ib_srpt.c 87.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/*
 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/ctype.h>
#include <linux/kthread.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/atomic.h>
44
#include <scsi/scsi_proto.h>
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#include <scsi/scsi_tcq.h>
#include <target/target_core_base.h>
#include <target/target_core_fabric.h>
#include "ib_srpt.h"

/* Name of this kernel module. */
#define DRV_NAME		"ib_srpt"
#define DRV_VERSION		"2.0.0"
#define DRV_RELDATE		"2011-02-14"

#define SRPT_ID_STRING	"Linux SRP target"

#undef pr_fmt
#define pr_fmt(fmt) DRV_NAME " " fmt

MODULE_AUTHOR("Vu Pham and Bart Van Assche");
MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
		   "v" DRV_VERSION " (" DRV_RELDATE ")");
MODULE_LICENSE("Dual BSD/GPL");

/*
 * Global Variables
 */

static u64 srpt_service_guid;
70 71
static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
module_param(srp_max_req_size, int, 0444);
MODULE_PARM_DESC(srp_max_req_size,
		 "Maximum size of SRP request messages in bytes.");

static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
module_param(srpt_srq_size, int, 0444);
MODULE_PARM_DESC(srpt_srq_size,
		 "Shared receive queue (SRQ) size.");

static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
{
	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
}
module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
		  0444);
MODULE_PARM_DESC(srpt_service_guid,
		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
		 " instead of using the node_guid of the first HCA.");

static struct ib_client srpt_client;
94
static void srpt_release_cmd(struct se_cmd *se_cmd);
95
static void srpt_free_ch(struct kref *kref);
96
static int srpt_queue_status(struct se_cmd *cmd);
97 98
static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
99
static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc);
100

101 102 103
/*
 * The only allowed channel state changes are those that change the channel
 * state into a state with a higher numerical value. Hence the new > prev test.
104
 */
105
static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
106 107 108
{
	unsigned long flags;
	enum rdma_ch_state prev;
109
	bool changed = false;
110 111 112

	spin_lock_irqsave(&ch->spinlock, flags);
	prev = ch->state;
113
	if (new > prev) {
114
		ch->state = new;
115 116
		changed = true;
	}
117
	spin_unlock_irqrestore(&ch->spinlock, flags);
118 119

	return changed;
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
}

/**
 * srpt_event_handler() - Asynchronous IB event callback function.
 *
 * Callback function called by the InfiniBand core when an asynchronous IB
 * event occurs. This callback may occur in interrupt context. See also
 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
 * Architecture Specification.
 */
static void srpt_event_handler(struct ib_event_handler *handler,
			       struct ib_event *event)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;

	sdev = ib_get_client_data(event->device, &srpt_client);
	if (!sdev || sdev->device != event->device)
		return;

	pr_debug("ASYNC event= %d on device= %s\n", event->event,
141
		 sdev->device->name);
142 143 144 145 146 147 148 149 150 151 152 153 154 155

	switch (event->event) {
	case IB_EVENT_PORT_ERR:
		if (event->element.port_num <= sdev->device->phys_port_cnt) {
			sport = &sdev->port[event->element.port_num - 1];
			sport->lid = 0;
			sport->sm_lid = 0;
		}
		break;
	case IB_EVENT_PORT_ACTIVE:
	case IB_EVENT_LID_CHANGE:
	case IB_EVENT_PKEY_CHANGE:
	case IB_EVENT_SM_CHANGE:
	case IB_EVENT_CLIENT_REREGISTER:
D
Doug Ledford 已提交
156
	case IB_EVENT_GID_CHANGE:
157 158 159 160 161 162 163 164
		/* Refresh port data asynchronously. */
		if (event->element.port_num <= sdev->device->phys_port_cnt) {
			sport = &sdev->port[event->element.port_num - 1];
			if (!sport->lid && !sport->sm_lid)
				schedule_work(&sport->work);
		}
		break;
	default:
165
		pr_err("received unrecognized IB event %d\n",
166 167 168 169 170 171 172 173 174 175
		       event->event);
		break;
	}
}

/**
 * srpt_srq_event() - SRQ event callback function.
 */
static void srpt_srq_event(struct ib_event *event, void *ctx)
{
176
	pr_info("SRQ event %d\n", event->event);
177 178
}

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
static const char *get_ch_state_name(enum rdma_ch_state s)
{
	switch (s) {
	case CH_CONNECTING:
		return "connecting";
	case CH_LIVE:
		return "live";
	case CH_DISCONNECTING:
		return "disconnecting";
	case CH_DRAINING:
		return "draining";
	case CH_DISCONNECTED:
		return "disconnected";
	}
	return "???";
}

196 197 198 199 200 201
/**
 * srpt_qp_event() - QP event callback function.
 */
static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
{
	pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
202
		 event->event, ch->cm_id, ch->sess_name, ch->state);
203 204 205 206 207 208

	switch (event->event) {
	case IB_EVENT_COMM_EST:
		ib_cm_notify(ch->cm_id, event->event);
		break;
	case IB_EVENT_QP_LAST_WQE_REACHED:
209 210 211
		pr_debug("%s-%d, state %s: received Last WQE event.\n",
			 ch->sess_name, ch->qp->qp_num,
			 get_ch_state_name(ch->state));
212 213
		break;
	default:
214
		pr_err("received unrecognized IB QP event %d\n", event->event);
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
		break;
	}
}

/**
 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
 *
 * @slot: one-based slot number.
 * @value: four-bit value.
 *
 * Copies the lowest four bits of value in element slot of the array of four
 * bit elements called c_list (controller list). The index slot is one-based.
 */
static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
{
	u16 id;
	u8 tmp;

	id = (slot - 1) / 2;
	if (slot & 0x1) {
		tmp = c_list[id] & 0xf;
		c_list[id] = (value << 4) | tmp;
	} else {
		tmp = c_list[id] & 0xf0;
		c_list[id] = (value & 0xf) | tmp;
	}
}

/**
 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
 *
 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
 * Specification.
 */
static void srpt_get_class_port_info(struct ib_dm_mad *mad)
{
	struct ib_class_port_info *cif;

	cif = (struct ib_class_port_info *)mad->data;
254
	memset(cif, 0, sizeof(*cif));
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	cif->base_version = 1;
	cif->class_version = 1;
	cif->resp_time_value = 20;

	mad->mad_hdr.status = 0;
}

/**
 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
 *
 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
 * Specification. See also section B.7, table B.6 in the SRP r16a document.
 */
static void srpt_get_iou(struct ib_dm_mad *mad)
{
	struct ib_dm_iou_info *ioui;
	u8 slot;
	int i;

	ioui = (struct ib_dm_iou_info *)mad->data;
275
	ioui->change_id = cpu_to_be16(1);
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	ioui->max_controllers = 16;

	/* set present for slot 1 and empty for the rest */
	srpt_set_ioc(ioui->controller_list, 1, 1);
	for (i = 1, slot = 2; i < 16; i++, slot++)
		srpt_set_ioc(ioui->controller_list, slot, 0);

	mad->mad_hdr.status = 0;
}

/**
 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
 *
 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
 * Architecture Specification. See also section B.7, table B.7 in the SRP
 * r16a document.
 */
static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
			 struct ib_dm_mad *mad)
{
	struct srpt_device *sdev = sport->sdev;
	struct ib_dm_ioc_profile *iocp;

	iocp = (struct ib_dm_ioc_profile *)mad->data;

	if (!slot || slot > 16) {
		mad->mad_hdr.status
303
			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
304 305 306 307 308
		return;
	}

	if (slot > 2) {
		mad->mad_hdr.status
309
			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
310 311 312
		return;
	}

313
	memset(iocp, 0, sizeof(*iocp));
314 315
	strcpy(iocp->id_string, SRPT_ID_STRING);
	iocp->guid = cpu_to_be64(srpt_service_guid);
316 317 318 319
	iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
	iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
	iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
	iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
320
	iocp->subsys_device_id = 0x0;
321 322 323 324
	iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
	iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
	iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
	iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
	iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
	iocp->rdma_read_depth = 4;
	iocp->send_size = cpu_to_be32(srp_max_req_size);
	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
					  1U << 24));
	iocp->num_svc_entries = 1;
	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;

	mad->mad_hdr.status = 0;
}

/**
 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
 *
 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
 * Specification. See also section B.7, table B.8 in the SRP r16a document.
 */
static void srpt_get_svc_entries(u64 ioc_guid,
				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
{
	struct ib_dm_svc_entries *svc_entries;

	WARN_ON(!ioc_guid);

	if (!slot || slot > 16) {
		mad->mad_hdr.status
352
			= cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
353 354 355 356 357
		return;
	}

	if (slot > 2 || lo > hi || hi > 1) {
		mad->mad_hdr.status
358
			= cpu_to_be16(DM_MAD_STATUS_NO_IOC);
359 360 361 362
		return;
	}

	svc_entries = (struct ib_dm_svc_entries *)mad->data;
363
	memset(svc_entries, 0, sizeof(*svc_entries));
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
	snprintf(svc_entries->service_entries[0].name,
		 sizeof(svc_entries->service_entries[0].name),
		 "%s%016llx",
		 SRP_SERVICE_NAME_PREFIX,
		 ioc_guid);

	mad->mad_hdr.status = 0;
}

/**
 * srpt_mgmt_method_get() - Process a received management datagram.
 * @sp:      source port through which the MAD has been received.
 * @rq_mad:  received MAD.
 * @rsp_mad: response MAD.
 */
static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
				 struct ib_dm_mad *rsp_mad)
{
	u16 attr_id;
	u32 slot;
	u8 hi, lo;

	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
	switch (attr_id) {
	case DM_ATTR_CLASS_PORT_INFO:
		srpt_get_class_port_info(rsp_mad);
		break;
	case DM_ATTR_IOU_INFO:
		srpt_get_iou(rsp_mad);
		break;
	case DM_ATTR_IOC_PROFILE:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		srpt_get_ioc(sp, slot, rsp_mad);
		break;
	case DM_ATTR_SVC_ENTRIES:
		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
		hi = (u8) ((slot >> 8) & 0xff);
		lo = (u8) (slot & 0xff);
		slot = (u16) ((slot >> 16) & 0xffff);
		srpt_get_svc_entries(srpt_service_guid,
				     slot, hi, lo, rsp_mad);
		break;
	default:
		rsp_mad->mad_hdr.status =
409
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
		break;
	}
}

/**
 * srpt_mad_send_handler() - Post MAD-send callback function.
 */
static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
				  struct ib_mad_send_wc *mad_wc)
{
	ib_destroy_ah(mad_wc->send_buf->ah);
	ib_free_send_mad(mad_wc->send_buf);
}

/**
 * srpt_mad_recv_handler() - MAD reception callback function.
 */
static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
428
				  struct ib_mad_send_buf *send_buf,
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
				  struct ib_mad_recv_wc *mad_wc)
{
	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
	struct ib_ah *ah;
	struct ib_mad_send_buf *rsp;
	struct ib_dm_mad *dm_mad;

	if (!mad_wc || !mad_wc->recv_buf.mad)
		return;

	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
				  mad_wc->recv_buf.grh, mad_agent->port_num);
	if (IS_ERR(ah))
		goto err;

	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);

	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
				 mad_wc->wc->pkey_index, 0,
				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
449 450
				 GFP_KERNEL,
				 IB_MGMT_BASE_VERSION);
451 452 453 454 455 456
	if (IS_ERR(rsp))
		goto err_rsp;

	rsp->ah = ah;

	dm_mad = rsp->mad;
457
	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
458 459 460 461 462 463 464 465 466
	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
	dm_mad->mad_hdr.status = 0;

