rhashtable.c 30.5 KB
Newer Older
1 2 3
/*
 * Resizable, Scalable, Concurrent Hash Table
 *
4
 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
 *
 * Based on the following paper:
 * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf
 *
 * Code partially derived from nft_hash
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/log2.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
23
#include <linux/jhash.h>
24 25 26 27 28
#include <linux/random.h>
#include <linux/rhashtable.h>

#define HASH_DEFAULT_SIZE	64UL
#define HASH_MIN_SIZE		4UL
29 30
#define BUCKET_LOCKS_PER_CPU   128UL

31 32 33
/* Base bits plus 1 bit for nulls marker */
#define HASH_RESERVED_SPACE	(RHT_BASE_BITS + 1)

34 35 36 37 38 39 40 41
enum {
	RHT_LOCK_NORMAL,
	RHT_LOCK_NESTED,
};

/* The bucket lock is selected based on the hash and protects mutations
 * on a group of hash buckets.
 *
42 43 44 45 46 47
 * A maximum of tbl->size/2 bucket locks is allocated. This ensures that
 * a single lock always covers both buckets which may both contains
 * entries which link to the same bucket of the old table during resizing.
 * This allows to simplify the locking as locking the bucket in both
 * tables during resize always guarantee protection.
 *
48 49 50 51 52 53 54 55
 * IMPORTANT: When holding the bucket lock of both the old and new table
 * during expansions and shrinking, the old bucket lock must always be
 * acquired first.
 */
static spinlock_t *bucket_lock(const struct bucket_table *tbl, u32 hash)
{
	return &tbl->locks[hash & tbl->locks_mask];
}
56

57
static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he)
58 59 60 61
{
	return (void *) he - ht->p.head_offset;
}

62
static u32 rht_bucket_index(const struct bucket_table *tbl, u32 hash)
63
{
64
	return hash & (tbl->size - 1);
65 66
}

67
static u32 obj_raw_hashfn(const struct rhashtable *ht, const void *ptr)
68
{
69
	u32 hash;
70

71 72 73 74 75
	if (unlikely(!ht->p.key_len))
		hash = ht->p.obj_hashfn(ptr, ht->p.hash_rnd);
	else
		hash = ht->p.hashfn(ptr + ht->p.key_offset, ht->p.key_len,
				    ht->p.hash_rnd);
76

77
	return hash >> HASH_RESERVED_SPACE;
78 79
}

80
static u32 key_hashfn(struct rhashtable *ht, const void *key, u32 len)
81
{
82
	return ht->p.hashfn(key, len, ht->p.hash_rnd) >> HASH_RESERVED_SPACE;
83 84 85
}

static u32 head_hashfn(const struct rhashtable *ht,
86 87
		       const struct bucket_table *tbl,
		       const struct rhash_head *he)
88
{
89
	return rht_bucket_index(tbl, obj_raw_hashfn(ht, rht_obj(ht, he)));
90 91
}

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
#ifdef CONFIG_PROVE_LOCKING
static void debug_dump_buckets(const struct rhashtable *ht,
			       const struct bucket_table *tbl)
{
	struct rhash_head *he;
	unsigned int i, hash;

	for (i = 0; i < tbl->size; i++) {
		pr_warn(" [Bucket %d] ", i);
		rht_for_each_rcu(he, tbl, i) {
			hash = head_hashfn(ht, tbl, he);
			pr_cont("[hash = %#x, lock = %p] ",
				hash, bucket_lock(tbl, hash));
		}
		pr_cont("\n");
	}

}

static void debug_dump_table(struct rhashtable *ht,
			     const struct bucket_table *tbl,
			     unsigned int hash)
{
	struct bucket_table *old_tbl, *future_tbl;

	pr_emerg("BUG: lock for hash %#x in table %p not held\n",
		 hash, tbl);

	rcu_read_lock();
	future_tbl = rht_dereference_rcu(ht->future_tbl, ht);
	old_tbl = rht_dereference_rcu(ht->tbl, ht);
	if (future_tbl != old_tbl) {
		pr_warn("Future table %p (size: %zd)\n",
			future_tbl, future_tbl->size);
		debug_dump_buckets(ht, future_tbl);
	}

	pr_warn("Table %p (size: %zd)\n", old_tbl, old_tbl->size);
	debug_dump_buckets(ht, old_tbl);

	rcu_read_unlock();
}

#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
#define ASSERT_BUCKET_LOCK(HT, TBL, HASH)				\
	do {								\
		if (unlikely(!lockdep_rht_bucket_is_held(TBL, HASH))) {	\
			debug_dump_table(HT, TBL, HASH);		\
			BUG();						\
		}							\
	} while (0)

int lockdep_rht_mutex_is_held(struct rhashtable *ht)
{
	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
}
EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);

int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
{
	spinlock_t *lock = bucket_lock(tbl, hash);

	return (debug_locks) ? lockdep_is_held(lock) : 1;
}
EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
#else
#define ASSERT_RHT_MUTEX(HT)
#define ASSERT_BUCKET_LOCK(HT, TBL, HASH)
#endif


