned int val;
	int i;
1118
	int ret;
1119 1120 1121

	lzo_blocks = codec->reg_cache;
	for_each_set_bit(i, lzo_blocks[0]->sync_bmp, lzo_blocks[0]->sync_bmp_nbits) {
1122 1123 1124 1125 1126 1127
		ret = snd_soc_cache_read(codec, i, &val);
		if (ret)
			return ret;
		ret = snd_soc_write(codec, i, val);
		if (ret)
			return ret;
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			i, val);
	}

	return 0;
}

static int snd_soc_lzo_cache_write(struct snd_soc_codec *codec,
				   unsigned int reg, unsigned int value)
{
	struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
	int ret, blkindex, blkpos;
	size_t blksize, tmp_dst_len;
	void *tmp_dst;

	/* index of the compressed lzo block */
	blkindex = snd_soc_lzo_get_blkindex(codec, reg);
	/* register index within the decompressed block */
	blkpos = snd_soc_lzo_get_blkpos(codec, reg);
	/* size of the compressed block */
	blksize = snd_soc_lzo_get_blksize(codec);
	lzo_blocks = codec->reg_cache;
	lzo_block = lzo_blocks[blkindex];

	/* save the pointer and length of the compressed block */
	tmp_dst = lzo_block->dst;
	tmp_dst_len = lzo_block->dst_len;

	/* prepare the source to be the compressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* decompress the block */
	ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
	if (ret < 0) {
		kfree(lzo_block->dst);
		goto out;
	}

	/* write the new value to the cache */
	switch (codec->driver->reg_word_size) {
	case 1: {
		u8 *cache;
		cache = lzo_block->dst;
		if (cache[blkpos] == value) {
			kfree(lzo_block->dst);
			goto out;
		}
		cache[blkpos] = value;
	}
	break;
	case 2: {
		u16 *cache;
		cache = lzo_block->dst;
		if (cache[blkpos] == value) {
			kfree(lzo_block->dst);
			goto out;
		}
		cache[blkpos] = value;
	}
	break;
	default:
		BUG();
	}

	/* prepare the source to be the decompressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* compress the block */
	ret = snd_soc_lzo_compress_cache_block(codec, lzo_block);
	if (ret < 0) {
		kfree(lzo_block->dst);
		kfree(lzo_block->src);
		goto out;
	}

	/* set the bit so we know we have to sync this register */
	set_bit(reg, lzo_block->sync_bmp);
	kfree(tmp_dst);
	kfree(lzo_block->src);
	return 0;
out:
	lzo_block->dst = tmp_dst;
	lzo_block->dst_len = tmp_dst_len;
	return ret;
}

static int snd_soc_lzo_cache_read(struct snd_soc_codec *codec,
				  unsigned int reg, unsigned int *value)
{
	struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
	int ret, blkindex, blkpos;
	size_t blksize, tmp_dst_len;
	void *tmp_dst;

	*value = 0;
	/* index of the compressed lzo block */
	blkindex = snd_soc_lzo_get_blkindex(codec, reg);
	/* register index within the decompressed block */
	blkpos = snd_soc_lzo_get_blkpos(codec, reg);
	/* size of the compressed block */
	blksize = snd_soc_lzo_get_blksize(codec);
	lzo_blocks = codec->reg_cache;
	lzo_block = lzo_blocks[blkindex];

	/* save the pointer and length of the compressed block */
	tmp_dst = lzo_block->dst;
	tmp_dst_len = lzo_block->dst_len;

	/* prepare the source to be the compressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* decompress the block */
	ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
	if (ret >= 0) {
		/* fetch the value from the cache */
		switch (codec->driver->reg_word_size) {
		case 1: {
			u8 *cache;
			cache = lzo_block->dst;
			*value = cache[blkpos];
		}
		break;
		case 2: {
			u16 *cache;
			cache = lzo_block->dst;
			*value = cache[blkpos];
		}
		break;
		default:
			BUG();
		}
	}

	kfree(lzo_block->dst);
	/* restore the pointer and length of the compressed block */
	lzo_block->dst = tmp_dst;
	lzo_block->dst_len = tmp_dst_len;
	return 0;
}

static int snd_soc_lzo_cache_exit(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
	int i, blkcount;