	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
	case IB_MGMT_METHOD_GET:
		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
		break;
	case IB_MGMT_METHOD_SET:
		dm_mad->mad_hdr.status =
467
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
468 469 470
		break;
	default:
		dm_mad->mad_hdr.status =
471
		    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
		break;
	}

	if (!ib_post_send_mad(rsp, NULL)) {
		ib_free_recv_mad(mad_wc);
		/* will destroy_ah & free_send_mad in send completion */
		return;
	}

	ib_free_send_mad(rsp);

err_rsp:
	ib_destroy_ah(ah);
err:
	ib_free_recv_mad(mad_wc);
}

/**
 * srpt_refresh_port() - Configure a HCA port.
 *
 * Enable InfiniBand management datagram processing, update the cached sm_lid,
 * lid and gid values, and register a callback function for processing MADs
 * on the specified port.
 *
 * Note: It is safe to call this function more than once for the same port.
 */
static int srpt_refresh_port(struct srpt_port *sport)
{
	struct ib_mad_reg_req reg_req;
	struct ib_port_modify port_modify;
	struct ib_port_attr port_attr;
	int ret;

505
	memset(&port_modify, 0, sizeof(port_modify));
506 507 508 509 510 511 512 513 514 515 516 517 518 519
	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	port_modify.clr_port_cap_mask = 0;

	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
	if (ret)
		goto err_mod_port;

	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
	if (ret)
		goto err_query_port;

	sport->sm_lid = port_attr.sm_lid;
	sport->lid = port_attr.lid;

520 521
	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid,
			   NULL);
522 523 524 525
	if (ret)
		goto err_query_port;

	if (!sport->mad_agent) {
526
		memset(&reg_req, 0, sizeof(reg_req));
527 528 529 530 531 532 533 534 535 536 537
		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);

		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
							 sport->port,
							 IB_QPT_GSI,
							 &reg_req, 0,
							 srpt_mad_send_handler,
							 srpt_mad_recv_handler,
538
							 sport, 0);
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
		if (IS_ERR(sport->mad_agent)) {
			ret = PTR_ERR(sport->mad_agent);
			sport->mad_agent = NULL;
			goto err_query_port;
		}
	}

	return 0;

err_query_port:

	port_modify.set_port_cap_mask = 0;
	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);

err_mod_port:

	return ret;
}

/**
 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
 *
 * Note: It is safe to call this function more than once for the same device.
 */
static void srpt_unregister_mad_agent(struct srpt_device *sdev)
{
	struct ib_port_modify port_modify = {
		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
	};
	struct srpt_port *sport;
	int i;

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
		WARN_ON(sport->port != i);
		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
576
			pr_err("disabling MAD processing failed.\n");
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
		if (sport->mad_agent) {
			ib_unregister_mad_agent(sport->mad_agent);
			sport->mad_agent = NULL;
		}
	}
}

/**
 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
 */
static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
					   int ioctx_size, int dma_size,
					   enum dma_data_direction dir)
{
	struct srpt_ioctx *ioctx;

	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
	if (!ioctx)
		goto err;

	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
	if (!ioctx->buf)
		goto err_free_ioctx;

	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
		goto err_free_buf;

	return ioctx;

err_free_buf:
	kfree(ioctx->buf);
err_free_ioctx:
	kfree(ioctx);
err:
	return NULL;
}

/**
 * srpt_free_ioctx() - Free an SRPT I/O context structure.
 */
static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
			    int dma_size, enum dma_data_direction dir)
{
	if (!ioctx)
		return;

	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
	kfree(ioctx->buf);
	kfree(ioctx);
}

/**
 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
 * @sdev:       Device to allocate the I/O context ring for.
 * @ring_size:  Number of elements in the I/O context ring.
 * @ioctx_size: I/O context size.
 * @dma_size:   DMA buffer size.
 * @dir:        DMA data direction.
 */
static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
				int ring_size, int ioctx_size,
				int dma_size, enum dma_data_direction dir)
{
	struct srpt_ioctx **ring;
	int i;

	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
		&& ioctx_size != sizeof(struct srpt_send_ioctx));

	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
	if (!ring)
		goto out;
	for (i = 0; i < ring_size; ++i) {
		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
		if (!ring[i])
			goto err;
		ring[i]->index = i;
	}
	goto out;

err:
	while (--i >= 0)
		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
	kfree(ring);
662
	ring = NULL;
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
out:
	return ring;
}

/**
 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
 */
static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
				 struct srpt_device *sdev, int ring_size,
				 int dma_size, enum dma_data_direction dir)
{
	int i;

	for (i = 0; i < ring_size; ++i)
		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
	kfree(ioctx_ring);
}

/**
 * srpt_get_cmd_state() - Get the state of a SCSI command.
 */
static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
{
	enum srpt_command_state state;
	unsigned long flags;

	BUG_ON(!ioctx);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	state = ioctx->state;
	spin_unlock_irqrestore(&ioctx->spinlock, flags);
	return state;
}

/**
 * srpt_set_cmd_state() - Set the state of a SCSI command.
 *
 * Does not modify the state of aborted commands. Returns the previous command
 * state.
 */
static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
						  enum srpt_command_state new)
{
	enum srpt_command_state previous;
	unsigned long flags;

	BUG_ON(!ioctx);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	previous = ioctx->state;
	if (previous != SRPT_STATE_DONE)
		ioctx->state = new;
	spin_unlock_irqrestore(&ioctx->spinlock, flags);

	return previous;
}

/**
 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
 *
 * Returns true if and only if the previous command state was equal to 'old'.
 */
static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
					enum srpt_command_state old,
					enum srpt_command_state new)
{
	enum srpt_command_state previous;
	unsigned long flags;

	WARN_ON(!ioctx);
	WARN_ON(old == SRPT_STATE_DONE);
	WARN_ON(new == SRPT_STATE_NEW);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	previous = ioctx->state;
	if (previous == old)
		ioctx->state = new;
	spin_unlock_irqrestore(&ioctx->spinlock, flags);
	return previous == old;
}

/**
 * srpt_post_recv() - Post an IB receive request.
 */
static int srpt_post_recv(struct srpt_device *sdev,
			  struct srpt_recv_ioctx *ioctx)
{
	struct ib_sge list;
	struct ib_recv_wr wr, *bad_wr;

	BUG_ON(!sdev);
	list.addr = ioctx->ioctx.dma;
	list.length = srp_max_req_size;
756
	list.lkey = sdev->pd->local_dma_lkey;
757

758 759
	ioctx->ioctx.cqe.done = srpt_recv_done;
	wr.wr_cqe = &ioctx->ioctx.cqe;
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
	wr.next = NULL;
	wr.sg_list = &list;
	wr.num_sge = 1;

	return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
}

/**
 * srpt_post_send() - Post an IB send request.
 *
 * Returns zero upon success and a non-zero value upon failure.
 */
static int srpt_post_send(struct srpt_rdma_ch *ch,
			  struct srpt_send_ioctx *ioctx, int len)
{
	struct ib_sge list;
	struct ib_send_wr wr, *bad_wr;
	struct srpt_device *sdev = ch->sport->sdev;
	int ret;

	atomic_inc(&ch->req_lim);

	ret = -ENOMEM;
	if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
784
		pr_warn("IB send queue full (needed 1)\n");
785 786 787 788 789 790 791 792
		goto out;
	}

	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
				      DMA_TO_DEVICE);

	list.addr = ioctx->ioctx.dma;
	list.length = len;
793
	list.lkey = sdev->pd->local_dma_lkey;
794

795
	ioctx->ioctx.cqe.done = srpt_send_done;
796
	wr.next = NULL;
797
	wr.wr_cqe = &ioctx->ioctx.cqe;
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
	wr.sg_list = &list;
	wr.num_sge = 1;
	wr.opcode = IB_WR_SEND;
	wr.send_flags = IB_SEND_SIGNALED;

	ret = ib_post_send(ch->qp, &wr, &bad_wr);

out:
	if (ret < 0) {
		atomic_inc(&ch->sq_wr_avail);
		atomic_dec(&ch->req_lim);
	}
	return ret;
}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
/**
 * srpt_zerolength_write() - Perform a zero-length RDMA write.
 *
 * A quote from the InfiniBand specification: C9-88: For an HCA responder
 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
 * request, the R_Key shall not be validated, even if the request includes
 * Immediate data.
 */
static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
{
	struct ib_send_wr wr, *bad_wr;

	memset(&wr, 0, sizeof(wr));
	wr.opcode = IB_WR_RDMA_WRITE;
	wr.wr_cqe = &ch->zw_cqe;
	wr.send_flags = IB_SEND_SIGNALED;
	return ib_post_send(ch->qp, &wr, &bad_wr);
}

static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct srpt_rdma_ch *ch = cq->cq_context;

	WARN(wc->status == IB_WC_SUCCESS, "%s-%d: QP not in error state\n",
	     ch->sess_name, ch->qp->qp_num);
	if (srpt_set_ch_state(ch, CH_DISCONNECTED))
		schedule_work(&ch->release_work);
	else
		WARN_ONCE("%s-%d\n", ch->sess_name, ch->qp->qp_num);
}

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
/**
 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
 * @ioctx: Pointer to the I/O context associated with the request.
 * @srp_cmd: Pointer to the SRP_CMD request data.
 * @dir: Pointer to the variable to which the transfer direction will be
 *   written.
 * @data_len: Pointer to the variable to which the total data length of all
 *   descriptors in the SRP_CMD request will be written.
 *
 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
 *
 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
 * -ENOMEM when memory allocation fails and zero upon success.
 */
static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
			     struct srp_cmd *srp_cmd,
			     enum dma_data_direction *dir, u64 *data_len)
{
	struct srp_indirect_buf *idb;
	struct srp_direct_buf *db;
	unsigned add_cdb_offset;
	int ret;

	/*
	 * The pointer computations below will only be compiled correctly
	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
	 * whether srp_cmd::add_data has been declared as a byte pointer.
	 */
	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
		     && !__same_type(srp_cmd->add_data[0], (u8)0));

	BUG_ON(!dir);
	BUG_ON(!data_len);

	ret = 0;
	*data_len = 0;

	/*
	 * The lower four bits of the buffer format field contain the DATA-IN
	 * buffer descriptor format, and the highest four bits contain the
	 * DATA-OUT buffer descriptor format.
	 */
	*dir = DMA_NONE;
	if (srp_cmd->buf_fmt & 0xf)
		/* DATA-IN: transfer data from target to initiator (read). */
		*dir = DMA_FROM_DEVICE;
	else if (srp_cmd->buf_fmt >> 4)
		/* DATA-OUT: transfer data from initiator to target (write). */
		*dir = DMA_TO_DEVICE;

	/*
	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
	 * CDB LENGTH' field are reserved and the size in bytes of this field
	 * is four times the value specified in bits 3..7. Hence the "& ~3".
	 */
	add_cdb_offset = srp_cmd->add_cdb_len & ~3;
	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
		ioctx->n_rbuf = 1;
		ioctx->rbufs = &ioctx->single_rbuf;

		db = (struct srp_direct_buf *)(srp_cmd->add_data
					       + add_cdb_offset);
907
		memcpy(ioctx->rbufs, db, sizeof(*db));
908 909 910 911 912 913
		*data_len = be32_to_cpu(db->len);
	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
		idb = (struct srp_indirect_buf *)(srp_cmd->add_data
						  + add_cdb_offset);

914
		ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof(*db);
915 916 917

		if (ioctx->n_rbuf >
		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
918
			pr_err("received unsupported SRP_CMD request"
919 920 921 922 923 924 925 926 927 928 929 930 931 932
			       " type (%u out + %u in != %u / %zu)\n",
			       srp_cmd->data_out_desc_cnt,
			       srp_cmd->data_in_desc_cnt,
			       be32_to_cpu(idb->table_desc.len),
			       sizeof(*db));
			ioctx->n_rbuf = 0;
			ret = -EINVAL;
			goto out;
		}

		if (ioctx->n_rbuf == 1)
			ioctx->rbufs = &ioctx->single_rbuf;
		else {
			ioctx->rbufs =
933
				kmalloc(ioctx->n_rbuf * sizeof(*db), GFP_ATOMIC);
934 935 936 937 938 939 940 941
			if (!ioctx->rbufs) {
				ioctx->n_rbuf = 0;
				ret = -ENOMEM;
				goto out;
			}
		}

		db = idb->desc_list;
942
		memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof(*db));
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
		*data_len = be32_to_cpu(idb->len);
	}
out:
	return ret;
}