163 164 165 166 167
static struct rhash_head __rcu **bucket_tail(struct bucket_table *tbl, u32 n)
{
	struct rhash_head __rcu **pprev;

	for (pprev = &tbl->buckets[n];
168
	     !rht_is_a_nulls(rht_dereference_bucket(*pprev, tbl, n));
169 170 171 172 173 174
	     pprev = &rht_dereference_bucket(*pprev, tbl, n)->next)
		;

	return pprev;
}

175 176 177 178 179 180 181 182 183 184 185 186
static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl)
{
	unsigned int i, size;
#if defined(CONFIG_PROVE_LOCKING)
	unsigned int nr_pcpus = 2;
#else
	unsigned int nr_pcpus = num_possible_cpus();
#endif

	nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);

187 188
	/* Never allocate more than 0.5 locks per bucket */
	size = min_t(unsigned int, size, tbl->size >> 1);
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

	if (sizeof(spinlock_t) != 0) {
#ifdef CONFIG_NUMA
		if (size * sizeof(spinlock_t) > PAGE_SIZE)
			tbl->locks = vmalloc(size * sizeof(spinlock_t));
		else
#endif
		tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
					   GFP_KERNEL);
		if (!tbl->locks)
			return -ENOMEM;
		for (i = 0; i < size; i++)
			spin_lock_init(&tbl->locks[i]);
	}
	tbl->locks_mask = size - 1;

	return 0;
}

static void bucket_table_free(const struct bucket_table *tbl)
{
	if (tbl)
		kvfree(tbl->locks);

	kvfree(tbl);
}

static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
					       size_t nbuckets)
218 219 220
{
	struct bucket_table *tbl;
	size_t size;
221
	int i;
222 223

	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
224
	tbl = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
225 226 227 228 229 230 231 232
	if (tbl == NULL)
		tbl = vzalloc(size);

	if (tbl == NULL)
		return NULL;

	tbl->size = nbuckets;

233 234 235 236
	if (alloc_bucket_locks(ht, tbl) < 0) {
		bucket_table_free(tbl);
		return NULL;
	}
237

238 239 240
	for (i = 0; i < nbuckets; i++)
		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);

241
	return tbl;
242 243 244 245 246 247 248 249 250 251
}

/**
 * rht_grow_above_75 - returns true if nelems > 0.75 * table-size
 * @ht:		hash table
 * @new_size:	new table size
 */
bool rht_grow_above_75(const struct rhashtable *ht, size_t new_size)
{
	/* Expand table when exceeding 75% load */
252 253
	return atomic_read(&ht->nelems) > (new_size / 4 * 3) &&
	       (ht->p.max_shift && atomic_read(&ht->shift) < ht->p.max_shift);
254 255 256 257 258 259 260 261 262 263 264
}
EXPORT_SYMBOL_GPL(rht_grow_above_75);

/**
 * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size
 * @ht:		hash table
 * @new_size:	new table size
 */
bool rht_shrink_below_30(const struct rhashtable *ht, size_t new_size)
{
	/* Shrink table beneath 30% load */
265 266
	return atomic_read(&ht->nelems) < (new_size * 3 / 10) &&
	       (atomic_read(&ht->shift) > ht->p.min_shift);
267 268 269
}
EXPORT_SYMBOL_GPL(rht_shrink_below_30);

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
static void lock_buckets(struct bucket_table *new_tbl,
			 struct bucket_table *old_tbl, unsigned int hash)
	__acquires(old_bucket_lock)
{
	spin_lock_bh(bucket_lock(old_tbl, hash));
	if (new_tbl != old_tbl)
		spin_lock_bh_nested(bucket_lock(new_tbl, hash),
				    RHT_LOCK_NESTED);
}

static void unlock_buckets(struct bucket_table *new_tbl,
			   struct bucket_table *old_tbl, unsigned int hash)
	__releases(old_bucket_lock)
{
	if (new_tbl != old_tbl)
		spin_unlock_bh(bucket_lock(new_tbl, hash));
	spin_unlock_bh(bucket_lock(old_tbl, hash));
}

/**
 * Unlink entries on bucket which hash to different bucket.
 *
 * Returns true if no more work needs to be performed on the bucket.
 */
294
static bool hashtable_chain_unzip(struct rhashtable *ht,
295
				  const struct bucket_table *new_tbl,
296 297
				  struct bucket_table *old_tbl,
				  size_t old_hash)
298 299
{
	struct rhash_head *he, *p, *next;
300 301
	unsigned int new_hash, new_hash2;