	lzo_blocks = codec->reg_cache;
	if (!lzo_blocks)
		return 0;

	blkcount = snd_soc_lzo_block_count();
	/*
	 * the pointer to the bitmap used for syncing the cache
	 * is shared amongst all lzo_blocks.  Ensure it is freed
	 * only once.
	 */
	if (lzo_blocks[0])
		kfree(lzo_blocks[0]->sync_bmp);
	for (i = 0; i < blkcount; ++i) {
		if (lzo_blocks[i]) {
			kfree(lzo_blocks[i]->wmem);
			kfree(lzo_blocks[i]->dst);
		}
		/* each lzo_block is a pointer returned by kmalloc or NULL */
		kfree(lzo_blocks[i]);
	}
	kfree(lzo_blocks);
	codec->reg_cache = NULL;
	return 0;
}

static int snd_soc_lzo_cache_init(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
	size_t reg_size, bmp_size;
1305
	const struct snd_soc_codec_driver *codec_drv;
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
	int ret, tofree, i, blksize, blkcount;
	const char *p, *end;
	unsigned long *sync_bmp;

	ret = 0;
	codec_drv = codec->driver;
	reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;

	/*
	 * If we have not been given a default register cache
	 * then allocate a dummy zero-ed out region, compress it
	 * and remember to free it afterwards.
	 */
	tofree = 0;
1320
	if (!codec->reg_def_copy)
1321 1322
		tofree = 1;

1323 1324
	if (!codec->reg_def_copy) {
		codec->reg_def_copy = kzalloc(reg_size,
1325
						       GFP_KERNEL);
1326
		if (!codec->reg_def_copy)
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
			return -ENOMEM;
	}

	blkcount = snd_soc_lzo_block_count();
	codec->reg_cache = kzalloc(blkcount * sizeof *lzo_blocks,
				   GFP_KERNEL);
	if (!codec->reg_cache) {
		ret = -ENOMEM;
		goto err_tofree;
	}
	lzo_blocks = codec->reg_cache;

	/*
	 * allocate a bitmap to be used when syncing the cache with
	 * the hardware.  Each time a register is modified, the corresponding
	 * bit is set in the bitmap, so we know that we have to sync
	 * that register.
	 */
	bmp_size = codec_drv->reg_cache_size;
1346
	sync_bmp = kmalloc(BITS_TO_LONGS(bmp_size) * sizeof(long),
1347 1348 1349 1350 1351
			   GFP_KERNEL);
	if (!sync_bmp) {
		ret = -ENOMEM;
		goto err;
	}
1352
	bitmap_zero(sync_bmp, bmp_size);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

	/* allocate the lzo blocks and initialize them */
	for (i = 0; i < blkcount; ++i) {
		lzo_blocks[i] = kzalloc(sizeof **lzo_blocks,
					GFP_KERNEL);
		if (!lzo_blocks[i]) {
			kfree(sync_bmp);
			ret = -ENOMEM;
			goto err;
		}
		lzo_blocks[i]->sync_bmp = sync_bmp;
1364
		lzo_blocks[i]->sync_bmp_nbits = bmp_size;
1365 1366 1367 1368 1369 1370 1371
		/* alloc the working space for the compressed block */
		ret = snd_soc_lzo_prepare(lzo_blocks[i]);
		if (ret < 0)
			goto err;
	}

	blksize = snd_soc_lzo_get_blksize(codec);
1372 1373
	p = codec->reg_def_copy;
	end = codec->reg_def_copy + reg_size;
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	/* compress the register map and fill the lzo blocks */
	for (i = 0; i < blkcount; ++i, p += blksize) {
		lzo_blocks[i]->src = p;
		if (p + blksize > end)
			lzo_blocks[i]->src_len = end - p;
		else
			lzo_blocks[i]->src_len = blksize;
		ret = snd_soc_lzo_compress_cache_block(codec,
						       lzo_blocks[i]);
		if (ret < 0)
			goto err;
		lzo_blocks[i]->decompressed_size =
			lzo_blocks[i]->src_len;
	}