/**
 * srpt_init_ch_qp() - Initialize queue pair attributes.
 *
 * Initialized the attributes of queue pair 'qp' by allowing local write,
 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
 */
static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr *attr;
	int ret;

960
	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	if (!attr)
		return -ENOMEM;

	attr->qp_state = IB_QPS_INIT;
	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
	    IB_ACCESS_REMOTE_WRITE;
	attr->port_num = ch->sport->port;
	attr->pkey_index = 0;

	ret = ib_modify_qp(qp, attr,
			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
			   IB_QP_PKEY_INDEX);

	kfree(attr);
	return ret;
}

/**
 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTR;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_dest_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
 * @ch: channel of the queue pair.
 * @qp: queue pair to change the state of.
 *
 * Returns zero upon success and a negative value upon failure.
 *
 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 * If this structure ever becomes larger, it might be necessary to allocate
 * it dynamically instead of on the stack.
 */
static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
	struct ib_qp_attr qp_attr;
	int attr_mask;
	int ret;

	qp_attr.qp_state = IB_QPS_RTS;
	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
	if (ret)
		goto out;

	qp_attr.max_rd_atomic = 4;

	ret = ib_modify_qp(qp, &qp_attr, attr_mask);

out:
	return ret;
}

/**
 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
 */
static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
{
	struct ib_qp_attr qp_attr;

	qp_attr.qp_state = IB_QPS_ERR;
	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
}

/**
 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
 */
static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
				    struct srpt_send_ioctx *ioctx)
{
	struct scatterlist *sg;
	enum dma_data_direction dir;

	BUG_ON(!ch);
	BUG_ON(!ioctx);
1060
	BUG_ON(ioctx->n_rdma && !ioctx->rdma_wrs);
1061 1062

	while (ioctx->n_rdma)
1063
		kfree(ioctx->rdma_wrs[--ioctx->n_rdma].wr.sg_list);
1064

1065 1066
	kfree(ioctx->rdma_wrs);
	ioctx->rdma_wrs = NULL;
1067 1068 1069 1070 1071 1072 1073

	if (ioctx->mapped_sg_count) {
		sg = ioctx->sg;
		WARN_ON(!sg);
		dir = ioctx->cmd.data_direction;
		BUG_ON(dir == DMA_NONE);
		ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1074
				target_reverse_dma_direction(&ioctx->cmd));
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
		ioctx->mapped_sg_count = 0;
	}
}

/**
 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
 */
static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
				 struct srpt_send_ioctx *ioctx)
{
1085
	struct ib_device *dev = ch->sport->sdev->device;
1086 1087 1088 1089
	struct se_cmd *cmd;
	struct scatterlist *sg, *sg_orig;
	int sg_cnt;
	enum dma_data_direction dir;
1090
	struct ib_rdma_wr *riu;
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	struct srp_direct_buf *db;
	dma_addr_t dma_addr;
	struct ib_sge *sge;
	u64 raddr;
	u32 rsize;
	u32 tsize;
	u32 dma_len;
	int count, nrdma;
	int i, j, k;

	BUG_ON(!ch);
	BUG_ON(!ioctx);
	cmd = &ioctx->cmd;
	dir = cmd->data_direction;
	BUG_ON(dir == DMA_NONE);

1107 1108
	ioctx->sg = sg = sg_orig = cmd->t_data_sg;
	ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1109 1110

	count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1111
			      target_reverse_dma_direction(cmd));
1112 1113 1114 1115 1116
	if (unlikely(!count))
		return -EAGAIN;

	ioctx->mapped_sg_count = count;

1117 1118
	if (ioctx->rdma_wrs && ioctx->n_rdma_wrs)
		nrdma = ioctx->n_rdma_wrs;
1119 1120 1121 1122
	else {
		nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
			+ ioctx->n_rbuf;

1123 1124 1125
		ioctx->rdma_wrs = kcalloc(nrdma, sizeof(*ioctx->rdma_wrs),
				GFP_KERNEL);
		if (!ioctx->rdma_wrs)
1126 1127
			goto free_mem;

1128
		ioctx->n_rdma_wrs = nrdma;
1129 1130 1131 1132
	}

	db = ioctx->rbufs;
	tsize = cmd->data_length;
1133
	dma_len = ib_sg_dma_len(dev, &sg[0]);
1134
	riu = ioctx->rdma_wrs;
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147

	/*
	 * For each remote desc - calculate the #ib_sge.
	 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
	 *      each remote desc rdma_iu is required a rdma wr;
	 * else
	 *      we need to allocate extra rdma_iu to carry extra #ib_sge in
	 *      another rdma wr
	 */
	for (i = 0, j = 0;
	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
		rsize = be32_to_cpu(db->len);
		raddr = be64_to_cpu(db->va);
1148
		riu->remote_addr = raddr;
1149
		riu->rkey = be32_to_cpu(db->key);
1150
		riu->wr.num_sge = 0;
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

		/* calculate how many sge required for this remote_buf */
		while (rsize > 0 && tsize > 0) {

			if (rsize >= dma_len) {
				tsize -= dma_len;
				rsize -= dma_len;
				raddr += dma_len;

				if (tsize > 0) {
					++j;
					if (j < count) {
						sg = sg_next(sg);
1164 1165
						dma_len = ib_sg_dma_len(
								dev, sg);
1166 1167 1168 1169 1170 1171 1172 1173
					}
				}
			} else {
				tsize -= rsize;
				dma_len -= rsize;
				rsize = 0;
			}

1174
			++riu->wr.num_sge;
1175

1176 1177
			if (rsize > 0 &&
			    riu->wr.num_sge == SRPT_DEF_SG_PER_WQE) {
1178
				++ioctx->n_rdma;
1179 1180 1181 1182
				riu->wr.sg_list = kmalloc_array(riu->wr.num_sge,
						sizeof(*riu->wr.sg_list),
						GFP_KERNEL);
				if (!riu->wr.sg_list)
1183 1184 1185
					goto free_mem;

				++riu;
1186 1187
				riu->wr.num_sge = 0;
				riu->remote_addr = raddr;
1188 1189 1190 1191 1192
				riu->rkey = be32_to_cpu(db->key);
			}
		}

		++ioctx->n_rdma;
1193 1194 1195 1196
		riu->wr.sg_list = kmalloc_array(riu->wr.num_sge,
					sizeof(*riu->wr.sg_list),
					GFP_KERNEL);
		if (!riu->wr.sg_list)
1197 1198 1199 1200 1201
			goto free_mem;
	}

	db = ioctx->rbufs;
	tsize = cmd->data_length;
1202
	riu = ioctx->rdma_wrs;
1203
	sg = sg_orig;
1204 1205
	dma_len = ib_sg_dma_len(dev, &sg[0]);
	dma_addr = ib_sg_dma_address(dev, &sg[0]);
1206 1207 1208 1209 1210

	/* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
	for (i = 0, j = 0;
	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
		rsize = be32_to_cpu(db->len);
1211
		sge = riu->wr.sg_list;
1212 1213 1214 1215
		k = 0;

		while (rsize > 0 && tsize > 0) {
			sge->addr = dma_addr;
1216
			sge->lkey = ch->sport->sdev->pd->local_dma_lkey;
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

			if (rsize >= dma_len) {
				sge->length =
					(tsize < dma_len) ? tsize : dma_len;
				tsize -= dma_len;
				rsize -= dma_len;

				if (tsize > 0) {
					++j;
					if (j < count) {
						sg = sg_next(sg);
1228 1229 1230 1231
						dma_len = ib_sg_dma_len(
								dev, sg);
						dma_addr = ib_sg_dma_address(
								dev, sg);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
					}
				}
			} else {
				sge->length = (tsize < rsize) ? tsize : rsize;
				tsize -= rsize;
				dma_len -= rsize;
				dma_addr += rsize;
				rsize = 0;
			}

			++k;
1243
			if (k == riu->wr.num_sge && rsize > 0 && tsize > 0) {
1244
				++riu;
1245
				sge = riu->wr.sg_list;
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
				k = 0;
			} else if (rsize > 0 && tsize > 0)
				++sge;
		}
	}

	return 0;

free_mem:
	srpt_unmap_sg_to_ib_sge(ch, ioctx);

	return -ENOMEM;
}

/**
 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
 */
static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
{
	struct srpt_send_ioctx *ioctx;
	unsigned long flags;

	BUG_ON(!ch);

	ioctx = NULL;
	spin_lock_irqsave(&ch->spinlock, flags);
	if (!list_empty(&ch->free_list)) {
		ioctx = list_first_entry(&ch->free_list,
					 struct srpt_send_ioctx, free_list);
		list_del(&ioctx->free_list);
	}
	spin_unlock_irqrestore(&ch->spinlock, flags);

	if (!ioctx)
		return ioctx;

	BUG_ON(ioctx->ch != ch);
	spin_lock_init(&ioctx->spinlock);
	ioctx->state = SRPT_STATE_NEW;
	ioctx->n_rbuf = 0;
	ioctx->rbufs = NULL;
	ioctx->n_rdma = 0;
1288 1289
	ioctx->n_rdma_wrs = 0;
	ioctx->rdma_wrs = NULL;
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	ioctx->mapped_sg_count = 0;
	init_completion(&ioctx->tx_done);
	ioctx->queue_status_only = false;
	/*
	 * transport_init_se_cmd() does not initialize all fields, so do it
	 * here.
	 */
	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));

	return ioctx;
}

/**
 * srpt_abort_cmd() - Abort a SCSI command.
 * @ioctx:   I/O context associated with the SCSI command.
 * @context: Preferred execution context.
 */
static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
{
	enum srpt_command_state state;
	unsigned long flags;

	BUG_ON(!ioctx);

	/*
	 * If the command is in a state where the target core is waiting for
1317
	 * the ib_srpt driver, change the state to the next state.
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	 */

	spin_lock_irqsave(&ioctx->spinlock, flags);
	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEED_DATA:
		ioctx->state = SRPT_STATE_DATA_IN;
		break;
	case SRPT_STATE_CMD_RSP_SENT:
	case SRPT_STATE_MGMT_RSP_SENT:
		ioctx->state = SRPT_STATE_DONE;
		break;
	default:
1331 1332
		WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
			  __func__, state);
1333 1334 1335 1336 1337
		break;
	}
	spin_unlock_irqrestore(&ioctx->spinlock, flags);

	pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1338
		 ioctx->cmd.tag);
1339 1340 1341 1342 1343

	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
	case SRPT_STATE_MGMT:
1344
	case SRPT_STATE_DONE:
1345 1346 1347 1348 1349 1350
		/*
		 * Do nothing - defer abort processing until
		 * srpt_queue_response() is invoked.
		 */
		break;
	case SRPT_STATE_NEED_DATA:
1351 1352 1353
		pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
		transport_generic_request_failure(&ioctx->cmd,
					TCM_CHECK_CONDITION_ABORT_CMD);
1354 1355 1356 1357 1358 1359 1360
		break;
	case SRPT_STATE_CMD_RSP_SENT:
		/*
		 * SRP_RSP sending failed or the SRP_RSP send completion has
		 * not been received in time.
		 */
		srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1361
		transport_generic_free_cmd(&ioctx->cmd, 0);
1362 1363
		break;
	case SRPT_STATE_MGMT_RSP_SENT:
1364
		transport_generic_free_cmd(&ioctx->cmd, 0);
1365 1366
		break;
	default:
G
Grant Grundler 已提交
1367
		WARN(1, "Unexpected command state (%d)", state);
1368 1369 1370 1371 1372 1373 1374
		break;
	}

	return state;
}

/**
1375 1376
 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
 * the data that has been transferred via IB RDMA had to be postponed until the
1377
 * check_stop_free() callback.  None of this is necessary anymore and needs to
1378
 * be cleaned up.
1379
 */
1380
static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1381
{
1382 1383
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_send_ioctx *ioctx =
1384
		container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1385