302
	ASSERT_BUCKET_LOCK(ht, old_tbl, old_hash);
303 304

	/* Old bucket empty, no work needed. */
305 306
	p = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl,
				   old_hash);
307
	if (rht_is_a_nulls(p))
308
		return false;
309

310
	new_hash = head_hashfn(ht, new_tbl, p);
311
	ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash);
312

313 314 315 316
	/* Advance the old bucket pointer one or more times until it
	 * reaches a node that doesn't hash to the same bucket as the
	 * previous node p. Call the previous node p;
	 */
317 318
	rht_for_each_continue(he, p->next, old_tbl, old_hash) {
		new_hash2 = head_hashfn(ht, new_tbl, he);
319
		ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash2);
320

321
		if (new_hash != new_hash2)
322 323 324
			break;
		p = he;
	}
325 326
	rcu_assign_pointer(old_tbl->buckets[old_hash], p->next);

327 328 329
	/* Find the subsequent node which does hash to the same
	 * bucket as node P, or NULL if no such node exists.
	 */
330 331
	INIT_RHT_NULLS_HEAD(next, ht, old_hash);
	if (!rht_is_a_nulls(he)) {
332 333
		rht_for_each_continue(he, he->next, old_tbl, old_hash) {
			if (head_hashfn(ht, new_tbl, he) == new_hash) {
334 335 336 337 338 339 340 341 342
				next = he;
				break;
			}
		}
	}

	/* Set p's next pointer to that subsequent node pointer,
	 * bypassing the nodes which do not hash to p's bucket
	 */
343 344
	rcu_assign_pointer(p->next, next);

345 346 347 348
	p = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl,
				   old_hash);

	return !rht_is_a_nulls(p);
349 350
}

351
static void link_old_to_new(struct rhashtable *ht, struct bucket_table *new_tbl,
352 353
			    unsigned int new_hash, struct rhash_head *entry)
{
354 355
	ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash);

356
	rcu_assign_pointer(*bucket_tail(new_tbl, new_hash), entry);
357 358 359 360 361 362 363 364 365 366 367 368
}

/**
 * rhashtable_expand - Expand hash table while allowing concurrent lookups
 * @ht:		the hash table to expand
 *
 * A secondary bucket array is allocated and the hash entries are migrated
 * while keeping them on both lists until the end of the RCU grace period.
 *
 * This function may only be called in a context where it is safe to call
 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
 *
369 370 371 372 373
 * The caller must ensure that no concurrent resizing occurs by holding
 * ht->mutex.
 *
 * It is valid to have concurrent insertions and deletions protected by per
 * bucket locks or concurrent RCU protected lookups and traversals.
374
 */
375
int rhashtable_expand(struct rhashtable *ht)
376 377 378
{
	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
	struct rhash_head *he;
379 380
	unsigned int new_hash, old_hash;
	bool complete = false;
381 382 383

	ASSERT_RHT_MUTEX(ht);

384
	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2);
385 386 387
	if (new_tbl == NULL)
		return -ENOMEM;

388
	atomic_inc(&ht->shift);
389

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
	/* Make insertions go into the new, empty table right away. Deletions
	 * and lookups will be attempted in both tables until we synchronize.
	 * The synchronize_rcu() guarantees for the new table to be picked up
	 * so no new additions go into the old table while we relink.
	 */
	rcu_assign_pointer(ht->future_tbl, new_tbl);
	synchronize_rcu();

	/* For each new bucket, search the corresponding old bucket for the
	 * first entry that hashes to the new bucket, and link the end of
	 * newly formed bucket chain (containing entries added to future
	 * table) to that entry. Since all the entries which will end up in
	 * the new bucket appear in the same old bucket, this constructs an
	 * entirely valid new hash table, but with multiple buckets
	 * "zipped" together into a single imprecise chain.
405
	 */
406 407
	for (new_hash = 0; new_hash < new_tbl->size; new_hash++) {
		old_hash = rht_bucket_index(old_tbl, new_hash);
408
		lock_buckets(new_tbl, old_tbl, new_hash);
409 410
		rht_for_each(he, old_tbl, old_hash) {
			if (head_hashfn(ht, new_tbl, he) == new_hash) {
411
				link_old_to_new(ht, new_tbl, new_hash, he);
412 413 414
				break;
			}
		}
415
		unlock_buckets(new_tbl, old_tbl, new_hash);
416 417 418
	}

	/* Unzip interleaved hash chains */
419
	while (!complete && !ht->being_destroyed) {
420 421 422 423 424 425 426 427 428 429 430
		/* Wait for readers. All new readers will see the new
		 * table, and thus no references to the old table will
		 * remain.
		 */
		synchronize_rcu();

