machine.c 48.1 KB
Newer Older
1
#include "callchain.h"
2 3
#include "debug.h"
#include "event.h"
4 5
#include "evsel.h"
#include "hist.h"
6 7
#include "machine.h"
#include "map.h"
8
#include "sort.h"
9
#include "strlist.h"
10
#include "thread.h"
11
#include "vdso.h"
12
#include <stdbool.h>
13
#include <symbol/kallsyms.h>
14
#include "unwind.h"
15
#include "linux/hash.h"
16

17 18
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

19 20 21 22
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
23
	pthread_rwlock_init(&dsos->lock, NULL);
24 25
}

26 27
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
28
	map_groups__init(&machine->kmaps, machine);
29
	RB_CLEAR_NODE(&machine->rb_node);
30
	dsos__init(&machine->dsos);
31 32

	machine->threads = RB_ROOT;
33
	pthread_rwlock_init(&machine->threads_lock, NULL);
34 35 36
	INIT_LIST_HEAD(&machine->dead_threads);
	machine->last_match = NULL;

37 38
	machine->vdso_info = NULL;

39 40
	machine->pid = pid;

41
	machine->symbol_filter = NULL;
42
	machine->id_hdr_size = 0;
43
	machine->comm_exec = false;
44
	machine->kernel_start = 0;
45

46 47 48 49 50
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

	if (pid != HOST_KERNEL_ID) {
51
		struct thread *thread = machine__findnew_thread(machine, -1,
52
								pid);
53 54 55 56 57 58
		char comm[64];

		if (thread == NULL)
			return -ENOMEM;

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
59
		thread__set_comm(thread, comm, 0);
60
		thread__put(thread);
61 62
	}

63 64
	machine->current_tid = NULL;

65 66 67
	return 0;
}

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

85
static void dsos__purge(struct dsos *dsos)
86 87 88
{
	struct dso *pos, *n;

89 90
	pthread_rwlock_wrlock(&dsos->lock);

91
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
92
		RB_CLEAR_NODE(&pos->rb_node);
93 94
		list_del_init(&pos->node);
		dso__put(pos);
95
	}
96 97

	pthread_rwlock_unlock(&dsos->lock);
98
}
99

100 101 102
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
103
	pthread_rwlock_destroy(&dsos->lock);
104 105
}

106 107
void machine__delete_threads(struct machine *machine)
{
108
	struct rb_node *nd;
109

110 111
	pthread_rwlock_wrlock(&machine->threads_lock);
	nd = rb_first(&machine->threads);
112 113 114 115
	while (nd) {
		struct thread *t = rb_entry(nd, struct thread, rb_node);

		nd = rb_next(nd);
116
		__machine__remove_thread(machine, t, false);
117
	}
118
	pthread_rwlock_unlock(&machine->threads_lock);
119 120
}

121 122 123
void machine__exit(struct machine *machine)
{
	map_groups__exit(&machine->kmaps);
124
	dsos__exit(&machine->dsos);
125
	machine__exit_vdso(machine);
126
	zfree(&machine->root_dir);
127
	zfree(&machine->current_tid);
128
	pthread_rwlock_destroy(&machine->threads_lock);
129 130 131 132 133 134 135 136
}

void machine__delete(struct machine *machine)
{
	machine__exit(machine);
	free(machine);
}

137 138 139 140
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
141
	machines->symbol_filter = NULL;
142 143 144 145 146 147 148 149 150
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
151 152
			      const char *root_dir)
{
153
	struct rb_node **p = &machines->guests.rb_node;
154 155 156 157 158 159 160 161 162 163 164
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

165 166
	machine->symbol_filter = machines->symbol_filter;

167 168 169 170 171 172 173 174 175 176
	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
177
	rb_insert_color(&machine->rb_node, &machines->guests);
178 179 180 181

	return machine;
}

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
void machines__set_symbol_filter(struct machines *machines,
				 symbol_filter_t symbol_filter)
{
	struct rb_node *nd;

	machines->symbol_filter = symbol_filter;
	machines->host.symbol_filter = symbol_filter;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->symbol_filter = symbol_filter;
	}
}

197 198 199 200 201 202 203 204 205 206 207 208 209
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

210
struct machine *machines__find(struct machines *machines, pid_t pid)
211
{
212
	struct rb_node **p = &machines->guests.rb_node;
213 214 215 216
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