1386 1387 1388
	WARN_ON(ioctx->n_rdma <= 0);
	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);

1389 1390 1391 1392 1393
	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
			ioctx, wc->status);
		srpt_abort_cmd(ioctx);
		return;
1394
	}
1395 1396 1397 1398 1399 1400 1401

	if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
					SRPT_STATE_DATA_IN))
		target_execute_cmd(&ioctx->cmd);
	else
		pr_err("%s[%d]: wrong state = %d\n", __func__,
		       __LINE__, srpt_get_cmd_state(ioctx));
1402 1403
}

1404
static void srpt_rdma_write_done(struct ib_cq *cq, struct ib_wc *wc)
1405
{
1406
	struct srpt_send_ioctx *ioctx =
1407
		container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1408

1409
	if (unlikely(wc->status != IB_WC_SUCCESS)) {
1410 1411 1412 1413 1414 1415
		/*
		 * Note: if an RDMA write error completion is received that
		 * means that a SEND also has been posted. Defer further
		 * processing of the associated command until the send error
		 * completion has been received.
		 */
1416 1417
		pr_info("RDMA_WRITE for ioctx 0x%p failed with status %d\n",
			ioctx, wc->status);
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	}
}

/**
 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
 * @ch: RDMA channel through which the request has been received.
 * @ioctx: I/O context associated with the SRP_CMD request. The response will
 *   be built in the buffer ioctx->buf points at and hence this function will
 *   overwrite the request data.
 * @tag: tag of the request for which this response is being generated.
 * @status: value for the STATUS field of the SRP_RSP information unit.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response. See also SPC-2 for more information about sense data.
 */
static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
			      struct srpt_send_ioctx *ioctx, u64 tag,
			      int status)
{
	struct srp_rsp *srp_rsp;
	const u8 *sense_data;
	int sense_data_len, max_sense_len;

	/*
	 * The lowest bit of all SAM-3 status codes is zero (see also
	 * paragraph 5.3 in SAM-3).
	 */
	WARN_ON(status & 1);

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);

	sense_data = ioctx->sense_data;
	sense_data_len = ioctx->cmd.scsi_sense_length;
	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));

1457
	memset(srp_rsp, 0, sizeof(*srp_rsp));
1458 1459
	srp_rsp->opcode = SRP_RSP;
	srp_rsp->req_lim_delta =
1460
		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1461 1462 1463 1464 1465 1466 1467
	srp_rsp->tag = tag;
	srp_rsp->status = status;

	if (sense_data_len) {
		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
		if (sense_data_len > max_sense_len) {
1468 1469
			pr_warn("truncated sense data from %d to %d"
				" bytes\n", sense_data_len, max_sense_len);
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
			sense_data_len = max_sense_len;
		}

		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
		memcpy(srp_rsp + 1, sense_data, sense_data_len);
	}

	return sizeof(*srp_rsp) + sense_data_len;
}

/**
 * srpt_build_tskmgmt_rsp() - Build a task management response.
 * @ch:       RDMA channel through which the request has been received.
 * @ioctx:    I/O context in which the SRP_RSP response will be built.
 * @rsp_code: RSP_CODE that will be stored in the response.
 * @tag:      Tag of the request for which this response is being generated.
 *
 * Returns the size in bytes of the SRP_RSP response.
 *
 * An SRP_RSP response contains a SCSI status or service response. See also
 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
 * response.
 */
static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
				  struct srpt_send_ioctx *ioctx,
				  u8 rsp_code, u64 tag)
{
	struct srp_rsp *srp_rsp;
	int resp_data_len;
	int resp_len;

1502
	resp_data_len = 4;
1503 1504 1505 1506
	resp_len = sizeof(*srp_rsp) + resp_data_len;

	srp_rsp = ioctx->ioctx.buf;
	BUG_ON(!srp_rsp);
1507
	memset(srp_rsp, 0, sizeof(*srp_rsp));
1508 1509

	srp_rsp->opcode = SRP_RSP;
1510 1511
	srp_rsp->req_lim_delta =
		cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1512 1513
	srp_rsp->tag = tag;

1514 1515 1516
	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
	srp_rsp->data[3] = rsp_code;
1517 1518 1519 1520 1521 1522

	return resp_len;
}

static int srpt_check_stop_free(struct se_cmd *cmd)
{
1523 1524
	struct srpt_send_ioctx *ioctx = container_of(cmd,
				struct srpt_send_ioctx, cmd);
1525

1526
	return target_put_sess_cmd(&ioctx->cmd);
1527 1528 1529 1530 1531
}

/**
 * srpt_handle_cmd() - Process SRP_CMD.
 */
1532 1533 1534
static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
			    struct srpt_recv_ioctx *recv_ioctx,
			    struct srpt_send_ioctx *send_ioctx)
1535 1536 1537 1538 1539
{
	struct se_cmd *cmd;
	struct srp_cmd *srp_cmd;
	u64 data_len;
	enum dma_data_direction dir;
1540
	int rc;
1541 1542 1543 1544 1545

	BUG_ON(!send_ioctx);

	srp_cmd = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;
1546
	cmd->tag = srp_cmd->tag;
1547 1548 1549

	switch (srp_cmd->task_attr) {
	case SRP_CMD_SIMPLE_Q:
C
Christoph Hellwig 已提交
1550
		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1551 1552 1553
		break;
	case SRP_CMD_ORDERED_Q:
	default:
C
Christoph Hellwig 已提交
1554
		cmd->sam_task_attr = TCM_ORDERED_TAG;
1555 1556
		break;
	case SRP_CMD_HEAD_OF_Q:
C
Christoph Hellwig 已提交
1557
		cmd->sam_task_attr = TCM_HEAD_TAG;
1558 1559
		break;
	case SRP_CMD_ACA:
C
Christoph Hellwig 已提交
1560
		cmd->sam_task_attr = TCM_ACA_TAG;
1561 1562 1563
		break;
	}

1564
	if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1565
		pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1566
		       srp_cmd->tag);
1567
		goto release_ioctx;
1568 1569
	}

1570
	rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
B
Bart Van Assche 已提交
1571 1572 1573
			       &send_ioctx->sense_data[0],
			       scsilun_to_int(&srp_cmd->lun), data_len,
			       TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1574
	if (rc != 0) {
1575 1576 1577
		pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
			 srp_cmd->tag);
		goto release_ioctx;
1578
	}
1579
	return;
1580

1581 1582 1583
release_ioctx:
	send_ioctx->state = SRPT_STATE_DONE;
	srpt_release_cmd(cmd);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
}

static int srp_tmr_to_tcm(int fn)
{
	switch (fn) {
	case SRP_TSK_ABORT_TASK:
		return TMR_ABORT_TASK;
	case SRP_TSK_ABORT_TASK_SET:
		return TMR_ABORT_TASK_SET;
	case SRP_TSK_CLEAR_TASK_SET:
		return TMR_CLEAR_TASK_SET;
	case SRP_TSK_LUN_RESET:
		return TMR_LUN_RESET;
	case SRP_TSK_CLEAR_ACA:
		return TMR_CLEAR_ACA;
	default:
		return -1;
	}
}

/**
 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
 *
 * Returns 0 if and only if the request will be processed by the target core.
 *
 * For more information about SRP_TSK_MGMT information units, see also section
 * 6.7 in the SRP r16a document.
 */
static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
				 struct srpt_recv_ioctx *recv_ioctx,
				 struct srpt_send_ioctx *send_ioctx)
{
	struct srp_tsk_mgmt *srp_tsk;
	struct se_cmd *cmd;
1618
	struct se_session *sess = ch->sess;
1619
	int tcm_tmr;
1620
	int rc;
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

	BUG_ON(!send_ioctx);

	srp_tsk = recv_ioctx->ioctx.buf;
	cmd = &send_ioctx->cmd;

	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
		 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
		 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);

	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1632
	send_ioctx->cmd.tag = srp_tsk->tag;
1633
	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
B
Bart Van Assche 已提交
1634 1635 1636 1637
	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
			       scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
			       GFP_KERNEL, srp_tsk->task_tag,
			       TARGET_SCF_ACK_KREF);
1638 1639
	if (rc != 0) {
		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1640
		goto fail;
1641
	}
1642 1643 1644
	return;
fail:
	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
}

/**
 * srpt_handle_new_iu() - Process a newly received information unit.
 * @ch:    RDMA channel through which the information unit has been received.
 * @ioctx: SRPT I/O context associated with the information unit.
 */
static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
			       struct srpt_recv_ioctx *recv_ioctx,
			       struct srpt_send_ioctx *send_ioctx)
{
	struct srp_cmd *srp_cmd;

	BUG_ON(!ch);
	BUG_ON(!recv_ioctx);

	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
				   recv_ioctx->ioctx.dma, srp_max_req_size,
				   DMA_FROM_DEVICE);

1665
	if (unlikely(ch->state == CH_CONNECTING)) {
1666 1667 1668 1669
		list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
		goto out;
	}

1670
	if (unlikely(ch->state != CH_LIVE))
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
		goto out;

	srp_cmd = recv_ioctx->ioctx.buf;
	if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
		if (!send_ioctx)
			send_ioctx = srpt_get_send_ioctx(ch);
		if (unlikely(!send_ioctx)) {
			list_add_tail(&recv_ioctx->wait_list,
				      &ch->cmd_wait_list);
			goto out;
		}
	}

	switch (srp_cmd->opcode) {
	case SRP_CMD:
		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_TSK_MGMT:
		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
		break;
	case SRP_I_LOGOUT:
1692
		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1693 1694 1695 1696 1697 1698 1699 1700
		break;
	case SRP_CRED_RSP:
		pr_debug("received SRP_CRED_RSP\n");
		break;
	case SRP_AER_RSP:
		pr_debug("received SRP_AER_RSP\n");
		break;
	case SRP_RSP:
1701
		pr_err("Received SRP_RSP\n");
1702 1703
		break;
	default:
1704
		pr_err("received IU with unknown opcode 0x%x\n",
1705 1706 1707 1708 1709 1710 1711 1712 1713
		       srp_cmd->opcode);
		break;
	}

	srpt_post_recv(ch->sport->sdev, recv_ioctx);
out:
	return;
}

1714
static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1715
{
1716 1717 1718
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_recv_ioctx *ioctx =
		container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1719 1720 1721 1722 1723 1724

	if (wc->status == IB_WC_SUCCESS) {
		int req_lim;

		req_lim = atomic_dec_return(&ch->req_lim);
		if (unlikely(req_lim < 0))
1725
			pr_err("req_lim = %d < 0\n", req_lim);
1726 1727
		srpt_handle_new_iu(ch, ioctx, NULL);
	} else {
1728 1729
		pr_info("receiving failed for ioctx %p with status %d\n",
			ioctx, wc->status);
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	}
}

/**
 * Note: Although this has not yet been observed during tests, at least in
 * theory it is possible that the srpt_get_send_ioctx() call invoked by
 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
 * value in each response is set to one, and it is possible that this response
 * makes the initiator send a new request before the send completion for that
 * response has been processed. This could e.g. happen if the call to
 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
 * if IB retransmission causes generation of the send completion to be
 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
 * are queued on cmd_wait_list. The code below processes these delayed
 * requests one at a time.
 */
1746
static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1747
{
1748 1749 1750 1751
	struct srpt_rdma_ch *ch = cq->cq_context;
	struct srpt_send_ioctx *ioctx =
		container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
	enum srpt_command_state state;
1752

1753 1754 1755 1756 1757 1758 1759
	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);

	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
		state != SRPT_STATE_MGMT_RSP_SENT);

	atomic_inc(&ch->sq_wr_avail);