		/* For each bucket in the old table (each of which
		 * contains items from multiple buckets of the new
		 * table): ...
		 */
		complete = true;
431
		for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
432
			lock_buckets(new_tbl, old_tbl, old_hash);
433

434 435
			if (hashtable_chain_unzip(ht, new_tbl, old_tbl,
						  old_hash))
436
				complete = false;
437

438
			unlock_buckets(new_tbl, old_tbl, old_hash);
439
		}
440
	}
441

442
	rcu_assign_pointer(ht->tbl, new_tbl);
443 444
	synchronize_rcu();

445 446 447 448 449 450 451 452 453 454 455 456
	bucket_table_free(old_tbl);
	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_expand);

/**
 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
 * @ht:		the hash table to shrink
 *
 * This function may only be called in a context where it is safe to call
 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
 *
457 458 459
 * The caller must ensure that no concurrent resizing occurs by holding
 * ht->mutex.
 *
460 461
 * The caller must ensure that no concurrent table mutations take place.
 * It is however valid to have concurrent lookups if they are RCU protected.
462 463 464
 *
 * It is valid to have concurrent insertions and deletions protected by per
 * bucket locks or concurrent RCU protected lookups and traversals.
465
 */
466
int rhashtable_shrink(struct rhashtable *ht)
467
{
468 469
	struct bucket_table *new_tbl, *tbl = rht_dereference(ht->tbl, ht);
	unsigned int new_hash;
470 471 472

	ASSERT_RHT_MUTEX(ht);

473 474
	new_tbl = bucket_table_alloc(ht, tbl->size / 2);
	if (new_tbl == NULL)
475 476
		return -ENOMEM;

477 478
	rcu_assign_pointer(ht->future_tbl, new_tbl);
	synchronize_rcu();
479

480 481 482 483 484 485
	/* Link the first entry in the old bucket to the end of the
	 * bucket in the new table. As entries are concurrently being
	 * added to the new table, lock down the new bucket. As we
	 * always divide the size in half when shrinking, each bucket
	 * in the new table maps to exactly two buckets in the old
	 * table.
486
	 */
487
	for (new_hash = 0; new_hash < new_tbl->size; new_hash++) {
488
		lock_buckets(new_tbl, tbl, new_hash);
489 490 491

		rcu_assign_pointer(*bucket_tail(new_tbl, new_hash),
				   tbl->buckets[new_hash]);
492
		ASSERT_BUCKET_LOCK(ht, tbl, new_hash + new_tbl->size);
493 494 495
		rcu_assign_pointer(*bucket_tail(new_tbl, new_hash),
				   tbl->buckets[new_hash + new_tbl->size]);

496
		unlock_buckets(new_tbl, tbl, new_hash);
497 498 499
	}

	/* Publish the new, valid hash table */
500
	rcu_assign_pointer(ht->tbl, new_tbl);
501
	atomic_dec(&ht->shift);
502 503 504 505 506 507 508 509 510 511 512 513

	/* Wait for readers. No new readers will have references to the
	 * old hash table.
	 */
	synchronize_rcu();

	bucket_table_free(tbl);

	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_shrink);

514 515 516 517
static void rht_deferred_worker(struct work_struct *work)
{
	struct rhashtable *ht;
	struct bucket_table *tbl;
518
	struct rhashtable_walker *walker;
519

520
	ht = container_of(work, struct rhashtable, run_work);
521
	mutex_lock(&ht->mutex);
522 523 524
	if (ht->being_destroyed)
		goto unlock;

525 526
	tbl = rht_dereference(ht->tbl, ht);

527 528 529
	list_for_each_entry(walker, &ht->walkers, list)
		walker->resize = true;

530 531 532 533 534
	if (ht->p.grow_decision && ht->p.grow_decision(ht, tbl->size))
		rhashtable_expand(ht);
	else if (ht->p.shrink_decision && ht->p.shrink_decision(ht, tbl->size))
		rhashtable_shrink(ht);

535
unlock:
536 537 538
	mutex_unlock(&ht->mutex);
}

539 540 541 542 543 544 545 546 547 548
static void rhashtable_wakeup_worker(struct rhashtable *ht)
{
	struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
	struct bucket_table *new_tbl = rht_dereference_rcu(ht->future_tbl, ht);
	size_t size = tbl->size;

	/* Only adjust the table if no resizing is currently in progress. */
	if (tbl == new_tbl &&
	    ((ht->p.grow_decision && ht->p.grow_decision(ht, size)) ||
	     (ht->p.shrink_decision && ht->p.shrink_decision(ht, size))))
549
		schedule_work(&ht->run_work);
550 551
}

552 553 554
static void __rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj,
				struct bucket_table *tbl, u32 hash)
{
555 556 557 558
	struct rhash_head *head;

	hash = rht_bucket_index(tbl, hash);
	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
559