217 218 219
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

236
struct machine *machines__findnew(struct machines *machines, pid_t pid)
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
253
				seen = strlist__new(NULL, NULL);
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

270 271
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
272 273 274
{
	struct rb_node *nd;

275
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
{
	if (machine__is_host(machine))
		snprintf(bf, size, "[%s]", "kernel.kallsyms");
	else if (machine__is_default_guest(machine))
		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
	else {
		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
			 machine->pid);
	}

	return bf;
}

295
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
296 297 298 299
{
	struct rb_node *node;
	struct machine *machine;

300 301 302
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
303 304 305 306 307 308 309
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

310 311 312 313 314 315 316 317 318 319 320 321 322
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

323
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
324 325 326 327
	if (!leader)
		goto out_err;

	if (!leader->mg)
328
		leader->mg = map_groups__new(machine);
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
345
		map_groups__put(th->mg);
346 347 348 349 350 351 352 353 354 355
	}

	th->mg = map_groups__get(leader->mg);

	return;

out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
}

356 357 358
static struct thread *____machine__findnew_thread(struct machine *machine,
						  pid_t pid, pid_t tid,
						  bool create)
359 360 361 362 363 364
{
	struct rb_node **p = &machine->threads.rb_node;
	struct rb_node *parent = NULL;
	struct thread *th;

	/*
365
	 * Front-end cache - TID lookups come in blocks,
366 367 368
	 * so most of the time we dont have to look up
	 * the full rbtree:
	 */
369
	th = machine->last_match;
370 371 372 373 374 375
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
			return th;
		}

376
		machine->last_match = NULL;
377
	}
378 379 380 381 382

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

383
		if (th->tid == tid) {
384
			machine->last_match = th;
385
			machine__update_thread_pid(machine, th, pid);
386 387 388
			return th;
		}

389
		if (tid < th->tid)
390 391 392 393 394 395 396 397
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

398
	th = thread__new(pid, tid);
399 400 401
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
		rb_insert_color(&th->rb_node, &machine->threads);
402 403 404 405 406 407 408 409 410

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
411
		if (thread__init_map_groups(th, machine)) {
412
			rb_erase_init(&th->rb_node, &machine->threads);
413
			RB_CLEAR_NODE(&th->rb_node);
414
			thread__delete(th);
415
			return NULL;
416
		}
417 418 419 420
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
421
		machine->last_match = th;
422 423 424 425 426
	}

	return th;
}

427 428 429 430 431
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
	return ____machine__findnew_thread(machine, pid, tid, true);
}

432 433
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
434
{
435 436 437 438 439 440
	struct thread *th;

	pthread_rwlock_wrlock(&machine->threads_lock);
	th = thread__get(__machine__findnew_thread(machine, pid, tid));
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
441 442
}

443 444
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
445
{
446 447 448 449 450
	struct thread *th;
	pthread_rwlock_rdlock(&machine->threads_lock);
	th =  thread__get(____machine__findnew_thread(machine, pid, tid, false));
	pthread_rwlock_unlock(&machine->threads_lock);
	return th;
451
}
452

453 454 455 456 457 458 459 460 461
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

462 463
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
464
{
465 466 467
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
468
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
469
	int err = 0;
470

471 472 473
	if (exec)
		machine->comm_exec = true;

474 475 476
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

477 478
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
479
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
480
		err = -1;
481 482
	}

483 484 485
	thread__put(thread);

	return err;
486 487 488
}

int machine__process_lost_event(struct machine *machine __maybe_unused,
489
				union perf_event *event, struct perf_sample *sample __maybe_unused)
490 491 492 493 494 495
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

496 497 498 499 500 501 502 503
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

504 505 506
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
507 508 509
{
	struct dso *dso;

510 511 512
	pthread_rwlock_wrlock(&machine->dsos.lock);

	dso = __dsos__find(&machine->dsos, m->name, true);
513
	if (!dso) {
514
		dso = __dsos__addnew(&machine->dsos, m->name);
515
		if (dso == NULL)
516
			goto out_unlock;
517 518 519 520 521 522 523

		if (machine__is_host(machine))
			dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
		else
			dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;

		/* _KMODULE_COMP should be next to _KMODULE */
524
		if (m->kmod && m->comp)
525
			dso->symtab_type++;
526 527 528

		dso__set_short_name(dso, strdup(m->name), true);
		dso__set_long_name(dso, strdup(filename), true);
529 530
	}