1760
	if (wc->status != IB_WC_SUCCESS)
1761 1762 1763 1764 1765 1766
		pr_info("sending response for ioctx 0x%p failed"
			" with status %d\n", ioctx, wc->status);

	if (state != SRPT_STATE_DONE) {
		srpt_unmap_sg_to_ib_sge(ch, ioctx);
		transport_generic_free_cmd(&ioctx->cmd, 0);
1767
	} else {
1768 1769
		pr_err("IB completion has been received too late for"
		       " wr_id = %u.\n", ioctx->ioctx.index);
1770 1771
	}

1772
	while (!list_empty(&ch->cmd_wait_list) &&
1773
	       ch->state == CH_LIVE &&
1774
	       (ioctx = srpt_get_send_ioctx(ch)) != NULL) {
1775 1776 1777 1778 1779 1780
		struct srpt_recv_ioctx *recv_ioctx;

		recv_ioctx = list_first_entry(&ch->cmd_wait_list,
					      struct srpt_recv_ioctx,
					      wait_list);
		list_del(&recv_ioctx->wait_list);
1781
		srpt_handle_new_iu(ch, recv_ioctx, ioctx);
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
	}
}

/**
 * srpt_create_ch_ib() - Create receive and send completion queues.
 */
static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
{
	struct ib_qp_init_attr *qp_init;
	struct srpt_port *sport = ch->sport;
	struct srpt_device *sdev = sport->sdev;
	u32 srp_sq_size = sport->port_attrib.srp_sq_size;
	int ret;

	WARN_ON(ch->rq_size < 1);

	ret = -ENOMEM;
1799
	qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1800 1801 1802
	if (!qp_init)
		goto out;

1803
retry:
1804 1805
	ch->cq = ib_alloc_cq(sdev->device, ch, ch->rq_size + srp_sq_size,
			0 /* XXX: spread CQs */, IB_POLL_WORKQUEUE);
1806 1807
	if (IS_ERR(ch->cq)) {
		ret = PTR_ERR(ch->cq);
1808
		pr_err("failed to create CQ cqe= %d ret= %d\n",
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
		       ch->rq_size + srp_sq_size, ret);
		goto out;
	}

	qp_init->qp_context = (void *)ch;
	qp_init->event_handler
		= (void(*)(struct ib_event *, void*))srpt_qp_event;
	qp_init->send_cq = ch->cq;
	qp_init->recv_cq = ch->cq;
	qp_init->srq = sdev->srq;
	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
	qp_init->qp_type = IB_QPT_RC;
	qp_init->cap.max_send_wr = srp_sq_size;
	qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;

	ch->qp = ib_create_qp(sdev->pd, qp_init);
	if (IS_ERR(ch->qp)) {
		ret = PTR_ERR(ch->qp);
1827 1828 1829 1830 1831 1832 1833
		if (ret == -ENOMEM) {
			srp_sq_size /= 2;
			if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
				ib_destroy_cq(ch->cq);
				goto retry;
			}
		}
1834
		pr_err("failed to create_qp ret= %d\n", ret);
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
		goto err_destroy_cq;
	}

	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);

	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
		 qp_init->cap.max_send_wr, ch->cm_id);

	ret = srpt_init_ch_qp(ch, ch->qp);
	if (ret)
		goto err_destroy_qp;

out:
	kfree(qp_init);
	return ret;

err_destroy_qp:
	ib_destroy_qp(ch->qp);
err_destroy_cq:
1855
	ib_free_cq(ch->cq);
1856 1857 1858 1859 1860 1861
	goto out;
}

static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
{
	ib_destroy_qp(ch->qp);
1862
	ib_free_cq(ch->cq);
1863 1864 1865
}

/**
1866
 * srpt_close_ch() - Close an RDMA channel.
1867
 *
1868 1869
 * Make sure all resources associated with the channel will be deallocated at
 * an appropriate time.
1870
 *
1871 1872
 * Returns true if and only if the channel state has been modified into
 * CH_DRAINING.
1873
 */
1874
static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1875
{
1876
	int ret;
1877

1878 1879 1880 1881
	if (!srpt_set_ch_state(ch, CH_DRAINING)) {
		pr_debug("%s-%d: already closed\n", ch->sess_name,
			 ch->qp->qp_num);
		return false;
1882 1883
	}

1884
	kref_get(&ch->kref);
1885

1886 1887 1888 1889
	ret = srpt_ch_qp_err(ch);
	if (ret < 0)
		pr_err("%s-%d: changing queue pair into error state failed: %d\n",
		       ch->sess_name, ch->qp->qp_num, ret);
1890

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
		 ch->qp->qp_num);
	ret = srpt_zerolength_write(ch);
	if (ret < 0) {
		pr_err("%s-%d: queuing zero-length write failed: %d\n",
		       ch->sess_name, ch->qp->qp_num, ret);
		if (srpt_set_ch_state(ch, CH_DISCONNECTED))
			schedule_work(&ch->release_work);
		else
			WARN_ON_ONCE(true);
	}
1902

1903 1904 1905
	kref_put(&ch->kref, srpt_free_ch);

	return true;
1906 1907
}

1908 1909 1910 1911 1912 1913 1914 1915
/*
 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
 * reached the connected state, close it. If a channel is in the connected
 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
 * the responsibility of the caller to ensure that this function is not
 * invoked concurrently with the code that accepts a connection. This means
 * that this function must either be invoked from inside a CM callback
 * function or that it must be invoked with the srpt_port.mutex held.
1916
 */
1917
static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
1918 1919 1920
{
	int ret;

1921 1922
	if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
		return -ENOTCONN;
1923

1924 1925 1926
	ret = ib_send_cm_dreq(ch->cm_id, NULL, 0);
	if (ret < 0)
		ret = ib_send_cm_drep(ch->cm_id, NULL, 0);
1927

1928 1929
	if (ret < 0 && srpt_close_ch(ch))
		ret = 0;
1930

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	return ret;
}

static void __srpt_close_all_ch(struct srpt_device *sdev)
{
	struct srpt_rdma_ch *ch;

	lockdep_assert_held(&sdev->mutex);

	list_for_each_entry(ch, &sdev->rch_list, list) {
		if (srpt_disconnect_ch(ch) >= 0)
			pr_info("Closing channel %s-%d because target %s has been disabled\n",
				ch->sess_name, ch->qp->qp_num,
				sdev->device->name);
		srpt_close_ch(ch);
1946 1947 1948 1949
	}
}

/**
1950
 * srpt_shutdown_session() - Whether or not a session may be shut down.
1951
 */
1952
static int srpt_shutdown_session(struct se_session *se_sess)
1953
{
1954 1955 1956 1957 1958 1959 1960 1961
	return 1;
}

static void srpt_free_ch(struct kref *kref)
{
	struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);

	kfree(ch);
1962 1963 1964 1965 1966 1967
}

static void srpt_release_channel_work(struct work_struct *w)
{
	struct srpt_rdma_ch *ch;
	struct srpt_device *sdev;
1968
	struct se_session *se_sess;
1969 1970

	ch = container_of(w, struct srpt_rdma_ch, release_work);
1971 1972
	pr_debug("%s: %s-%d; release_done = %p\n", __func__, ch->sess_name,
		 ch->qp->qp_num, ch->release_done);
1973 1974 1975 1976

	sdev = ch->sport->sdev;
	BUG_ON(!sdev);

1977 1978 1979
	se_sess = ch->sess;
	BUG_ON(!se_sess);

1980
	target_sess_cmd_list_set_waiting(se_sess);
1981
	target_wait_for_sess_cmds(se_sess);
1982 1983 1984

	transport_deregister_session_configfs(se_sess);
	transport_deregister_session(se_sess);
1985 1986
	ch->sess = NULL;

1987 1988
	ib_destroy_cm_id(ch->cm_id);

1989 1990 1991 1992 1993 1994
	srpt_destroy_ch_ib(ch);

	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
			     ch->rsp_size, DMA_TO_DEVICE);

1995
	mutex_lock(&sdev->mutex);
1996
	list_del_init(&ch->list);
1997 1998
	if (ch->release_done)
		complete(ch->release_done);
1999
	mutex_unlock(&sdev->mutex);
2000 2001 2002

	wake_up(&sdev->ch_releaseQ);

2003
	kref_put(&ch->kref, srpt_free_ch);
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
}

/**
 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
 *
 * Ownership of the cm_id is transferred to the target session if this
 * functions returns zero. Otherwise the caller remains the owner of cm_id.
 */
static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
			    struct ib_cm_req_event_param *param,
			    void *private_data)
{
	struct srpt_device *sdev = cm_id->context;
	struct srpt_port *sport = &sdev->port[param->port - 1];
	struct srp_login_req *req;
	struct srp_login_rsp *rsp;
	struct srp_login_rej *rej;
	struct ib_cm_rep_param *rep_param;
	struct srpt_rdma_ch *ch, *tmp_ch;
2023
	struct se_node_acl *se_acl;
2024
	u32 it_iu_len;
2025 2026
	int i, ret = 0;
	unsigned char *p;
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

	WARN_ON_ONCE(irqs_disabled());

	if (WARN_ON(!sdev || !private_data))
		return -EINVAL;

	req = (struct srp_login_req *)private_data;

	it_iu_len = be32_to_cpu(req->req_it_iu_len);

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
	pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
		" t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
		" (guid=0x%llx:0x%llx)\n",
		be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
		be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
		be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
		be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
		it_iu_len,
		param->port,
		be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
		be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2048

2049 2050 2051
	rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
	rej = kzalloc(sizeof(*rej), GFP_KERNEL);
	rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2052 2053 2054 2055 2056 2057 2058

	if (!rsp || !rej || !rep_param) {
		ret = -ENOMEM;
		goto out;
	}

	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2059 2060
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2061
		ret = -EINVAL;
2062
		pr_err("rejected SRP_LOGIN_REQ because its"
2063 2064 2065 2066 2067 2068
		       " length (%d bytes) is out of range (%d .. %d)\n",
		       it_iu_len, 64, srp_max_req_size);
		goto reject;
	}

	if (!sport->enabled) {
2069 2070
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2071
		ret = -EINVAL;
2072
		pr_err("rejected SRP_LOGIN_REQ because the target port"
2073 2074 2075 2076 2077 2078 2079
		       " has not yet been enabled\n");
		goto reject;
	}

	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;

2080
		mutex_lock(&sdev->mutex);
2081 2082 2083 2084 2085 2086 2087

		list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
			if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
			    && !memcmp(ch->t_port_id, req->target_port_id, 16)
			    && param->port == ch->sport->port
			    && param->listen_id == ch->sport->sdev->cm_id
			    && ch->cm_id) {
2088
				if (srpt_disconnect_ch(ch) < 0)
2089
					continue;
2090 2091
				pr_info("Relogin - closed existing channel %s\n",
					ch->sess_name);
2092 2093 2094 2095 2096
				rsp->rsp_flags =
					SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
			}
		}

2097
		mutex_unlock(&sdev->mutex);
2098 2099 2100 2101 2102 2103 2104

	} else
		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;

	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
	    || *(__be64 *)(req->target_port_id + 8) !=
	       cpu_to_be64(srpt_service_guid)) {
2105 2106
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2107
		ret = -ENOMEM;
2108
		pr_err("rejected SRP_LOGIN_REQ because it"
2109 2110 2111 2112
		       " has an invalid target port identifier.\n");
		goto reject;
	}

2113
	ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2114
	if (!ch) {
2115 2116
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2117
		pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2118 2119 2120 2121
		ret = -ENOMEM;
		goto reject;
	}

2122 2123
	kref_init(&ch->kref);
	ch->zw_cqe.done = srpt_zerolength_write_done;
2124 2125 2126 2127 2128
	INIT_WORK(&ch->release_work, srpt_release_channel_work);
	memcpy(ch->i_port_id, req->initiator_port_id, 16);
	memcpy(ch->t_port_id, req->target_port_id, 16);
	ch->sport = &sdev->port[param->port - 1];
	ch->cm_id = cm_id;
2129
	cm_id->context = ch;
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
	/*
	 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
	 * for the SRP protocol to the command queue size.
	 */
	ch->rq_size = SRPT_RQ_SIZE;
	spin_lock_init(&ch->spinlock);
	ch->state = CH_CONNECTING;
	INIT_LIST_HEAD(&ch->cmd_wait_list);
	ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;

	ch->ioctx_ring = (struct srpt_send_ioctx **)
		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
				      sizeof(*ch->ioctx_ring[0]),
				      ch->rsp_size, DMA_TO_DEVICE);
	if (!ch->ioctx_ring)
		goto free_ch;