560 561
	ASSERT_BUCKET_LOCK(ht, tbl, hash);

562 563 564 565 566 567 568 569 570 571 572 573
	if (rht_is_a_nulls(head))
		INIT_RHT_NULLS_HEAD(obj->next, ht, hash);
	else
		RCU_INIT_POINTER(obj->next, head);

	rcu_assign_pointer(tbl->buckets[hash], obj);

	atomic_inc(&ht->nelems);

	rhashtable_wakeup_worker(ht);
}

574
/**
575
 * rhashtable_insert - insert object into hash table
576 577 578
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 *
579 580 581
 * Will take a per bucket spinlock to protect against mutual mutations
 * on the same bucket. Multiple insertions may occur in parallel unless
 * they map to the same bucket lock.
582
 *
583 584 585 586 587
 * It is safe to call this function from atomic context.
 *
 * Will trigger an automatic deferred table resizing if the size grows
 * beyond the watermark indicated by grow_decision() which can be passed
 * to rhashtable_init().
588
 */
589
void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj)
590
{
591
	struct bucket_table *tbl, *old_tbl;
592
	unsigned hash;
593

594
	rcu_read_lock();
595

596
	tbl = rht_dereference_rcu(ht->future_tbl, ht);
597
	old_tbl = rht_dereference_rcu(ht->tbl, ht);
598
	hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
599

600
	lock_buckets(tbl, old_tbl, hash);
601
	__rhashtable_insert(ht, obj, tbl, hash);
602
	unlock_buckets(tbl, old_tbl, hash);
603

604
	rcu_read_unlock();
605 606 607 608 609 610 611 612 613 614 615 616
}
EXPORT_SYMBOL_GPL(rhashtable_insert);

/**
 * rhashtable_remove - remove object from hash table
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 *
 * Since the hash chain is single linked, the removal operation needs to
 * walk the bucket chain upon removal. The removal operation is thus
 * considerable slow if the hash table is not correctly sized.
 *
617
 * Will automatically shrink the table via rhashtable_expand() if the
618 619 620 621 622
 * shrink_decision function specified at rhashtable_init() returns true.
 *
 * The caller must ensure that no concurrent table mutations occur. It is
 * however valid to have concurrent lookups if they are RCU protected.
 */
623
bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj)
624
{
625
	struct bucket_table *tbl, *new_tbl, *old_tbl;
626
	struct rhash_head __rcu **pprev;
627
	struct rhash_head *he, *he2;
628
	unsigned int hash, new_hash;
629
	bool ret = false;
630

631
	rcu_read_lock();
632 633
	old_tbl = rht_dereference_rcu(ht->tbl, ht);
	tbl = new_tbl = rht_dereference_rcu(ht->future_tbl, ht);
634
	new_hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
635

636
	lock_buckets(new_tbl, old_tbl, new_hash);
637
restart:
638
	hash = rht_bucket_index(tbl, new_hash);
639 640
	pprev = &tbl->buckets[hash];
	rht_for_each(he, tbl, hash) {
641 642 643 644 645
		if (he != obj) {
			pprev = &he->next;
			continue;
		}

646
		ASSERT_BUCKET_LOCK(ht, tbl, hash);
647

648 649 650 651 652 653
		if (old_tbl->size > new_tbl->size && tbl == old_tbl &&
		    !rht_is_a_nulls(obj->next) &&
		    head_hashfn(ht, tbl, obj->next) != hash) {
			rcu_assign_pointer(*pprev, (struct rhash_head *) rht_marker(ht, hash));
		} else if (unlikely(old_tbl->size < new_tbl->size && tbl == new_tbl)) {
			rht_for_each_continue(he2, obj->next, tbl, hash) {
654 655 656 657 658 659
				if (head_hashfn(ht, tbl, he2) == hash) {
					rcu_assign_pointer(*pprev, he2);
					goto found;
				}
			}

660
			rcu_assign_pointer(*pprev, (struct rhash_head *) rht_marker(ht, hash));
661 662 663 664 665
		} else {
			rcu_assign_pointer(*pprev, obj->next);
		}

found:
666 667
		ret = true;
		break;
668 669
	}

670 671 672 673 674
	/* The entry may be linked in either 'tbl', 'future_tbl', or both.
	 * 'future_tbl' only exists for a short period of time during
	 * resizing. Thus traversing both is fine and the added cost is
	 * very rare.
	 */
675 676
	if (tbl != old_tbl) {
		tbl = old_tbl;
677 678 679
		goto restart;
	}

680
	unlock_buckets(new_tbl, old_tbl, new_hash);
681 682 683 684 685 686

	if (ret) {
		atomic_dec(&ht->nelems);
		rhashtable_wakeup_worker(ht);
	}

687 688
	rcu_read_unlock();

689
	return ret;
690 691 692
}
EXPORT_SYMBOL_GPL(rhashtable_remove);