531
	dso__get(dso);
532 533
out_unlock:
	pthread_rwlock_unlock(&machine->dsos.lock);
534 535 536
	return dso;
}

537 538 539 540 541 542 543 544
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

545 546 547 548 549 550 551 552
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

553 554 555 556 557 558 559 560
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

561 562
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
563
{
564 565 566
	struct map *map = NULL;
	struct dso *dso;
	struct kmod_path m;
567

568
	if (kmod_path__parse_name(&m, filename))
569 570
		return NULL;

571 572 573 574 575
	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
				       m.name);
	if (map)
		goto out;

576
	dso = machine__findnew_module_dso(machine, &m, filename);
577 578 579
	if (dso == NULL)
		goto out;

580 581
	map = map__new2(start, dso, MAP__FUNCTION);
	if (map == NULL)
582
		goto out;
583 584

	map_groups__insert(&machine->kmaps, map);
585 586 587

out:
	free(m.name);
588 589 590
	return map;
}

591
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
592 593
{
	struct rb_node *nd;
594
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
595

596
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
597
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
598
		ret += __dsos__fprintf(&pos->dsos.head, fp);
599 600 601 602 603
	}

	return ret;
}

604
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
605 606
				     bool (skip)(struct dso *dso, int parm), int parm)
{
607
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
608 609
}

610
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
611 612 613
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
614
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
615

616
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
	struct dso *kdso = machine->vmlinux_maps[MAP__FUNCTION]->dso;

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
		if (dso__build_id_filename(kdso, filename, sizeof(filename)))
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	size_t ret = 0;
	struct rb_node *nd;

647 648
	pthread_rwlock_rdlock(&machine->threads_lock);

649 650 651 652 653 654
	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		struct thread *pos = rb_entry(nd, struct thread, rb_node);

		ret += thread__fprintf(pos, fp);
	}

655 656
	pthread_rwlock_unlock(&machine->threads_lock);

657 658 659 660 661 662 663 664 665 666 667 668 669
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
	const char *vmlinux_name = NULL;
	struct dso *kernel;

	if (machine__is_host(machine)) {
		vmlinux_name = symbol_conf.vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = "[kernel.kallsyms]";

670 671
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
672 673 674 675 676 677 678 679 680
	} else {
		char bf[PATH_MAX];

		if (machine__is_default_guest(machine))
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = machine__mmap_name(machine, bf,
							  sizeof(bf));

681 682 683
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
684 685 686 687 688 689 690 691 692 693 694 695
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

696 697 698 699 700 701 702 703 704
static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
					   size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

705 706 707 708 709 710
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
711 712
static u64 machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name)
713
{
714
	char filename[PATH_MAX];
715 716 717
	int i;
	const char *name;
	u64 addr = 0;
718

719
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
720 721 722 723

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

724 725 726 727 728 729 730 731
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
		addr = kallsyms__get_function_start(filename, name);
		if (addr)
			break;
	}

	if (symbol_name)
		*symbol_name = name;
732

733
	return addr;
734 735 736 737 738
}

int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
{
	enum map_type type;
739
	u64 start = machine__get_running_kernel_start(machine, NULL);
740 741 742 743 744 745 746 747 748 749 750 751

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;

		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
		if (machine->vmlinux_maps[type] == NULL)
			return -1;

		machine->vmlinux_maps[type]->map_ip =
			machine->vmlinux_maps[type]->unmap_ip =
				identity__map_ip;
		kmap = map__kmap(machine->vmlinux_maps[type]);
752 753 754
		if (!kmap)
			return -1;

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
		kmap->kmaps = &machine->kmaps;
		map_groups__insert(&machine->kmaps,
				   machine->vmlinux_maps[type]);
	}

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
	enum map_type type;

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;

		if (machine->vmlinux_maps[type] == NULL)
			continue;

		kmap = map__kmap(machine->vmlinux_maps[type]);
		map_groups__remove(&machine->kmaps,
				   machine->vmlinux_maps[type]);
776
		if (kmap && kmap->ref_reloc_sym) {
777 778 779 780 781
			/*
			 * ref_reloc_sym is shared among all maps, so free just
			 * on one of them.
			 */
			if (type == MAP__FUNCTION) {
782 783 784 785
				zfree((char **)&kmap->ref_reloc_sym->name);
				zfree(&kmap->ref_reloc_sym);
			} else
				kmap->ref_reloc_sym = NULL;
786 787 788 789 790 791
		}

		machine->vmlinux_maps[type] = NULL;
	}
}

792
int machines__create_guest_kernel_maps(struct machines *machines)
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