	INIT_LIST_HEAD(&ch->free_list);
	for (i = 0; i < ch->rq_size; i++) {
		ch->ioctx_ring[i]->ch = ch;
		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
	}

	ret = srpt_create_ch_ib(ch);
	if (ret) {
2155 2156
		rej->reason = cpu_to_be32(
			      SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2157
		pr_err("rejected SRP_LOGIN_REQ because creating"
2158 2159 2160 2161 2162 2163
		       " a new RDMA channel failed.\n");
		goto free_ring;
	}

	ret = srpt_ch_qp_rtr(ch, ch->qp);
	if (ret) {
2164
		rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2165
		pr_err("rejected SRP_LOGIN_REQ because enabling"
2166 2167 2168
		       " RTR failed (error code = %d)\n", ret);
		goto destroy_ib;
	}
2169

2170
	/*
2171 2172 2173
	 * Use the initator port identifier as the session name, when
	 * checking against se_node_acl->initiatorname[] this can be
	 * with or without preceeding '0x'.
2174 2175 2176 2177 2178 2179
	 */
	snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
			be64_to_cpu(*(__be64 *)ch->i_port_id),
			be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));

	pr_debug("registering session %s\n", ch->sess_name);
2180
	p = &ch->sess_name[0];
2181

2182 2183
	ch->sess = transport_init_session(TARGET_PROT_NORMAL);
	if (IS_ERR(ch->sess)) {
2184
		rej->reason = cpu_to_be32(
2185 2186
				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
		pr_debug("Failed to create session\n");
2187 2188 2189
		goto destroy_ib;
	}

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
try_again:
	se_acl = core_tpg_get_initiator_node_acl(&sport->port_tpg_1, p);
	if (!se_acl) {
		pr_info("Rejected login because no ACL has been"
			" configured yet for initiator %s.\n", ch->sess_name);
		/*
		 * XXX: Hack to retry of ch->i_port_id without leading '0x'
		 */
		if (p == &ch->sess_name[0]) {
			p += 2;
			goto try_again;
		}
2202
		rej->reason = cpu_to_be32(
2203 2204 2205
				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
		transport_free_session(ch->sess);
		goto destroy_ib;
2206
	}
2207 2208 2209
	ch->sess->se_node_acl = se_acl;

	transport_register_session(&sport->port_tpg_1, se_acl, ch->sess, ch);
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219

	pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
		 ch->sess_name, ch->cm_id);

	/* create srp_login_response */
	rsp->opcode = SRP_LOGIN_RSP;
	rsp->tag = req->tag;
	rsp->max_it_iu_len = req->req_it_iu_len;
	rsp->max_ti_iu_len = req->req_it_iu_len;
	ch->max_ti_iu_len = it_iu_len;
2220 2221
	rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
				   | SRP_BUF_FORMAT_INDIRECT);
2222 2223 2224 2225 2226 2227 2228
	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
	atomic_set(&ch->req_lim, ch->rq_size);
	atomic_set(&ch->req_lim_delta, 0);

	/* create cm reply */
	rep_param->qp_num = ch->qp->qp_num;
	rep_param->private_data = (void *)rsp;
2229
	rep_param->private_data_len = sizeof(*rsp);
2230 2231 2232 2233 2234 2235 2236 2237 2238
	rep_param->rnr_retry_count = 7;
	rep_param->flow_control = 1;
	rep_param->failover_accepted = 0;
	rep_param->srq = 1;
	rep_param->responder_resources = 4;
	rep_param->initiator_depth = 4;

	ret = ib_send_cm_rep(cm_id, rep_param);
	if (ret) {
2239
		pr_err("sending SRP_LOGIN_REQ response failed"
2240 2241 2242 2243
		       " (error code = %d)\n", ret);
		goto release_channel;
	}

2244
	mutex_lock(&sdev->mutex);
2245
	list_add_tail(&ch->list, &sdev->rch_list);
2246
	mutex_unlock(&sdev->mutex);
2247 2248 2249 2250

	goto out;

release_channel:
2251
	srpt_disconnect_ch(ch);
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	transport_deregister_session_configfs(ch->sess);
	transport_deregister_session(ch->sess);
	ch->sess = NULL;

destroy_ib:
	srpt_destroy_ch_ib(ch);

free_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
			     ch->sport->sdev, ch->rq_size,
			     ch->rsp_size, DMA_TO_DEVICE);
free_ch:
	kfree(ch);

reject:
	rej->opcode = SRP_LOGIN_REJ;
	rej->tag = req->tag;
2269 2270
	rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
				   | SRP_BUF_FORMAT_INDIRECT);
2271 2272

	ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2273
			     (void *)rej, sizeof(*rej));
2274 2275 2276 2277 2278 2279 2280 2281 2282

out:
	kfree(rep_param);
	kfree(rsp);
	kfree(rej);

	return ret;
}

2283 2284 2285 2286
static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
			     enum ib_cm_rej_reason reason,
			     const u8 *private_data,
			     u8 private_data_len)
2287
{
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
	char *priv = NULL;
	int i;

	if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
						GFP_KERNEL))) {
		for (i = 0; i < private_data_len; i++)
			sprintf(priv + 3 * i, " %02x", private_data[i]);
	}
	pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
		ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
		"; private data" : "", priv ? priv : " (?)");
	kfree(priv);
2300 2301 2302 2303 2304 2305 2306 2307
}

/**
 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
 *
 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
 * and that the recipient may begin transmitting (RTU = ready to use).
 */
2308
static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2309 2310 2311
{
	int ret;

2312
	if (srpt_set_ch_state(ch, CH_LIVE)) {
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
		struct srpt_recv_ioctx *ioctx, *ioctx_tmp;

		ret = srpt_ch_qp_rts(ch, ch->qp);

		list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
					 wait_list) {
			list_del(&ioctx->wait_list);
			srpt_handle_new_iu(ch, ioctx, NULL);
		}
		if (ret)
			srpt_close_ch(ch);
	}
}

/**
 * srpt_cm_handler() - IB connection manager callback function.
 *
 * A non-zero return value will cause the caller destroy the CM ID.
 *
 * Note: srpt_cm_handler() must only return a non-zero value when transferring
 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
 * a non-zero value in any other case will trigger a race with the
 * ib_destroy_cm_id() call in srpt_release_channel().
 */
static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
{
2339
	struct srpt_rdma_ch *ch = cm_id->context;
2340 2341 2342 2343 2344 2345 2346 2347 2348
	int ret;

	ret = 0;
	switch (event->event) {
	case IB_CM_REQ_RECEIVED:
		ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
				       event->private_data);
		break;
	case IB_CM_REJ_RECEIVED:
2349 2350 2351
		srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
				 event->private_data,
				 IB_CM_REJ_PRIVATE_DATA_SIZE);
2352 2353 2354
		break;
	case IB_CM_RTU_RECEIVED:
	case IB_CM_USER_ESTABLISHED:
2355
		srpt_cm_rtu_recv(ch);
2356 2357
		break;
	case IB_CM_DREQ_RECEIVED:
2358
		srpt_disconnect_ch(ch);
2359 2360
		break;
	case IB_CM_DREP_RECEIVED:
2361 2362
		pr_info("Received CM DREP message for ch %s-%d.\n",
			ch->sess_name, ch->qp->qp_num);
2363
		srpt_close_ch(ch);
2364 2365
		break;
	case IB_CM_TIMEWAIT_EXIT:
2366 2367
		pr_info("Received CM TimeWait exit for ch %s-%d.\n",
			ch->sess_name, ch->qp->qp_num);
2368
		srpt_close_ch(ch);
2369 2370
		break;
	case IB_CM_REP_ERROR:
2371 2372
		pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
			ch->qp->qp_num);
2373 2374
		break;
	case IB_CM_DREQ_ERROR:
2375
		pr_info("Received CM DREQ ERROR event.\n");
2376 2377
		break;
	case IB_CM_MRA_RECEIVED:
2378
		pr_info("Received CM MRA event\n");
2379 2380
		break;
	default:
2381
		pr_err("received unrecognized CM event %d\n", event->event);
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
		break;
	}

	return ret;
}

/**
 * srpt_perform_rdmas() - Perform IB RDMA.
 *
 * Returns zero upon success or a negative number upon failure.
 */
static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
			      struct srpt_send_ioctx *ioctx)
{
	struct ib_send_wr *bad_wr;
2397
	int sq_wr_avail, ret, i;
2398 2399 2400 2401 2402 2403 2404 2405 2406
	enum dma_data_direction dir;
	const int n_rdma = ioctx->n_rdma;

	dir = ioctx->cmd.data_direction;
	if (dir == DMA_TO_DEVICE) {
		/* write */
		ret = -ENOMEM;
		sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
		if (sq_wr_avail < 0) {
2407 2408
			pr_warn("IB send queue full (needed %d)\n",
				n_rdma);
2409 2410 2411 2412
			goto out;
		}
	}

2413 2414
	for (i = 0; i < n_rdma; i++) {
		struct ib_send_wr *wr = &ioctx->rdma_wrs[i].wr;
2415

2416 2417
		wr->opcode = (dir == DMA_FROM_DEVICE) ?
				IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
2418

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
		if (i == n_rdma - 1) {
			/* only get completion event for the last rdma read */
			if (dir == DMA_TO_DEVICE) {
				wr->send_flags = IB_SEND_SIGNALED;
				ioctx->rdma_cqe.done = srpt_rdma_read_done;
			} else {
				ioctx->rdma_cqe.done = srpt_rdma_write_done;
			}
			wr->wr_cqe = &ioctx->rdma_cqe;
			wr->next = NULL;
		} else {
			wr->wr_cqe = NULL;
			wr->next = &ioctx->rdma_wrs[i + 1].wr;
		}
2433 2434
	}

2435
	ret = ib_post_send(ch->qp, &ioctx->rdma_wrs->wr, &bad_wr);
2436
	if (ret)
2437
		pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n",
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
				 __func__, __LINE__, ret, i, n_rdma);
out:
	if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
		atomic_add(n_rdma, &ch->sq_wr_avail);
	return ret;
}

/**
 * srpt_xfer_data() - Start data transfer from initiator to target.
 */
static int srpt_xfer_data(struct srpt_rdma_ch *ch,
			  struct srpt_send_ioctx *ioctx)
{
	int ret;

	ret = srpt_map_sg_to_ib_sge(ch, ioctx);
	if (ret) {
2455
		pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret);
2456 2457 2458 2459 2460 2461
		goto out;
	}

	ret = srpt_perform_rdmas(ch, ioctx);
	if (ret) {
		if (ret == -EAGAIN || ret == -ENOMEM)
2462 2463
			pr_info("%s[%d] queue full -- ret=%d\n",
				__func__, __LINE__, ret);
2464
		else
2465
			pr_err("%s[%d] fatal error -- ret=%d\n",
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
			       __func__, __LINE__, ret);
		goto out_unmap;
	}

out:
	return ret;
out_unmap:
	srpt_unmap_sg_to_ib_sge(ch, ioctx);
	goto out;
}

static int srpt_write_pending_status(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
	return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
}

/*
 * srpt_write_pending() - Start data transfer from initiator to target (write).
 */
static int srpt_write_pending(struct se_cmd *se_cmd)
{
2490 2491 2492
	struct srpt_send_ioctx *ioctx =
		container_of(se_cmd, struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
2493 2494 2495 2496
	enum srpt_command_state new_state;