693 694 695 696 697 698 699 700 701 702 703 704 705
struct rhashtable_compare_arg {
	struct rhashtable *ht;
	const void *key;
};

static bool rhashtable_compare(void *ptr, void *arg)
{
	struct rhashtable_compare_arg *x = arg;
	struct rhashtable *ht = x->ht;

	return !memcmp(ptr + ht->p.key_offset, x->key, ht->p.key_len);
}

706 707 708 709 710 711 712 713 714
/**
 * rhashtable_lookup - lookup key in hash table
 * @ht:		hash table
 * @key:	pointer to key
 *
 * Computes the hash value for the key and traverses the bucket chain looking
 * for a entry with an identical key. The first matching entry is returned.
 *
 * This lookup function may only be used for fixed key hash table (key_len
715
 * parameter set). It will BUG() if used inappropriately.
716
 *
717
 * Lookups may occur in parallel with hashtable mutations and resizing.
718
 */
719
void *rhashtable_lookup(struct rhashtable *ht, const void *key)
720
{
721 722 723 724
	struct rhashtable_compare_arg arg = {
		.ht = ht,
		.key = key,
	};
725 726 727

	BUG_ON(!ht->p.key_len);

728
	return rhashtable_lookup_compare(ht, key, &rhashtable_compare, &arg);
729 730 731 732 733 734
}
EXPORT_SYMBOL_GPL(rhashtable_lookup);

/**
 * rhashtable_lookup_compare - search hash table with compare function
 * @ht:		hash table
735
 * @key:	the pointer to the key
736 737 738 739 740 741
 * @compare:	compare function, must return true on match
 * @arg:	argument passed on to compare function
 *
 * Traverses the bucket chain behind the provided hash value and calls the
 * specified compare function for each entry.
 *
742
 * Lookups may occur in parallel with hashtable mutations and resizing.
743 744 745
 *
 * Returns the first entry on which the compare function returned true.
 */
746
void *rhashtable_lookup_compare(struct rhashtable *ht, const void *key,
747 748
				bool (*compare)(void *, void *), void *arg)
{
749
	const struct bucket_table *tbl, *old_tbl;
750
	struct rhash_head *he;
751
	u32 hash;
752

753 754 755 756
	rcu_read_lock();

	old_tbl = rht_dereference_rcu(ht->tbl, ht);
	tbl = rht_dereference_rcu(ht->future_tbl, ht);
757
	hash = key_hashfn(ht, key, ht->p.key_len);
758 759
restart:
	rht_for_each_rcu(he, tbl, rht_bucket_index(tbl, hash)) {
760 761
		if (!compare(rht_obj(ht, he), arg))
			continue;
762
		rcu_read_unlock();
763
		return rht_obj(ht, he);
764 765
	}

766 767 768 769 770 771
	if (unlikely(tbl != old_tbl)) {
		tbl = old_tbl;
		goto restart;
	}
	rcu_read_unlock();

772 773 774 775
	return NULL;
}
EXPORT_SYMBOL_GPL(rhashtable_lookup_compare);

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
/**
 * rhashtable_lookup_insert - lookup and insert object into hash table
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 *
 * Locks down the bucket chain in both the old and new table if a resize
 * is in progress to ensure that writers can't remove from the old table
 * and can't insert to the new table during the atomic operation of search
 * and insertion. Searches for duplicates in both the old and new table if
 * a resize is in progress.
 *
 * This lookup function may only be used for fixed key hash table (key_len
 * parameter set). It will BUG() if used inappropriately.
 *
 * It is safe to call this function from atomic context.
 *
 * Will trigger an automatic deferred table resizing if the size grows
 * beyond the watermark indicated by grow_decision() which can be passed
 * to rhashtable_init().
 */
bool rhashtable_lookup_insert(struct rhashtable *ht, struct rhash_head *obj)
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
{
	struct rhashtable_compare_arg arg = {
		.ht = ht,
		.key = rht_obj(ht, obj) + ht->p.key_offset,
	};

	BUG_ON(!ht->p.key_len);

	return rhashtable_lookup_compare_insert(ht, obj, &rhashtable_compare,
						&arg);
}
EXPORT_SYMBOL_GPL(rhashtable_lookup_insert);