841
void machines__destroy_kernel_maps(struct machines *machines)
842
{
843 844 845
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
846 847 848 849 850

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
851
		rb_erase(&pos->rb_node, &machines->guests);
852 853 854 855
		machine__delete(pos);
	}
}

856
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

int machine__load_kallsyms(struct machine *machine, const char *filename,
			   enum map_type type, symbol_filter_t filter)
{
	struct map *map = machine->vmlinux_maps[type];
	int ret = dso__load_kallsyms(map->dso, filename, map, filter);

	if (ret > 0) {
		dso__set_loaded(map->dso, type);
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
		__map_groups__fixup_end(&machine->kmaps, type);
	}

	return ret;
}

int machine__load_vmlinux_path(struct machine *machine, enum map_type type,
			       symbol_filter_t filter)
{
	struct map *map = machine->vmlinux_maps[type];
	int ret = dso__load_vmlinux_path(map->dso, map, filter);

891
	if (ret > 0)
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
		dso__set_loaded(map->dso, type);

	return ret;
}

static void map_groups__fixup_end(struct map_groups *mg)
{
	int i;
	for (i = 0; i < MAP__NR_TYPES; ++i)
		__map_groups__fixup_end(mg, i);
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	struct map *map;
	char *long_name;

	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

964
static int map_groups__set_modules_path_dir(struct map_groups *mg,
965
				const char *dir_name, int depth)
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

990 991 992 993 994 995 996 997 998
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
999 1000 1001
			if (ret < 0)
				goto out;
		} else {
1002
			struct kmod_path m;
1003

1004 1005 1006
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1007

1008 1009
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1010

1011
			free(m.name);
1012

1013
			if (ret)
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1032
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1033 1034 1035
		 machine->root_dir, version);
	free(version);

1036
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1037 1038
}

1039
static int machine__create_module(void *arg, const char *name, u64 start)
1040
{
1041
	struct machine *machine = arg;
1042
	struct map *map;
1043

1044
	map = machine__findnew_module_map(machine, start, name);
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	if (map == NULL)
		return -1;

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1055 1056 1057
	const char *modules;
	char path[PATH_MAX];

1058
	if (machine__is_default_guest(machine)) {
1059
		modules = symbol_conf.default_guest_modules;
1060 1061
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1062 1063 1064
		modules = path;
	}

1065
	if (symbol__restricted_filename(modules, "/proc/modules"))
1066 1067
		return -1;

1068
	if (modules__parse(modules, machine, machine__create_module))
1069 1070
		return -1;

1071 1072
	if (!machine__set_modules_path(machine))
		return 0;
1073

1074
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1075

1076
	return 0;
1077 1078 1079 1080 1081
}

int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1082
	const char *name;
1083
	u64 addr = machine__get_running_kernel_start(machine, &name);
1084 1085
	if (!addr)
		return -1;
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103

	if (kernel == NULL ||
	    __machine__create_kernel_maps(machine, kernel) < 0)
		return -1;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

	/*
	 * Now that we have all the maps created, just set the ->end of them:
	 */
	map_groups__fixup_end(&machine->kmaps);
1104 1105 1106 1107 1108 1109 1110

	if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name,
					     addr)) {
		machine__destroy_kernel_maps(machine);
		return -1;
	}

1111 1112 1113
	return 0;
}

1114 1115 1116
static void machine__set_kernel_mmap_len(struct machine *machine,
					 union perf_event *event)
{
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	int i;

	for (i = 0; i < MAP__NR_TYPES; i++) {
		machine->vmlinux_maps[i]->start = event->mmap.start;
		machine->vmlinux_maps[i]->end   = (event->mmap.start +
						   event->mmap.len);
		/*
		 * Be a bit paranoid here, some perf.data file came with
		 * a zero sized synthesized MMAP event for the kernel.
		 */
		if (machine->vmlinux_maps[i]->end == 0)
			machine->vmlinux_maps[i]->end = ~0ULL;
	}
1130 1131
}