	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
	WARN_ON(new_state == SRPT_STATE_DONE);
2497
	return srpt_xfer_data(ch, ioctx);
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
}

static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
{
	switch (tcm_mgmt_status) {
	case TMR_FUNCTION_COMPLETE:
		return SRP_TSK_MGMT_SUCCESS;
	case TMR_FUNCTION_REJECTED:
		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
	}
	return SRP_TSK_MGMT_FAILED;
}

/**
 * srpt_queue_response() - Transmits the response to a SCSI command.
 *
 * Callback function called by the TCM core. Must not block since it can be
 * invoked on the context of the IB completion handler.
 */
2517
static void srpt_queue_response(struct se_cmd *cmd)
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
{
	struct srpt_rdma_ch *ch;
	struct srpt_send_ioctx *ioctx;
	enum srpt_command_state state;
	unsigned long flags;
	int ret;
	enum dma_data_direction dir;
	int resp_len;
	u8 srp_tm_status;

	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
	ch = ioctx->ch;
	BUG_ON(!ch);

	spin_lock_irqsave(&ioctx->spinlock, flags);
	state = ioctx->state;
	switch (state) {
	case SRPT_STATE_NEW:
	case SRPT_STATE_DATA_IN:
		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
		break;
	case SRPT_STATE_MGMT:
		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
		break;
	default:
		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
			ch, ioctx->ioctx.index, ioctx->state);
		break;
	}
	spin_unlock_irqrestore(&ioctx->spinlock, flags);

	if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
		     || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
		atomic_inc(&ch->req_lim_delta);
		srpt_abort_cmd(ioctx);
2553
		return;
2554 2555 2556 2557 2558 2559 2560 2561 2562
	}

	dir = ioctx->cmd.data_direction;

	/* For read commands, transfer the data to the initiator. */
	if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
	    !ioctx->queue_status_only) {
		ret = srpt_xfer_data(ch, ioctx);
		if (ret) {
2563
			pr_err("xfer_data failed for tag %llu\n",
2564
			       ioctx->cmd.tag);
2565
			return;
2566 2567 2568 2569
		}
	}

	if (state != SRPT_STATE_MGMT)
2570
		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2571 2572 2573 2574 2575
					      cmd->scsi_status);
	else {
		srp_tm_status
			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2576
						 ioctx->cmd.tag);
2577 2578 2579
	}
	ret = srpt_post_send(ch, ioctx, resp_len);
	if (ret) {
2580
		pr_err("sending cmd response failed for tag %llu\n",
2581
		       ioctx->cmd.tag);
2582 2583
		srpt_unmap_sg_to_ib_sge(ch, ioctx);
		srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2584
		target_put_sess_cmd(&ioctx->cmd);
2585
	}
2586
}
2587

2588 2589 2590 2591 2592 2593 2594 2595 2596
static int srpt_queue_data_in(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
	return 0;
}

static void srpt_queue_tm_rsp(struct se_cmd *cmd)
{
	srpt_queue_response(cmd);
2597 2598
}

2599 2600 2601 2602 2603 2604 2605 2606
static void srpt_aborted_task(struct se_cmd *cmd)
{
	struct srpt_send_ioctx *ioctx = container_of(cmd,
				struct srpt_send_ioctx, cmd);

	srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
}

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
static int srpt_queue_status(struct se_cmd *cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
	if (cmd->se_cmd_flags &
	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
	ioctx->queue_status_only = true;
2617 2618
	srpt_queue_response(cmd);
	return 0;
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
}

static void srpt_refresh_port_work(struct work_struct *work)
{
	struct srpt_port *sport = container_of(work, struct srpt_port, work);

	srpt_refresh_port(sport);
}

/**
 * srpt_release_sdev() - Free the channel resources associated with a target.
 */
static int srpt_release_sdev(struct srpt_device *sdev)
{
2633
	int i, res;
2634 2635 2636 2637 2638

	WARN_ON_ONCE(irqs_disabled());

	BUG_ON(!sdev);

2639
	mutex_lock(&sdev->mutex);
2640 2641 2642
	for (i = 0; i < ARRAY_SIZE(sdev->port); i++)
		sdev->port[i].enabled = false;
	__srpt_close_all_ch(sdev);
2643
	mutex_unlock(&sdev->mutex);
2644 2645

	res = wait_event_interruptible(sdev->ch_releaseQ,
2646
				       list_empty_careful(&sdev->rch_list));
2647
	if (res)
2648
		pr_err("%s: interrupted.\n", __func__);
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

	return 0;
}

static struct srpt_port *__srpt_lookup_port(const char *name)
{
	struct ib_device *dev;
	struct srpt_device *sdev;
	struct srpt_port *sport;
	int i;

	list_for_each_entry(sdev, &srpt_dev_list, list) {
		dev = sdev->device;
		if (!dev)
			continue;

		for (i = 0; i < dev->phys_port_cnt; i++) {
			sport = &sdev->port[i];

			if (!strcmp(sport->port_guid, name))
				return sport;
		}
	}

	return NULL;
}

static struct srpt_port *srpt_lookup_port(const char *name)
{
	struct srpt_port *sport;

	spin_lock(&srpt_dev_lock);
	sport = __srpt_lookup_port(name);
	spin_unlock(&srpt_dev_lock);

	return sport;
}

/**
 * srpt_add_one() - Infiniband device addition callback function.
 */
static void srpt_add_one(struct ib_device *device)
{
	struct srpt_device *sdev;
	struct srpt_port *sport;
	struct ib_srq_init_attr srq_attr;
	int i;

	pr_debug("device = %p, device->dma_ops = %p\n", device,
		 device->dma_ops);

2700
	sdev = kzalloc(sizeof(*sdev), GFP_KERNEL);
2701 2702 2703 2704 2705 2706
	if (!sdev)
		goto err;

	sdev->device = device;
	INIT_LIST_HEAD(&sdev->rch_list);
	init_waitqueue_head(&sdev->ch_releaseQ);
2707
	mutex_init(&sdev->mutex);
2708 2709 2710 2711 2712

	sdev->pd = ib_alloc_pd(device);
	if (IS_ERR(sdev->pd))
		goto free_dev;

2713
	sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
2714 2715 2716 2717 2718 2719

	srq_attr.event_handler = srpt_srq_event;
	srq_attr.srq_context = (void *)sdev;
	srq_attr.attr.max_wr = sdev->srq_size;
	srq_attr.attr.max_sge = 1;
	srq_attr.attr.srq_limit = 0;
2720
	srq_attr.srq_type = IB_SRQT_BASIC;
2721 2722 2723

	sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
	if (IS_ERR(sdev->srq))
2724
		goto err_pd;
2725 2726

	pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
2727
		 __func__, sdev->srq_size, sdev->device->attrs.max_srq_wr,
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
		 device->name);

	if (!srpt_service_guid)
		srpt_service_guid = be64_to_cpu(device->node_guid);

	sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
	if (IS_ERR(sdev->cm_id))
		goto err_srq;

	/* print out target login information */
	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
		 srpt_service_guid, srpt_service_guid);

	/*
	 * We do not have a consistent service_id (ie. also id_ext of target_id)
	 * to identify this target. We currently use the guid of the first HCA
	 * in the system as service_id; therefore, the target_id will change
	 * if this HCA is gone bad and replaced by different HCA
	 */
H
Haggai Eran 已提交
2748
	if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0))
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
		goto err_cm;

	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
			      srpt_event_handler);
	if (ib_register_event_handler(&sdev->event_handler))
		goto err_cm;

	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
				      sizeof(*sdev->ioctx_ring[0]),
				      srp_max_req_size, DMA_FROM_DEVICE);
	if (!sdev->ioctx_ring)
		goto err_event;

	for (i = 0; i < sdev->srq_size; ++i)
		srpt_post_recv(sdev, sdev->ioctx_ring[i]);

2766
	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777

	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
		sport = &sdev->port[i - 1];
		sport->sdev = sdev;
		sport->port = i;
		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
		INIT_WORK(&sport->work, srpt_refresh_port_work);

		if (srpt_refresh_port(sport)) {
2778
			pr_err("MAD registration failed for %s-%d.\n",
2779
			       sdev->device->name, i);
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
			goto err_ring;
		}
		snprintf(sport->port_guid, sizeof(sport->port_guid),
			"0x%016llx%016llx",
			be64_to_cpu(sport->gid.global.subnet_prefix),
			be64_to_cpu(sport->gid.global.interface_id));
	}

	spin_lock(&srpt_dev_lock);
	list_add_tail(&sdev->list, &srpt_dev_list);
	spin_unlock(&srpt_dev_lock);

out:
	ib_set_client_data(device, &srpt_client, sdev);
	pr_debug("added %s.\n", device->name);
	return;

err_ring:
	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
			     sdev->srq_size, srp_max_req_size,
			     DMA_FROM_DEVICE);
err_event:
	ib_unregister_event_handler(&sdev->event_handler);
err_cm:
	ib_destroy_cm_id(sdev->cm_id);
err_srq:
	ib_destroy_srq(sdev->srq);
err_pd:
	ib_dealloc_pd(sdev->pd);
free_dev:
	kfree(sdev);
err:
	sdev = NULL;
2813
	pr_info("%s(%s) failed.\n", __func__, device->name);
2814 2815 2816 2817 2818 2819
	goto out;
}

/**
 * srpt_remove_one() - InfiniBand device removal callback function.
 */
2820
static void srpt_remove_one(struct ib_device *device, void *client_data)
2821
{
2822
	struct srpt_device *sdev = client_data;
2823 2824 2825
	int i;

	if (!sdev) {
2826
		pr_info("%s(%s): nothing to do.\n", __func__, device->name);
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
		return;
	}

	srpt_unregister_mad_agent(sdev);

	ib_unregister_event_handler(&sdev->event_handler);

	/* Cancel any work queued by the just unregistered IB event handler. */
	for (i = 0; i < sdev->device->phys_port_cnt; i++)
		cancel_work_sync(&sdev->port[i].work);

	ib_destroy_cm_id(sdev->cm_id);

	/*
	 * Unregistering a target must happen after destroying sdev->cm_id
	 * such that no new SRP_LOGIN_REQ information units can arrive while
	 * destroying the target.
	 */
	spin_lock(&srpt_dev_lock);
	list_del(&sdev->list);
	spin_unlock(&srpt_dev_lock);
	srpt_release_sdev(sdev);

	ib_destroy_srq(sdev->srq);
	ib_dealloc_pd(sdev->pd);

	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
	sdev->ioctx_ring = NULL;
	kfree(sdev);
}

static struct ib_client srpt_client = {
	.name = DRV_NAME,
	.add = srpt_add_one,
	.remove = srpt_remove_one
};

static int srpt_check_true(struct se_portal_group *se_tpg)
{
	return 1;
}

static int srpt_check_false(struct se_portal_group *se_tpg)
{
	return 0;
}

static char *srpt_get_fabric_name(void)
{
	return "srpt";
}

static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
{
	struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);

	return sport->port_guid;
}

static u16 srpt_get_tag(struct se_portal_group *tpg)
{
	return 1;
}

static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
{
	return 1;
}

static void srpt_release_cmd(struct se_cmd *se_cmd)
{
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
				struct srpt_send_ioctx, cmd);
	struct srpt_rdma_ch *ch = ioctx->ch;
	unsigned long flags;

	WARN_ON(ioctx->state != SRPT_STATE_DONE);
	WARN_ON(ioctx->mapped_sg_count != 0);

	if (ioctx->n_rbuf > 1) {
		kfree(ioctx->rbufs);
		ioctx->rbufs = NULL;
		ioctx->n_rbuf = 0;
	}

	spin_lock_irqsave(&ch->spinlock, flags);
	list_add(&ioctx->free_list, &ch->free_list);
	spin_unlock_irqrestore(&ch->spinlock, flags);
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
}

/**
 * srpt_close_session() - Forcibly close a session.
 *
 * Callback function invoked by the TCM core to clean up sessions associated
 * with a node ACL when the user invokes
 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
static void srpt_close_session(struct se_session *se_sess)
{
	DECLARE_COMPLETION_ONSTACK(release_done);
2928 2929 2930
	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
	struct srpt_device *sdev = ch->sport->sdev;
	bool wait;
2931