1389 1390 1391 1392
	if (tofree) {
		kfree(codec->reg_def_copy);
		codec->reg_def_copy = NULL;
	}
1393 1394 1395 1396
	return 0;
err:
	snd_soc_cache_exit(codec);
err_tofree:
1397 1398 1399 1400
	if (tofree) {
		kfree(codec->reg_def_copy);
		codec->reg_def_copy = NULL;
	}
1401 1402
	return ret;
}
1403
#endif
1404

1405 1406 1407
static int snd_soc_flat_cache_sync(struct snd_soc_codec *codec)
{
	int i;
1408
	int ret;
1409
	const struct snd_soc_codec_driver *codec_drv;
1410 1411 1412 1413
	unsigned int val;

	codec_drv = codec->driver;
	for (i = 0; i < codec_drv->reg_cache_size; ++i) {
1414 1415 1416
		ret = snd_soc_cache_read(codec, i, &val);
		if (ret)
			return ret;
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
		if (codec_drv->reg_cache_default) {
			switch (codec_drv->reg_word_size) {
			case 1: {
				const u8 *cache;

				cache = codec_drv->reg_cache_default;
				if (cache[i] == val)
					continue;
			}
			break;
			case 2: {
				const u16 *cache;

				cache = codec_drv->reg_cache_default;
				if (cache[i] == val)
					continue;
			}
			break;
			default:
				BUG();
			}
		}
1439 1440 1441
		ret = snd_soc_write(codec, i, val);
		if (ret)
			return ret;
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			i, val);
	}
	return 0;
}

static int snd_soc_flat_cache_write(struct snd_soc_codec *codec,
				    unsigned int reg, unsigned int value)
{
	switch (codec->driver->reg_word_size) {
	case 1: {
		u8 *cache;

		cache = codec->reg_cache;
		cache[reg] = value;
	}
	break;
	case 2: {
		u16 *cache;

		cache = codec->reg_cache;
		cache[reg] = value;
	}
	break;
	default:
		BUG();
	}

	return 0;
}

static int snd_soc_flat_cache_read(struct snd_soc_codec *codec,
				   unsigned int reg, unsigned int *value)
{
	switch (codec->driver->reg_word_size) {
	case 1: {
		u8 *cache;

		cache = codec->reg_cache;
		*value = cache[reg];
	}
	break;
	case 2: {
		u16 *cache;

		cache = codec->reg_cache;
		*value = cache[reg];
	}
	break;
	default:
		BUG();
	}

	return 0;
}

static int snd_soc_flat_cache_exit(struct snd_soc_codec *codec)
{
	if (!codec->reg_cache)
		return 0;
	kfree(codec->reg_cache);
	codec->reg_cache = NULL;
	return 0;
}

static int snd_soc_flat_cache_init(struct snd_soc_codec *codec)
{
1509
	const struct snd_soc_codec_driver *codec_drv;
1510 1511 1512 1513 1514
	size_t reg_size;

	codec_drv = codec->driver;
	reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;

1515 1516 1517 1518 1519 1520 1521 1522
	/*
	 * for flat compression, we don't need to keep a copy of the
	 * original defaults register cache as it will definitely not
	 * be marked as __devinitconst
	 */
	kfree(codec->reg_def_copy);
	codec->reg_def_copy = NULL;

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	if (codec_drv->reg_cache_default)
		codec->reg_cache = kmemdup(codec_drv->reg_cache_default,
					   reg_size, GFP_KERNEL);
	else
		codec->reg_cache = kzalloc(reg_size, GFP_KERNEL);
	if (!codec->reg_cache)
		return -ENOMEM;

