hpsa.h 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 *    Disk Array driver for HP Smart Array SAS controllers
 *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; version 2 of the License.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
 *
 */
#ifndef HPSA_H
#define HPSA_H

#include <scsi/scsicam.h>

#define IO_OK		0
#define IO_ERROR	1

struct ctlr_info;

struct access_method {
	void (*submit_command)(struct ctlr_info *h,
		struct CommandList *c);
	void (*set_intr_mask)(struct ctlr_info *h, unsigned long val);
	unsigned long (*fifo_full)(struct ctlr_info *h);
36
	bool (*intr_pending)(struct ctlr_info *h);
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
	unsigned long (*command_completed)(struct ctlr_info *h);
};

struct hpsa_scsi_dev_t {
	int devtype;
	int bus, target, lun;		/* as presented to the OS */
	unsigned char scsi3addr[8];	/* as presented to the HW */
#define RAID_CTLR_LUNID "\0\0\0\0\0\0\0\0"
	unsigned char device_id[16];    /* from inquiry pg. 0x83 */
	unsigned char vendor[8];        /* bytes 8-15 of inquiry data */
	unsigned char model[16];        /* bytes 16-31 of inquiry data */
	unsigned char raid_level;	/* from inquiry page 0xC1 */
};

struct ctlr_info {
	int	ctlr;
	char	devname[8];
	char    *product_name;
	struct pci_dev *pdev;
56
	u32	board_id;
57 58 59 60
	void __iomem *vaddr;
	unsigned long paddr;
	int 	nr_cmds; /* Number of commands allowed on this controller */
	struct CfgTable __iomem *cfgtable;
61
	int     max_sg_entries;
62 63 64 65 66 67
	int	interrupts_enabled;
	int	major;
	int 	max_commands;
	int	commands_outstanding;
	int 	max_outstanding; /* Debug */
	int	usage_count;  /* number of opens all all minor devices */
68 69
#	define PERF_MODE_INT	0
#	define DOORBELL_INT	1
70 71 72 73 74
#	define SIMPLE_MODE_INT	2
#	define MEMQ_MODE_INT	3
	unsigned int intr[4];
	unsigned int msix_vector;
	unsigned int msi_vector;
75
	int intr_mode; /* either PERF_MODE_INT or SIMPLE_MODE_INT */
76 77 78
	struct access_method access;

	/* queue and queue Info */
79 80
	struct list_head reqQ;
	struct list_head cmpQ;
81 82 83 84
	unsigned int Qdepth;
	unsigned int maxQsinceinit;
	unsigned int maxSG;
	spinlock_t lock;
85 86 87 88
	int maxsgentries;
	u8 max_cmd_sg_entries;
	int chainsize;
	struct SGDescriptor **cmd_sg_list;
89 90 91 92 93 94 95 96 97

	/* pointers to command and error info pool */
	struct CommandList 	*cmd_pool;
	dma_addr_t		cmd_pool_dhandle;
	struct ErrorInfo 	*errinfo_pool;
	dma_addr_t		errinfo_pool_dhandle;
	unsigned long  		*cmd_pool_bits;
	int			nr_allocs;
	int			nr_frees;
98 99 100
	int			scan_finished;
	spinlock_t		scan_lock;
	wait_queue_head_t	scan_wait_queue;
101 102 103 104 105 106

	struct Scsi_Host *scsi_host;
	spinlock_t devlock; /* to protect hba[ctlr]->dev[];  */
	int ndevices; /* number of used elements in .dev[] array. */
#define HPSA_MAX_SCSI_DEVS_PER_HBA 256
	struct hpsa_scsi_dev_t *dev[HPSA_MAX_SCSI_DEVS_PER_HBA];
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
	/*
	 * Performant mode tables.
	 */
	u32 trans_support;
	u32 trans_offset;
	struct TransTable_struct *transtable;
	unsigned long transMethod;

	/*
	 * Performant mode completion buffer
	 */
	u64 *reply_pool;
	dma_addr_t reply_pool_dhandle;
	u64 *reply_pool_head;
	size_t reply_pool_size;
	unsigned char reply_pool_wraparound;
	u32 *blockFetchTable;
124
	unsigned char *hba_inquiry_data;
125 126 127
};
#define HPSA_ABORT_MSG 0
#define HPSA_DEVICE_RESET_MSG 1
128 129 130 131
#define HPSA_RESET_TYPE_CONTROLLER 0x00
#define HPSA_RESET_TYPE_BUS 0x01
#define HPSA_RESET_TYPE_TARGET 0x03
#define HPSA_RESET_TYPE_LUN 0x04
132
#define HPSA_MSG_SEND_RETRY_LIMIT 10
133
#define HPSA_MSG_SEND_RETRY_INTERVAL_MSECS (10000)
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

