timer.c 50.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 *  linux/kernel/timer.c
 *
 *  Kernel internal timers, kernel timekeeping, basic process system calls
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *              serialize accesses to xtime/lost_ticks).
 *                              Copyright (C) 1998  Andrea Arcangeli
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 */

#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/notifier.h>
#include <linux/thread_info.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Adrian Bunk 已提交
36
#include <linux/delay.h>
L
Linus Torvalds 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49

#include <asm/uaccess.h>
#include <asm/unistd.h>
#include <asm/div64.h>
#include <asm/timex.h>
#include <asm/io.h>

#ifdef CONFIG_TIME_INTERPOLATION
static void time_interpolator_update(long delta_nsec);
#else
#define time_interpolator_update(x)
#endif

T
Thomas Gleixner 已提交
50 51 52 53
u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;

EXPORT_SYMBOL(jiffies_64);

L
Linus Torvalds 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/*
 * per-CPU timer vector definitions:
 */
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)

typedef struct tvec_s {
	struct list_head vec[TVN_SIZE];
} tvec_t;

typedef struct tvec_root_s {
	struct list_head vec[TVR_SIZE];
} tvec_root_t;

struct tvec_t_base_s {
73 74
	spinlock_t lock;
	struct timer_list *running_timer;
L
Linus Torvalds 已提交
75 76 77 78 79 80 81 82 83
	unsigned long timer_jiffies;
	tvec_root_t tv1;
	tvec_t tv2;
	tvec_t tv3;
	tvec_t tv4;
	tvec_t tv5;
} ____cacheline_aligned_in_smp;

typedef struct tvec_t_base_s tvec_base_t;
A
Andrew Morton 已提交
84

85 86
tvec_base_t boot_tvec_bases;
EXPORT_SYMBOL(boot_tvec_bases);
87
static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
L
Linus Torvalds 已提交
88 89 90 91 92

static inline void set_running_timer(tvec_base_t *base,
					struct timer_list *timer)
{
#ifdef CONFIG_SMP
93
	base->running_timer = timer;
L
Linus Torvalds 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#endif
}

static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
{
	unsigned long expires = timer->expires;
	unsigned long idx = expires - base->timer_jiffies;
	struct list_head *vec;

	if (idx < TVR_SIZE) {
		int i = expires & TVR_MASK;
		vec = base->tv1.vec + i;
	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
		int i = (expires >> TVR_BITS) & TVN_MASK;
		vec = base->tv2.vec + i;
	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
		vec = base->tv3.vec + i;
	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
		vec = base->tv4.vec + i;
	} else if ((signed long) idx < 0) {
		/*
		 * Can happen if you add a timer with expires == jiffies,
		 * or you set a timer to go off in the past
		 */
		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
	} else {
		int i;
		/* If the timeout is larger than 0xffffffff on 64-bit
		 * architectures then we use the maximum timeout:
		 */
		if (idx > 0xffffffffUL) {
			idx = 0xffffffffUL;
			expires = idx + base->timer_jiffies;
		}
		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
		vec = base->tv5.vec + i;
	}
	/*
	 * Timers are FIFO:
	 */
	list_add_tail(&timer->entry, vec);
}

139 140 141 142 143 144 145 146 147 148
/***
 * init_timer - initialize a timer.
 * @timer: the timer to be initialized
 *
 * init_timer() must be done to a timer prior calling *any* of the
 * other timer functions.
 */
void fastcall init_timer(struct timer_list *timer)
{
	timer->entry.next = NULL;
149
	timer->base = __raw_get_cpu_var(tvec_bases);
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
}
EXPORT_SYMBOL(init_timer);

static inline void detach_timer(struct timer_list *timer,
					int clear_pending)
{
	struct list_head *entry = &timer->entry;

	__list_del(entry->prev, entry->next);
	if (clear_pending)
		entry->next = NULL;
	entry->prev = LIST_POISON2;
}

/*
165
 * We are using hashed locking: holding per_cpu(tvec_bases).lock
166 167 168 169 170 171 172 173 174 175
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on ->tvX lists.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
176
static tvec_base_t *lock_timer_base(struct timer_list *timer,
177 178
					unsigned long *flags)
{
179
	tvec_base_t *base;
180 181 182 183 184 185 186 187 188 189 190 191 192 193

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
			spin_lock_irqsave(&base->lock, *flags);
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU */
			spin_unlock_irqrestore(&base->lock, *flags);
		}
		cpu_relax();
	}
}

L
Linus Torvalds 已提交
194 195
int __mod_timer(struct timer_list *timer, unsigned long expires)
{
196
	tvec_base_t *base, *new_base;
L
Linus Torvalds 已提交
197 198 199 200 201
	unsigned long flags;
	int ret = 0;