1132 1133 1134 1135
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1136
	list_for_each_entry(dso, &machine->dsos.head, node) {
1137 1138 1139 1140 1141 1142 1143
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1144 1145 1146 1147 1148 1149 1150 1151
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	char kmmap_prefix[PATH_MAX];
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1152 1153 1154 1155
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
				kmmap_prefix,
				strlen(kmmap_prefix) - 1) == 0;
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1167 1168
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
				strlen(kmmap_prefix));
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1180 1181 1182
		struct dso *kernel = NULL;
		struct dso *dso;

1183 1184
		pthread_rwlock_rdlock(&machine->dsos.lock);

1185
		list_for_each_entry(dso, &machine->dsos.head, node) {
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1206 1207
				continue;

1208

1209 1210 1211 1212
			kernel = dso;
			break;
		}

1213 1214
		pthread_rwlock_unlock(&machine->dsos.lock);

1215
		if (kernel == NULL)
1216
			kernel = machine__findnew_dso(machine, kmmap_prefix);
1217 1218 1219 1220
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1221 1222
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1223
			goto out_problem;
1224
		}
1225

1226 1227
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1228

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
		machine__set_kernel_mmap_len(machine, event);

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
							 symbol_name,
							 event->mmap.pgoff);
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
			dso__load(kernel, machine->vmlinux_maps[MAP__FUNCTION],
				  NULL);
		}
	}
	return 0;
out_problem:
	return -1;
}

1255
int machine__process_mmap2_event(struct machine *machine,
1256 1257
				 union perf_event *event,
				 struct perf_sample *sample __maybe_unused)
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
{
	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
	struct thread *thread;
	struct map *map;
	enum map_type type;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    cpumode == PERF_RECORD_MISC_KERNEL) {
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1277
					event->mmap2.tid);
1278 1279 1280 1281 1282 1283 1284 1285
	if (thread == NULL)
		goto out_problem;

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1286
	map = map__new(machine, event->mmap2.start,
1287 1288 1289 1290
			event->mmap2.len, event->mmap2.pgoff,
			event->mmap2.pid, event->mmap2.maj,
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1291 1292
			event->mmap2.prot,
			event->mmap2.flags,
1293
			event->mmap2.filename, type, thread);
1294 1295

	if (map == NULL)
1296
		goto out_problem_map;
1297 1298

	thread__insert_map(thread, map);
1299
	thread__put(thread);
1300
	map__put(map);
1301 1302
	return 0;

1303 1304
out_problem_map:
	thread__put(thread);
1305 1306 1307 1308 1309
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1310 1311
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1312 1313 1314 1315
{
	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
	struct thread *thread;
	struct map *map;
1316
	enum map_type type;
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    cpumode == PERF_RECORD_MISC_KERNEL) {
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1330
	thread = machine__findnew_thread(machine, event->mmap.pid,
1331
					 event->mmap.tid);
1332 1333
	if (thread == NULL)
		goto out_problem;
1334 1335 1336 1337 1338 1339

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1340
	map = map__new(machine, event->mmap.start,
1341
			event->mmap.len, event->mmap.pgoff,
1342
			event->mmap.pid, 0, 0, 0, 0, 0, 0,
1343
			event->mmap.filename,
1344
			type, thread);
1345

1346
	if (map == NULL)
1347
		goto out_problem_map;
1348 1349

	thread__insert_map(thread, map);
1350
	thread__put(thread);
1351
	map__put(map);
1352 1353
	return 0;

1354 1355
out_problem_map:
	thread__put(thread);
1356 1357 1358 1359 1360
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1361
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1362
{
1363
	if (machine->last_match == th)
1364
		machine->last_match = NULL;
1365

1366
	BUG_ON(atomic_read(&th->refcnt) == 0);
1367 1368
	if (lock)
		pthread_rwlock_wrlock(&machine->threads_lock);
1369
	rb_erase_init(&th->rb_node, &machine->threads);
1370
	RB_CLEAR_NODE(&th->rb_node);
1371
	/*
1372 1373 1374
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1375 1376
	 */
	list_add_tail(&th->node, &machine->dead_threads);
1377 1378
	if (lock)
		pthread_rwlock_unlock(&machine->threads_lock);
1379
	thread__put(th);
1380 1381
}

1382 1383 1384 1385 1386
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1387 1388
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1389
{
1390 1391 1392
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1393 1394 1395
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1396
	int err = 0;
1397

1398
	/* if a thread currently exists for the thread id remove it */
1399
	if (thread != NULL) {
1400
		machine__remove_thread(machine, thread);
1401 1402
		thread__put(thread);
	}
1403