/* Maximum time in seconds driver will wait for command completions
 * when polling before giving up.
 */
#define HPSA_MAX_POLL_TIME_SECS (20)

/* During SCSI error recovery, HPSA_TUR_RETRY_LIMIT defines
 * how many times to retry TEST UNIT READY on a device
 * while waiting for it to become ready before giving up.
 * HPSA_MAX_WAIT_INTERVAL_SECS is the max wait interval
 * between sending TURs while waiting for a device
 * to become ready.
 */
#define HPSA_TUR_RETRY_LIMIT (20)
#define HPSA_MAX_WAIT_INTERVAL_SECS (30)

/* HPSA_BOARD_READY_WAIT_SECS is how long to wait for a board
 * to become ready, in seconds, before giving up on it.
 * HPSA_BOARD_READY_POLL_INTERVAL_MSECS * is how long to wait
 * between polling the board to see if it is ready, in
 * milliseconds.  HPSA_BOARD_READY_POLL_INTERVAL and
 * HPSA_BOARD_READY_ITERATIONS are derived from those.
 */
#define HPSA_BOARD_READY_WAIT_SECS (120)
158
#define HPSA_BOARD_NOT_READY_WAIT_SECS (100)
159 160 161 162 163 164
#define HPSA_BOARD_READY_POLL_INTERVAL_MSECS (100)
#define HPSA_BOARD_READY_POLL_INTERVAL \
	((HPSA_BOARD_READY_POLL_INTERVAL_MSECS * HZ) / 1000)
#define HPSA_BOARD_READY_ITERATIONS \
	((HPSA_BOARD_READY_WAIT_SECS * 1000) / \
		HPSA_BOARD_READY_POLL_INTERVAL_MSECS)
165 166 167
#define HPSA_BOARD_NOT_READY_ITERATIONS \
	((HPSA_BOARD_NOT_READY_WAIT_SECS * 1000) / \
		HPSA_BOARD_READY_POLL_INTERVAL_MSECS)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
#define HPSA_POST_RESET_PAUSE_MSECS (3000)
#define HPSA_POST_RESET_NOOP_RETRIES (12)

/*  Defining the diffent access_menthods */
/*
 * Memory mapped FIFO interface (SMART 53xx cards)
 */
#define SA5_DOORBELL	0x20
#define SA5_REQUEST_PORT_OFFSET	0x40
#define SA5_REPLY_INTR_MASK_OFFSET	0x34
#define SA5_REPLY_PORT_OFFSET		0x44
#define SA5_INTR_STATUS		0x30
#define SA5_SCRATCHPAD_OFFSET	0xB0

#define SA5_CTCFG_OFFSET	0xB4
#define SA5_CTMEM_OFFSET	0xB8

#define SA5_INTR_OFF		0x08
#define SA5B_INTR_OFF		0x04
#define SA5_INTR_PENDING	0x08
#define SA5B_INTR_PENDING	0x04
#define FIFO_EMPTY		0xffffffff
#define HPSA_FIRMWARE_READY	0xffff0000 /* value in scratchpad register */

#define HPSA_ERROR_BIT		0x02

194 195 196 197 198 199 200 201 202 203
/* Performant mode flags */
#define SA5_PERF_INTR_PENDING   0x04
#define SA5_PERF_INTR_OFF       0x05
#define SA5_OUTDB_STATUS_PERF_BIT       0x01
#define SA5_OUTDB_CLEAR_PERF_BIT        0x01
#define SA5_OUTDB_CLEAR         0xA0
#define SA5_OUTDB_CLEAR_PERF_BIT        0x01
#define SA5_OUTDB_STATUS        0x9C


204 205 206 207 208 209 210 211
#define HPSA_INTR_ON 	1
#define HPSA_INTR_OFF	0
/*
	Send the command to the hardware
*/
static void SA5_submit_command(struct ctlr_info *h,
	struct CommandList *c)
{
212 213
	dev_dbg(&h->pdev->dev, "Sending %x, tag = %x\n", c->busaddr,
		c->Header.Tag.lower);
214
	writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
215
	(void) readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
	h->commands_outstanding++;
	if (h->commands_outstanding > h->max_outstanding)
		h->max_outstanding = h->commands_outstanding;
}