	BUG_ON(!timer->function);

202 203 204 205 206 207 208
	base = lock_timer_base(timer, &flags);

	if (timer_pending(timer)) {
		detach_timer(timer, 0);
		ret = 1;
	}

209
	new_base = __get_cpu_var(tvec_bases);
L
Linus Torvalds 已提交
210

211
	if (base != new_base) {
L
Linus Torvalds 已提交
212
		/*
213 214 215 216 217
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * otherwise del_timer_sync() can't detect that the timer's
		 * handler yet has not finished. This also guarantees that
		 * the timer is serialized wrt itself.
L
Linus Torvalds 已提交
218
		 */
219
		if (likely(base->running_timer != timer)) {
220 221 222
			/* See the comment in lock_timer_base() */
			timer->base = NULL;
			spin_unlock(&base->lock);
223 224 225
			base = new_base;
			spin_lock(&base->lock);
			timer->base = base;
L
Linus Torvalds 已提交
226 227 228 229
		}
	}

	timer->expires = expires;
230 231
	internal_add_timer(base, timer);
	spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

	return ret;
}

EXPORT_SYMBOL(__mod_timer);

/***
 * add_timer_on - start a timer on a particular CPU
 * @timer: the timer to be added
 * @cpu: the CPU to start it on
 *
 * This is not very scalable on SMP. Double adds are not possible.
 */
void add_timer_on(struct timer_list *timer, int cpu)
{
247
	tvec_base_t *base = per_cpu(tvec_bases, cpu);
L
Linus Torvalds 已提交
248
  	unsigned long flags;
249

L
Linus Torvalds 已提交
250
  	BUG_ON(timer_pending(timer) || !timer->function);
251 252
	spin_lock_irqsave(&base->lock, flags);
	timer->base = base;
L
Linus Torvalds 已提交
253
	internal_add_timer(base, timer);
254
	spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
}


/***
 * mod_timer - modify a timer's timeout
 * @timer: the timer to be modified
 *
 * mod_timer is a more efficient way to update the expire field of an
 * active timer (if the timer is inactive it will be activated)
 *
 * mod_timer(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 *
 * Note that if there are multiple unserialized concurrent users of the
 * same timer, then mod_timer() is the only safe way to modify the timeout,
 * since add_timer() cannot modify an already running timer.
 *
 * The function returns whether it has modified a pending timer or not.
 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 * active timer returns 1.)
 */
int mod_timer(struct timer_list *timer, unsigned long expires)
{
	BUG_ON(!timer->function);

	/*
	 * This is a common optimization triggered by the
	 * networking code - if the timer is re-modified
	 * to be the same thing then just return:
	 */
	if (timer->expires == expires && timer_pending(timer))
		return 1;

	return __mod_timer(timer, expires);
}

EXPORT_SYMBOL(mod_timer);

/***
 * del_timer - deactive a timer.
 * @timer: the timer to be deactivated
 *
 * del_timer() deactivates a timer - this works on both active and inactive
 * timers.
 *
 * The function returns whether it has deactivated a pending timer or not.
 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 * active timer returns 1.)
 */
int del_timer(struct timer_list *timer)
{
307
	tvec_base_t *base;
L
Linus Torvalds 已提交
308
	unsigned long flags;
309
	int ret = 0;
L
Linus Torvalds 已提交
310

311 312 313 314 315 316
	if (timer_pending(timer)) {
		base = lock_timer_base(timer, &flags);
		if (timer_pending(timer)) {
			detach_timer(timer, 1);
			ret = 1;
		}
L
Linus Torvalds 已提交
317 318 319
		spin_unlock_irqrestore(&base->lock, flags);
	}

320
	return ret;
L
Linus Torvalds 已提交
321 322 323 324 325
}

EXPORT_SYMBOL(del_timer);

#ifdef CONFIG_SMP
326 327 328 329 330 331 332 333
/*
 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 * exit the timer is not queued and the handler is not running on any CPU.
 *
 * It must not be called from interrupt contexts.
 */
int try_to_del_timer_sync(struct timer_list *timer)
{
334
	tvec_base_t *base;
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
	unsigned long flags;
	int ret = -1;

	base = lock_timer_base(timer, &flags);

	if (base->running_timer == timer)
		goto out;

	ret = 0;
	if (timer_pending(timer)) {
		detach_timer(timer, 1);
		ret = 1;
	}
out:
	spin_unlock_irqrestore(&base->lock, flags);