1404 1405
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1406 1407 1408 1409
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	if (thread == NULL || parent == NULL ||
1410
	    thread__fork(thread, parent, sample->time) < 0) {
1411
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1412
		err = -1;
1413
	}
1414 1415
	thread__put(thread);
	thread__put(parent);
1416

1417
	return err;
1418 1419
}

1420 1421
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1422
{
1423 1424 1425
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1426 1427 1428 1429

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1430
	if (thread != NULL) {
1431
		thread__exited(thread);
1432 1433
		thread__put(thread);
	}
1434 1435 1436 1437

	return 0;
}

1438 1439
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1440 1441 1442 1443 1444
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1445
		ret = machine__process_comm_event(machine, event, sample); break;
1446
	case PERF_RECORD_MMAP:
1447
		ret = machine__process_mmap_event(machine, event, sample); break;
1448
	case PERF_RECORD_MMAP2:
1449
		ret = machine__process_mmap2_event(machine, event, sample); break;
1450
	case PERF_RECORD_FORK:
1451
		ret = machine__process_fork_event(machine, event, sample); break;
1452
	case PERF_RECORD_EXIT:
1453
		ret = machine__process_exit_event(machine, event, sample); break;
1454
	case PERF_RECORD_LOST:
1455
		ret = machine__process_lost_event(machine, event, sample); break;
1456 1457
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1458
	case PERF_RECORD_ITRACE_START:
1459
		ret = machine__process_itrace_start_event(machine, event); break;
1460 1461
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1462 1463 1464
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1465 1466 1467 1468 1469 1470 1471
	default:
		ret = -1;
		break;
	}

	return ret;
}
1472

1473
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1474
{
1475
	if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1476 1477 1478 1479
		return 1;
	return 0;
}

1480
static void ip__resolve_ams(struct thread *thread,
1481 1482 1483 1484 1485 1486
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1487 1488 1489 1490 1491 1492 1493
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1494
	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1495 1496 1497 1498 1499 1500 1501

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1502
static void ip__resolve_data(struct thread *thread,
1503 1504 1505 1506 1507 1508
			     u8 m, struct addr_map_symbol *ams, u64 addr)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1509
	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1510 1511 1512 1513 1514 1515
	if (al.map == NULL) {
		/*
		 * some shared data regions have execute bit set which puts
		 * their mapping in the MAP__FUNCTION type array.
		 * Check there as a fallback option before dropping the sample.
		 */
1516
		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1517 1518
	}

1519 1520 1521 1522 1523 1524
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
}

1525 1526
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1527 1528 1529 1530 1531 1532
{
	struct mem_info *mi = zalloc(sizeof(*mi));

	if (!mi)
		return NULL;

1533 1534
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1535 1536 1537 1538 1539
	mi->data_src.val = sample->data_src;

	return mi;
}

1540 1541 1542
static int add_callchain_ip(struct thread *thread,
			    struct symbol **parent,
			    struct addr_location *root_al,
1543
			    u8 *cpumode,
1544 1545 1546 1547 1548 1549
			    u64 ip)
{
	struct addr_location al;

	al.filtered = 0;
	al.sym = NULL;
1550
	if (!cpumode) {
1551 1552
		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
						   ip, &al);
1553
	} else {
1554 1555 1556
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1557
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1558 1559
				break;
			case PERF_CONTEXT_KERNEL:
1560
				*cpumode = PERF_RECORD_MISC_KERNEL;
1561 1562
				break;
			case PERF_CONTEXT_USER:
1563
				*cpumode = PERF_RECORD_MISC_USER;
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
				callchain_cursor_reset(&callchain_cursor);
				return 1;
			}
			return 0;
		}
1577 1578
		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
					   ip, &al);
1579 1580
	}

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	if (al.sym != NULL) {
		if (sort__has_parent && !*parent &&
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
			callchain_cursor_reset(&callchain_cursor);
		}
	}

1594
	return callchain_cursor_append(&callchain_cursor, al.addr, al.map, al.sym);
1595 1596
}

1597 1598
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1599 1600
{
	unsigned int i;
1601 1602
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1603 1604 1605 1606 1607