	return 0;
}

/* an array of all supported compression types */
static const struct snd_soc_cache_ops cache_types[] = {
1536
	/* Flat *must* be the first entry for fallback */
1537
	{
1538
		.id = SND_SOC_FLAT_COMPRESSION,
1539
		.name = "flat",
1540 1541 1542 1543 1544
		.init = snd_soc_flat_cache_init,
		.exit = snd_soc_flat_cache_exit,
		.read = snd_soc_flat_cache_read,
		.write = snd_soc_flat_cache_write,
		.sync = snd_soc_flat_cache_sync
1545
	},
1546
#ifdef CONFIG_SND_SOC_CACHE_LZO
1547 1548
	{
		.id = SND_SOC_LZO_COMPRESSION,
1549
		.name = "LZO",
1550 1551 1552 1553 1554
		.init = snd_soc_lzo_cache_init,
		.exit = snd_soc_lzo_cache_exit,
		.read = snd_soc_lzo_cache_read,
		.write = snd_soc_lzo_cache_write,
		.sync = snd_soc_lzo_cache_sync
1555
	},
1556
#endif
1557 1558
	{
		.id = SND_SOC_RBTREE_COMPRESSION,
1559
		.name = "rbtree",
1560 1561 1562 1563 1564
		.init = snd_soc_rbtree_cache_init,
		.exit = snd_soc_rbtree_cache_exit,
		.read = snd_soc_rbtree_cache_read,
		.write = snd_soc_rbtree_cache_write,
		.sync = snd_soc_rbtree_cache_sync
1565 1566 1567 1568 1569 1570 1571 1572
	}
};

int snd_soc_cache_init(struct snd_soc_codec *codec)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_types); ++i)
1573
		if (cache_types[i].id == codec->compress_type)
1574
			break;
1575 1576

	/* Fall back to flat compression */
1577
	if (i == ARRAY_SIZE(cache_types)) {
1578 1579 1580
		dev_warn(codec->dev, "Could not match compress type: %d\n",
			 codec->compress_type);
		i = 0;
1581 1582 1583 1584 1585
	}

	mutex_init(&codec->cache_rw_mutex);
	codec->cache_ops = &cache_types[i];

1586 1587 1588 1589
	if (codec->cache_ops->init) {
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Initializing %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1590
		return codec->cache_ops->init(codec);
1591
	}
1592 1593 1594 1595 1596 1597 1598 1599 1600
	return -EINVAL;
}

/*
 * NOTE: keep in mind that this function might be called
 * multiple times.
 */
int snd_soc_cache_exit(struct snd_soc_codec *codec)
{
1601 1602 1603 1604
	if (codec->cache_ops && codec->cache_ops->exit) {
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Destroying %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1605
		return codec->cache_ops->exit(codec);
1606
	}
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	return -EINVAL;
}

/**
 * snd_soc_cache_read: Fetch the value of a given register from the cache.
 *
 * @codec: CODEC to configure.
 * @reg: The register index.
 * @value: The value to be returned.
 */
int snd_soc_cache_read(struct snd_soc_codec *codec,
		       unsigned int reg, unsigned int *value)
{
	int ret;

	mutex_lock(&codec->cache_rw_mutex);

	if (value && codec->cache_ops && codec->cache_ops->read) {
		ret = codec->cache_ops->read(codec, reg, value);
		mutex_unlock(&codec->cache_rw_mutex);
		return ret;
	}

	mutex_unlock(&codec->cache_rw_mutex);
	return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_cache_read);

/**
 * snd_soc_cache_write: Set the value of a given register in the cache.
 *
 * @codec: CODEC to configure.
 * @reg: The register index.
 * @value: The new register value.
 */
int snd_soc_cache_write(struct snd_soc_codec *codec,
			unsigned int reg, unsigned int value)
{
	int ret;

	mutex_lock(&codec->cache_rw_mutex);

	if (codec->cache_ops && codec->cache_ops->write) {
		ret = codec->cache_ops->write(codec, reg, value);
		mutex_unlock(&codec->cache_rw_mutex);
		return ret;
	}

	mutex_unlock(&codec->cache_rw_mutex);
	return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_cache_write);

/**
 * snd_soc_cache_sync: Sync the register cache with the hardware.
 *
 * @codec: CODEC to configure.
 *
 * Any registers that should not be synced should be marked as
 * volatile.  In general drivers can choose not to use the provided
 * syncing functionality if they so require.
 */
int snd_soc_cache_sync(struct snd_soc_codec *codec)
{
	int ret;

	if (!codec->cache_sync) {
		return 0;
	}

	if (codec->cache_ops && codec->cache_ops->sync) {
1678 1679 1680
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Syncing %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1681 1682 1683 1684 1685 1686 1687 1688 1689
		ret = codec->cache_ops->sync(codec);
		if (!ret)
			codec->cache_sync = 0;
		return ret;
	}

	return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_soc_cache_sync);