/*
 *  This card is the opposite of the other cards.
 *   0 turns interrupts on...
 *   0x08 turns them off...
 */
static void SA5_intr_mask(struct ctlr_info *h, unsigned long val)
{
	if (val) { /* Turn interrupts on */
		h->interrupts_enabled = 1;
		writel(0, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
231
		(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
232 233 234 235
	} else { /* Turn them off */
		h->interrupts_enabled = 0;
		writel(SA5_INTR_OFF,
			h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
236
		(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
237 238
	}
}
239 240 241 242 243 244

static void SA5_performant_intr_mask(struct ctlr_info *h, unsigned long val)
{
	if (val) { /* turn on interrupts */
		h->interrupts_enabled = 1;
		writel(0, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
245
		(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
246 247 248 249
	} else {
		h->interrupts_enabled = 0;
		writel(SA5_PERF_INTR_OFF,
			h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
250
		(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	}
}

static unsigned long SA5_performant_completed(struct ctlr_info *h)
{
	unsigned long register_value = FIFO_EMPTY;

	/* flush the controller write of the reply queue by reading
	 * outbound doorbell status register.
	 */
	register_value = readl(h->vaddr + SA5_OUTDB_STATUS);
	/* msi auto clears the interrupt pending bit. */
	if (!(h->msi_vector || h->msix_vector)) {
		writel(SA5_OUTDB_CLEAR_PERF_BIT, h->vaddr + SA5_OUTDB_CLEAR);
		/* Do a read in order to flush the write to the controller
		 * (as per spec.)
		 */
		register_value = readl(h->vaddr + SA5_OUTDB_STATUS);
	}

	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
		register_value = *(h->reply_pool_head);
		(h->reply_pool_head)++;
		h->commands_outstanding--;
	} else {
		register_value = FIFO_EMPTY;
	}
	/* Check for wraparound */
	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
		h->reply_pool_head = h->reply_pool;
		h->reply_pool_wraparound ^= 1;
	}

	return register_value;
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
/*
 *  Returns true if fifo is full.
 *
 */
static unsigned long SA5_fifo_full(struct ctlr_info *h)
{
	if (h->commands_outstanding >= h->max_commands)
		return 1;
	else
		return 0;

}
/*
 *   returns value read from hardware.
 *     returns FIFO_EMPTY if there is nothing to read
 */
static unsigned long SA5_completed(struct ctlr_info *h)
{
	unsigned long register_value
		= readl(h->vaddr + SA5_REPLY_PORT_OFFSET);

	if (register_value != FIFO_EMPTY)
		h->commands_outstanding--;

#ifdef HPSA_DEBUG
	if (register_value != FIFO_EMPTY)
313
		dev_dbg(&h->pdev->dev, "Read %lx back from board\n",
314 315
			register_value);
	else
316
		dev_dbg(&h->pdev->dev, "hpsa: FIFO Empty read\n");
317 318 319 320 321 322 323
#endif

	return register_value;
}
/*
 *	Returns true if an interrupt is pending..
 */
324
static bool SA5_intr_pending(struct ctlr_info *h)
325 326 327
{
	unsigned long register_value  =
		readl(h->vaddr + SA5_INTR_STATUS);
328
	dev_dbg(&h->pdev->dev, "intr_pending %lx\n", register_value);
329
	return register_value & SA5_INTR_PENDING;
330 331
}

332 333 334 335 336 337 338 339 340 341 342 343 344 345
static bool SA5_performant_intr_pending(struct ctlr_info *h)
{
	unsigned long register_value = readl(h->vaddr + SA5_INTR_STATUS);

	if (!register_value)
		return false;

	if (h->msi_vector || h->msix_vector)
		return true;

	/* Read outbound doorbell to flush */
	register_value = readl(h->vaddr + SA5_OUTDB_STATUS);
	return register_value & SA5_OUTDB_STATUS_PERF_BIT;
}
346 347 348 349 350 351 352 353 354

static struct access_method SA5_access = {
	SA5_submit_command,
	SA5_intr_mask,
	SA5_fifo_full,
	SA5_intr_pending,
	SA5_completed,
};

355 356 357 358 359 360 361 362
static struct access_method SA5_performant_access = {
	SA5_submit_command,
	SA5_performant_intr_mask,
	SA5_fifo_full,
	SA5_performant_intr_pending,
	SA5_performant_completed,
};

363
struct board_type {
364
	u32	board_id;
365 366 367 368 369 370
	char	*product_name;
	struct access_method *access;
};

#endif /* HPSA_H */