2932 2933
	pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
		 ch->state);
2934

2935
	mutex_lock(&sdev->mutex);
2936 2937
	BUG_ON(ch->release_done);
	ch->release_done = &release_done;
2938
	wait = !list_empty(&ch->list);
2939
	srpt_disconnect_ch(ch);
2940
	mutex_unlock(&sdev->mutex);
2941

2942 2943 2944 2945 2946 2947
	if (!wait)
		return;

	while (wait_for_completion_timeout(&release_done, 180 * HZ) == 0)
		pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
			ch->sess_name, ch->qp->qp_num, ch->state);
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
}

/**
 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
 *
 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
 * This object represents an arbitrary integer used to uniquely identify a
 * particular attached remote initiator port to a particular SCSI target port
 * within a particular SCSI target device within a particular SCSI instance.
 */
static u32 srpt_sess_get_index(struct se_session *se_sess)
{
	return 0;
}

static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
{
}

/* Note: only used from inside debug printk's by the TCM core. */
static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
{
	struct srpt_send_ioctx *ioctx;

	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
	return srpt_get_cmd_state(ioctx);
}

/**
 * srpt_parse_i_port_id() - Parse an initiator port ID.
 * @name: ASCII representation of a 128-bit initiator port ID.
 * @i_port_id: Binary 128-bit port ID.
 */
static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
{
	const char *p;
	unsigned len, count, leading_zero_bytes;
	int ret, rc;

	p = name;
2988
	if (strncasecmp(p, "0x", 2) == 0)
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
		p += 2;
	ret = -EINVAL;
	len = strlen(p);
	if (len % 2)
		goto out;
	count = min(len / 2, 16U);
	leading_zero_bytes = 16 - count;
	memset(i_port_id, 0, leading_zero_bytes);
	rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
	if (rc < 0)
		pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
	ret = 0;
out:
	return ret;
}

/*
 * configfs callback function invoked for
 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
 */
3009
static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3010 3011 3012 3013
{
	u8 i_port_id[16];

	if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3014
		pr_err("invalid initiator port ID %s\n", name);
3015
		return -EINVAL;
3016
	}
3017
	return 0;
3018 3019
}

3020 3021
static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
		char *page)
3022
{
3023
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3024 3025 3026 3027 3028
	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
}

3029 3030
static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
		const char *page, size_t count)
3031
{
3032
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3033 3034 3035 3036
	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
	unsigned long val;
	int ret;

3037
	ret = kstrtoul(page, 0, &val);
3038
	if (ret < 0) {
3039
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
		return -EINVAL;
	}
	if (val > MAX_SRPT_RDMA_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
			MAX_SRPT_RDMA_SIZE);
		return -EINVAL;
	}
	if (val < DEFAULT_MAX_RDMA_SIZE) {
		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
			val, DEFAULT_MAX_RDMA_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rdma_size = val;

	return count;
}

3057 3058
static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
		char *page)
3059
{
3060
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3061 3062 3063 3064 3065
	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);

	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
}

3066 3067
static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
		const char *page, size_t count)
3068
{
3069
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3070 3071 3072 3073
	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
	unsigned long val;
	int ret;

3074
	ret = kstrtoul(page, 0, &val);
3075
	if (ret < 0) {
3076
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
		return -EINVAL;
	}
	if (val > MAX_SRPT_RSP_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
			MAX_SRPT_RSP_SIZE);
		return -EINVAL;
	}
	if (val < MIN_MAX_RSP_SIZE) {
		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
			MIN_MAX_RSP_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_max_rsp_size = val;

	return count;
}

3094 3095
static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
		char *page)
3096
{
3097
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3098 3099 3100 3101 3102
	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);

	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
}

3103 3104
static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
		const char *page, size_t count)
3105
{
3106
	struct se_portal_group *se_tpg = attrib_to_tpg(item);
3107 3108 3109 3110
	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
	unsigned long val;
	int ret;

3111
	ret = kstrtoul(page, 0, &val);
3112
	if (ret < 0) {
3113
		pr_err("kstrtoul() failed with ret: %d\n", ret);
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
		return -EINVAL;
	}
	if (val > MAX_SRPT_SRQ_SIZE) {
		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
			MAX_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	if (val < MIN_SRPT_SRQ_SIZE) {
		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
			MIN_SRPT_SRQ_SIZE);
		return -EINVAL;
	}
	sport->port_attrib.srp_sq_size = val;

	return count;
}

3131 3132 3133
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rdma_size);
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_max_rsp_size);
CONFIGFS_ATTR(srpt_tpg_attrib_,  srp_sq_size);
3134 3135

static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3136 3137 3138
	&srpt_tpg_attrib_attr_srp_max_rdma_size,
	&srpt_tpg_attrib_attr_srp_max_rsp_size,
	&srpt_tpg_attrib_attr_srp_sq_size,
3139 3140 3141
	NULL,
};

3142
static ssize_t srpt_tpg_enable_show(struct config_item *item, char *page)
3143
{
3144
	struct se_portal_group *se_tpg = to_tpg(item);
3145 3146 3147 3148 3149
	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);

	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
}

3150 3151
static ssize_t srpt_tpg_enable_store(struct config_item *item,
		const char *page, size_t count)
3152
{
3153
	struct se_portal_group *se_tpg = to_tpg(item);
3154
	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3155 3156
	struct srpt_device *sdev = sport->sdev;
	struct srpt_rdma_ch *ch;
3157 3158 3159
	unsigned long tmp;
        int ret;

3160
	ret = kstrtoul(page, 0, &tmp);
3161
	if (ret < 0) {
3162
		pr_err("Unable to extract srpt_tpg_store_enable\n");
3163 3164 3165 3166
		return -EINVAL;
	}

	if ((tmp != 0) && (tmp != 1)) {
3167
		pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3168 3169
		return -EINVAL;
	}
3170 3171 3172 3173 3174
	if (sport->enabled == tmp)
		goto out;
	sport->enabled = tmp;
	if (sport->enabled)
		goto out;
3175

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
	mutex_lock(&sdev->mutex);
	list_for_each_entry(ch, &sdev->rch_list, list) {
		if (ch->sport == sport) {
			pr_debug("%s: ch %p %s-%d\n", __func__, ch,
				 ch->sess_name, ch->qp->qp_num);
			srpt_disconnect_ch(ch);
			srpt_close_ch(ch);
		}
	}
	mutex_unlock(&sdev->mutex);

out:
3188 3189 3190
	return count;
}

3191
CONFIGFS_ATTR(srpt_tpg_, enable);
3192 3193

static struct configfs_attribute *srpt_tpg_attrs[] = {
3194
	&srpt_tpg_attr_enable,
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	NULL,
};

/**
 * configfs callback invoked for
 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
 */
static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
					     struct config_group *group,
					     const char *name)
{
	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
	int res;

	/* Initialize sport->port_wwn and sport->port_tpg_1 */
3210
	res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP);
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
	if (res)
		return ERR_PTR(res);

	return &sport->port_tpg_1;
}

/**
 * configfs callback invoked for
 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
 */
static void srpt_drop_tpg(struct se_portal_group *tpg)
{
	struct srpt_port *sport = container_of(tpg,
				struct srpt_port, port_tpg_1);

	sport->enabled = false;
	core_tpg_deregister(&sport->port_tpg_1);
}

/**
 * configfs callback invoked for
 * mkdir /sys/kernel/config/target/$driver/$port
 */
static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
				      struct config_group *group,
				      const char *name)
{
	struct srpt_port *sport;
	int ret;

	sport = srpt_lookup_port(name);
	pr_debug("make_tport(%s)\n", name);
	ret = -EINVAL;
	if (!sport)
		goto err;

	return &sport->port_wwn;

err:
	return ERR_PTR(ret);
}

/**
 * configfs callback invoked for
 * rmdir /sys/kernel/config/target/$driver/$port
 */
static void srpt_drop_tport(struct se_wwn *wwn)
{
	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);

	pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
}

3264
static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3265 3266 3267 3268
{
	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
}

3269
CONFIGFS_ATTR_RO(srpt_wwn_, version);
3270 3271

static struct configfs_attribute *srpt_wwn_attrs[] = {
3272
	&srpt_wwn_attr_version,
3273 3274 3275
	NULL,
};

3276 3277 3278
static const struct target_core_fabric_ops srpt_template = {
	.module				= THIS_MODULE,
	.name				= "srpt",
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	.get_fabric_name		= srpt_get_fabric_name,
	.tpg_get_wwn			= srpt_get_fabric_wwn,
	.tpg_get_tag			= srpt_get_tag,
	.tpg_check_demo_mode		= srpt_check_false,
	.tpg_check_demo_mode_cache	= srpt_check_true,
	.tpg_check_demo_mode_write_protect = srpt_check_true,
	.tpg_check_prod_mode_write_protect = srpt_check_false,
	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
	.release_cmd			= srpt_release_cmd,
	.check_stop_free		= srpt_check_stop_free,
	.shutdown_session		= srpt_shutdown_session,
	.close_session			= srpt_close_session,
	.sess_get_index			= srpt_sess_get_index,
	.sess_get_initiator_sid		= NULL,
	.write_pending			= srpt_write_pending,
	.write_pending_status		= srpt_write_pending_status,
	.set_default_node_attributes	= srpt_set_default_node_attrs,
	.get_cmd_state			= srpt_get_tcm_cmd_state,
3297
	.queue_data_in			= srpt_queue_data_in,
3298
	.queue_status			= srpt_queue_status,
3299
	.queue_tm_rsp			= srpt_queue_tm_rsp,
3300
	.aborted_task			= srpt_aborted_task,
3301 3302 3303 3304 3305 3306 3307 3308
	/*
	 * Setup function pointers for generic logic in
	 * target_core_fabric_configfs.c
	 */
	.fabric_make_wwn		= srpt_make_tport,
	.fabric_drop_wwn		= srpt_drop_tport,
	.fabric_make_tpg		= srpt_make_tpg,
	.fabric_drop_tpg		= srpt_drop_tpg,
3309
	.fabric_init_nodeacl		= srpt_init_nodeacl,
3310 3311 3312 3313

	.tfc_wwn_attrs			= srpt_wwn_attrs,
	.tfc_tpg_base_attrs		= srpt_tpg_attrs,
	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
};

/**
 * srpt_init_module() - Kernel module initialization.
 *
 * Note: Since ib_register_client() registers callback functions, and since at
 * least one of these callback functions (srpt_add_one()) calls target core
 * functions, this driver must be registered with the target core before
 * ib_register_client() is called.
 */
static int __init srpt_init_module(void)
{
	int ret;

	ret = -EINVAL;
	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3330
		pr_err("invalid value %d for kernel module parameter"
3331 3332 3333 3334 3335 3336 3337
		       " srp_max_req_size -- must be at least %d.\n",
		       srp_max_req_size, MIN_MAX_REQ_SIZE);
		goto out;
	}

	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3338
		pr_err("invalid value %d for kernel module parameter"
3339 3340 3341 3342 3343
		       " srpt_srq_size -- must be in the range [%d..%d].\n",
		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
		goto out;
	}

3344 3345
	ret = target_register_template(&srpt_template);
	if (ret)
3346 3347 3348 3349
		goto out;

	ret = ib_register_client(&srpt_client);
	if (ret) {
3350
		pr_err("couldn't register IB client\n");
3351 3352 3353 3354 3355 3356
		goto out_unregister_target;
	}

	return 0;

out_unregister_target:
3357
	target_unregister_template(&srpt_template);
3358 3359 3360 3361 3362 3363 3364
out:
	return ret;
}

static void __exit srpt_cleanup_module(void)
{
	ib_unregister_client(&srpt_client);
3365
	target_unregister_template(&srpt_template);
3366 3367 3368 3369
}

module_init(srpt_init_module);
module_exit(srpt_cleanup_module);