/**
 * rhashtable_lookup_compare_insert - search and insert object to hash table
 *                                    with compare function
 * @ht:		hash table
 * @obj:	pointer to hash head inside object
 * @compare:	compare function, must return true on match
 * @arg:	argument passed on to compare function
 *
 * Locks down the bucket chain in both the old and new table if a resize
 * is in progress to ensure that writers can't remove from the old table
 * and can't insert to the new table during the atomic operation of search
 * and insertion. Searches for duplicates in both the old and new table if
 * a resize is in progress.
 *
 * Lookups may occur in parallel with hashtable mutations and resizing.
 *
 * Will trigger an automatic deferred table resizing if the size grows
 * beyond the watermark indicated by grow_decision() which can be passed
 * to rhashtable_init().
 */
bool rhashtable_lookup_compare_insert(struct rhashtable *ht,
				      struct rhash_head *obj,
				      bool (*compare)(void *, void *),
				      void *arg)
834 835
{
	struct bucket_table *new_tbl, *old_tbl;
836
	u32 new_hash;
837 838 839 840 841 842 843
	bool success = true;

	BUG_ON(!ht->p.key_len);

	rcu_read_lock();
	old_tbl = rht_dereference_rcu(ht->tbl, ht);
	new_tbl = rht_dereference_rcu(ht->future_tbl, ht);
844
	new_hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
845 846

	lock_buckets(new_tbl, old_tbl, new_hash);
847

848 849
	if (rhashtable_lookup_compare(ht, rht_obj(ht, obj) + ht->p.key_offset,
				      compare, arg)) {
850 851 852 853 854 855 856
		success = false;
		goto exit;
	}

	__rhashtable_insert(ht, obj, new_tbl, new_hash);

exit:
857
	unlock_buckets(new_tbl, old_tbl, new_hash);
858 859 860 861
	rcu_read_unlock();

	return success;
}
862
EXPORT_SYMBOL_GPL(rhashtable_lookup_compare_insert);
863

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
/**
 * rhashtable_walk_init - Initialise an iterator
 * @ht:		Table to walk over
 * @iter:	Hash table Iterator
 *
 * This function prepares a hash table walk.
 *
 * Note that if you restart a walk after rhashtable_walk_stop you
 * may see the same object twice.  Also, you may miss objects if
 * there are removals in between rhashtable_walk_stop and the next
 * call to rhashtable_walk_start.
 *
 * For a completely stable walk you should construct your own data
 * structure outside the hash table.
 *
 * This function may sleep so you must not call it from interrupt
 * context or with spin locks held.
 *
 * You must call rhashtable_walk_exit if this function returns
 * successfully.
 */
int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
{
	iter->ht = ht;
	iter->p = NULL;
	iter->slot = 0;
	iter->skip = 0;

	iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
	if (!iter->walker)
		return -ENOMEM;

	mutex_lock(&ht->mutex);
	list_add(&iter->walker->list, &ht->walkers);
	mutex_unlock(&ht->mutex);

	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_init);

/**
 * rhashtable_walk_exit - Free an iterator
 * @iter:	Hash table Iterator
 *
 * This function frees resources allocated by rhashtable_walk_init.
 */
void rhashtable_walk_exit(struct rhashtable_iter *iter)
{
	mutex_lock(&iter->ht->mutex);
	list_del(&iter->walker->list);
	mutex_unlock(&iter->ht->mutex);
	kfree(iter->walker);
}
EXPORT_SYMBOL_GPL(rhashtable_walk_exit);

/**
 * rhashtable_walk_start - Start a hash table walk
 * @iter:	Hash table iterator
 *
 * Start a hash table walk.  Note that we take the RCU lock in all
 * cases including when we return an error.  So you must always call
 * rhashtable_walk_stop to clean up.
 *
 * Returns zero if successful.
 *
 * Returns -EAGAIN if resize event occured.  Note that the iterator
 * will rewind back to the beginning and you may use it immediately
 * by calling rhashtable_walk_next.
 */
int rhashtable_walk_start(struct rhashtable_iter *iter)
{
	rcu_read_lock();

	if (iter->walker->resize) {
		iter->slot = 0;
		iter->skip = 0;
		iter->walker->resize = false;
		return -EAGAIN;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_start);

/**
 * rhashtable_walk_next - Return the next object and advance the iterator
 * @iter:	Hash table iterator
 *
 * Note that you must call rhashtable_walk_stop when you are finished
 * with the walk.
 *
 * Returns the next object or NULL when the end of the table is reached.
 *
 * Returns -EAGAIN if resize event occured.  Note that the iterator
 * will rewind back to the beginning and you may continue to use it.
 */
void *rhashtable_walk_next(struct rhashtable_iter *iter)
{
	const struct bucket_table *tbl;
	struct rhashtable *ht = iter->ht;
	struct rhash_head *p = iter->p;
	void *obj = NULL;

	tbl = rht_dereference_rcu(ht->tbl, ht);

	if (p) {
		p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
		goto next;
	}

	for (; iter->slot < tbl->size; iter->slot++) {
		int skip = iter->skip;

		rht_for_each_rcu(p, tbl, iter->slot) {
			if (!skip)
				break;
			skip--;
		}

next:
		if (!rht_is_a_nulls(p)) {
			iter->skip++;
			iter->p = p;
			obj = rht_obj(ht, p);
			goto out;
		}

		iter->skip = 0;
	}

	iter->p = NULL;

out:
	if (iter->walker->resize) {
		iter->p = NULL;
		iter->slot = 0;
		iter->skip = 0;
		iter->walker->resize = false;
		return ERR_PTR(-EAGAIN);
	}

	return obj;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_next);