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1608 1609
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1610 1611 1612 1613 1614
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
static int remove_loops(struct branch_entry *l, int nr)
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
				memmove(l + i, l + i + off,
					(nr - (i + off)) * sizeof(*l));
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
1668
{
K
Kan Liang 已提交
1669 1670
	struct ip_callchain *chain = sample->callchain;
	int chain_nr = min(max_stack, (int)chain->nr);
1671
	u8 cpumode = PERF_RECORD_MISC_USER;
K
Kan Liang 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	int i, j, err;
	u64 ip;

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
		int lbr_nr = lbr_stack->nr;
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		if (mix_chain_nr > PERF_MAX_STACK_DEPTH + PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted callchain. skipping...\n");
			return 0;
		}

		for (j = 0; j < mix_chain_nr; j++) {
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
				else if (j > i + 1)
					ip = lbr_stack->entries[j - i - 2].from;
				else
					ip = lbr_stack->entries[0].to;
			} else {
				if (j < lbr_nr)
					ip = lbr_stack->entries[lbr_nr - j - 1].from;
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
				else
					ip = lbr_stack->entries[0].to;
			}

1718
			err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
K
Kan Liang 已提交
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
1737
	int chain_nr = min(max_stack, (int)chain->nr);
1738
	u8 cpumode = PERF_RECORD_MISC_USER;
1739
	int i, j, err;
1740 1741 1742
	int skip_idx = -1;
	int first_call = 0;

K
Kan Liang 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751
	callchain_cursor_reset(&callchain_cursor);

	if (has_branch_callstack(evsel)) {
		err = resolve_lbr_callchain_sample(thread, sample, parent,
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

1752 1753 1754 1755 1756 1757
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
	if (chain->nr < PERF_MAX_STACK_DEPTH)
		skip_idx = arch_skip_callchain_idx(thread, chain);
1758

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

		nr = remove_loops(be, nr);

		for (i = 0; i < nr; i++) {
			err = add_callchain_ip(thread, parent, root_al,
1804
					       NULL, be[i].to);
1805 1806
			if (!err)
				err = add_callchain_ip(thread, parent, root_al,
1807
						       NULL, be[i].from);
1808 1809 1810 1811 1812 1813 1814 1815 1816
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
		chain_nr -= nr;
	}

check_calls:
1817 1818 1819 1820 1821
	if (chain->nr > PERF_MAX_STACK_DEPTH) {
		pr_warning("corrupted callchain. skipping...\n");
		return 0;
	}

1822
	for (i = first_call; i < chain_nr; i++) {
1823 1824 1825
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
1826
			j = i;
1827
		else
1828 1829 1830 1831 1832 1833 1834
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
1835

1836
		err = add_callchain_ip(thread, parent, root_al, &cpumode, ip);
1837 1838

		if (err)
1839
			return (err < 0) ? err : 0;
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
	}

	return 0;
}

static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
	return callchain_cursor_append(cursor, entry->ip,
				       entry->map, entry->sym);
}

1852 1853 1854 1855 1856 1857
int thread__resolve_callchain(struct thread *thread,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
1858
{
K
Kan Liang 已提交
1859 1860 1861
	int ret = thread__resolve_callchain_sample(thread, evsel,
						   sample, parent,
						   root_al, max_stack);
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	if (ret)
		return ret;

	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

1875
	return unwind__get_entries(unwind_entry, &callchain_cursor,
1876
				   thread, sample, max_stack);
1877 1878

}
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;

	for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
		thread = rb_entry(nd, struct thread, rb_node);
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}

	list_for_each_entry(thread, &machine->dead_threads, node) {
		rc = fn(thread, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}
1902

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

1924
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
1925
				  struct target *target, struct thread_map *threads,
1926 1927
				  perf_event__handler_t process, bool data_mmap,
				  unsigned int proc_map_timeout)
1928
{
1929
	if (target__has_task(target))
1930
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
1931
	else if (target__has_cpu(target))
1932
		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
1933 1934 1935
	/* command specified */
	return 0;
}
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
1976
	thread__put(thread);
1977 1978 1979

	return 0;
}
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

int machine__get_kernel_start(struct machine *machine)
{
	struct map *map = machine__kernel_map(machine, MAP__FUNCTION);
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
		err = map__load(map, machine->symbol_filter);
		if (map->start)
			machine->kernel_start = map->start;
	}
	return err;
}
2002 2003 2004

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2005
	return dsos__findnew(&machine->dsos, filename);
2006
}
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map,  NULL);

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}