/**
 * rhashtable_walk_stop - Finish a hash table walk
 * @iter:	Hash table iterator
 *
 * Finish a hash table walk.
 */
void rhashtable_walk_stop(struct rhashtable_iter *iter)
{
	rcu_read_unlock();
	iter->p = NULL;
}
EXPORT_SYMBOL_GPL(rhashtable_walk_stop);

1022
static size_t rounded_hashtable_size(struct rhashtable_params *params)
1023
{
1024 1025
	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
		   1UL << params->min_shift);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
}

/**
 * rhashtable_init - initialize a new hash table
 * @ht:		hash table to be initialized
 * @params:	configuration parameters
 *
 * Initializes a new hash table based on the provided configuration
 * parameters. A table can be configured either with a variable or
 * fixed length key:
 *
 * Configuration Example 1: Fixed length keys
 * struct test_obj {
 *	int			key;
 *	void *			my_member;
 *	struct rhash_head	node;
 * };
 *
 * struct rhashtable_params params = {
 *	.head_offset = offsetof(struct test_obj, node),
 *	.key_offset = offsetof(struct test_obj, key),
 *	.key_len = sizeof(int),
1048
 *	.hashfn = jhash,
1049
 *	.nulls_base = (1U << RHT_BASE_SHIFT),
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
 * };
 *
 * Configuration Example 2: Variable length keys
 * struct test_obj {
 *	[...]
 *	struct rhash_head	node;
 * };
 *
 * u32 my_hash_fn(const void *data, u32 seed)
 * {
 *	struct test_obj *obj = data;
 *
 *	return [... hash ...];
 * }
 *
 * struct rhashtable_params params = {
 *	.head_offset = offsetof(struct test_obj, node),
1067
 *	.hashfn = jhash,
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
 *	.obj_hashfn = my_hash_fn,
 * };
 */
int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params)
{
	struct bucket_table *tbl;
	size_t size;

	size = HASH_DEFAULT_SIZE;

	if ((params->key_len && !params->hashfn) ||
	    (!params->key_len && !params->obj_hashfn))
		return -EINVAL;

1082 1083 1084
	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
		return -EINVAL;

1085 1086 1087
	params->min_shift = max_t(size_t, params->min_shift,
				  ilog2(HASH_MIN_SIZE));

1088
	if (params->nelem_hint)
1089
		size = rounded_hashtable_size(params);
1090

1091 1092 1093
	memset(ht, 0, sizeof(*ht));
	mutex_init(&ht->mutex);
	memcpy(&ht->p, params, sizeof(*params));
1094
	INIT_LIST_HEAD(&ht->walkers);
1095 1096 1097 1098 1099 1100 1101

	if (params->locks_mul)
		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
	else
		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;

	tbl = bucket_table_alloc(ht, size);
1102 1103 1104
	if (tbl == NULL)
		return -ENOMEM;

1105
	atomic_set(&ht->nelems, 0);
1106
	atomic_set(&ht->shift, ilog2(tbl->size));
1107
	RCU_INIT_POINTER(ht->tbl, tbl);
1108
	RCU_INIT_POINTER(ht->future_tbl, tbl);
1109 1110 1111 1112

	if (!ht->p.hash_rnd)
		get_random_bytes(&ht->p.hash_rnd, sizeof(ht->p.hash_rnd));

1113
	if (ht->p.grow_decision || ht->p.shrink_decision)
1114
		INIT_WORK(&ht->run_work, rht_deferred_worker);
1115

1116 1117 1118 1119 1120 1121 1122 1123
	return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_init);

/**
 * rhashtable_destroy - destroy hash table
 * @ht:		the hash table to destroy
 *
1124 1125 1126
 * Frees the bucket array. This function is not rcu safe, therefore the caller
 * has to make sure that no resizing may happen by unpublishing the hashtable
 * and waiting for the quiescent cycle before releasing the bucket array.
1127
 */
1128
void rhashtable_destroy(struct rhashtable *ht)
1129
{
1130 1131
	ht->being_destroyed = true;

1132 1133
	if (ht->p.grow_decision || ht->p.shrink_decision)
		cancel_work_sync(&ht->run_work);
1134

1135
	mutex_lock(&ht->mutex);
1136 1137
	bucket_table_free(rht_dereference(ht->tbl, ht));
	mutex_unlock(&ht->mutex);
1138 1139
}
EXPORT_SYMBOL_GPL(rhashtable_destroy);