	return ret;
}

L
Linus Torvalds 已提交
354 355 356 357 358 359 360 361 362 363 364
/***
 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 * @timer: the timer to be deactivated
 *
 * This function only differs from del_timer() on SMP: besides deactivating
 * the timer it also makes sure the handler has finished executing on other
 * CPUs.
 *
 * Synchronization rules: callers must prevent restarting of the timer,
 * otherwise this function is meaningless. It must not be called from
 * interrupt contexts. The caller must not hold locks which would prevent
365 366 367
 * completion of the timer's handler. The timer's handler must not call
 * add_timer_on(). Upon exit the timer is not queued and the handler is
 * not running on any CPU.
L
Linus Torvalds 已提交
368 369 370 371 372
 *
 * The function returns whether it has deactivated a pending timer or not.
 */
int del_timer_sync(struct timer_list *timer)
{
373 374 375 376
	for (;;) {
		int ret = try_to_del_timer_sync(timer);
		if (ret >= 0)
			return ret;
377
		cpu_relax();
378
	}
L
Linus Torvalds 已提交
379 380
}

381
EXPORT_SYMBOL(del_timer_sync);
L
Linus Torvalds 已提交
382 383 384 385 386
#endif

static int cascade(tvec_base_t *base, tvec_t *tv, int index)
{
	/* cascade all the timers from tv up one level */
387 388 389 390
	struct timer_list *timer, *tmp;
	struct list_head tv_list;

	list_replace_init(tv->vec + index, &tv_list);
L
Linus Torvalds 已提交
391 392

	/*
393 394
	 * We are removing _all_ timers from the list, so we
	 * don't have to detach them individually.
L
Linus Torvalds 已提交
395
	 */
396 397 398
	list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
		BUG_ON(timer->base != base);
		internal_add_timer(base, timer);
L
Linus Torvalds 已提交
399 400 401 402 403 404 405 406 407 408 409 410
	}

	return index;
}

/***
 * __run_timers - run all expired timers (if any) on this CPU.
 * @base: the timer vector to be processed.
 *
 * This function cascades all vectors and executes all expired timer
 * vectors.
 */
411
#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
L
Linus Torvalds 已提交
412 413 414 415 416

static inline void __run_timers(tvec_base_t *base)
{
	struct timer_list *timer;

417
	spin_lock_irq(&base->lock);
L
Linus Torvalds 已提交
418
	while (time_after_eq(jiffies, base->timer_jiffies)) {
419
		struct list_head work_list;
L
Linus Torvalds 已提交
420 421
		struct list_head *head = &work_list;
 		int index = base->timer_jiffies & TVR_MASK;
422

L
Linus Torvalds 已提交
423 424 425 426 427 428 429 430
		/*
		 * Cascade timers:
		 */
		if (!index &&
			(!cascade(base, &base->tv2, INDEX(0))) &&
				(!cascade(base, &base->tv3, INDEX(1))) &&
					!cascade(base, &base->tv4, INDEX(2)))
			cascade(base, &base->tv5, INDEX(3));
431 432
		++base->timer_jiffies;
		list_replace_init(base->tv1.vec + index, &work_list);
433
		while (!list_empty(head)) {
L
Linus Torvalds 已提交
434 435 436 437 438 439 440 441
			void (*fn)(unsigned long);
			unsigned long data;

			timer = list_entry(head->next,struct timer_list,entry);
 			fn = timer->function;
 			data = timer->data;

			set_running_timer(base, timer);
442
			detach_timer(timer, 1);
443
			spin_unlock_irq(&base->lock);
L
Linus Torvalds 已提交
444
			{
445
				int preempt_count = preempt_count();
L
Linus Torvalds 已提交
446 447
				fn(data);
				if (preempt_count != preempt_count()) {
448 449 450 451 452
					printk(KERN_WARNING "huh, entered %p "
					       "with preempt_count %08x, exited"
					       " with %08x?\n",
					       fn, preempt_count,
					       preempt_count());
L
Linus Torvalds 已提交
453 454 455
					BUG();
				}
			}
456
			spin_lock_irq(&base->lock);
L
Linus Torvalds 已提交
457 458 459
		}
	}
	set_running_timer(base, NULL);
460
	spin_unlock_irq(&base->lock);
L
Linus Torvalds 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474
}

#ifdef CONFIG_NO_IDLE_HZ
/*
 * Find out when the next timer event is due to happen. This
 * is used on S/390 to stop all activity when a cpus is idle.
 * This functions needs to be called disabled.
 */
unsigned long next_timer_interrupt(void)
{
	tvec_base_t *base;
	struct list_head *list;
	struct timer_list *nte;
	unsigned long expires;
475 476
	unsigned long hr_expires = MAX_JIFFY_OFFSET;
	ktime_t hr_delta;
L
Linus Torvalds 已提交
477 478 479
	tvec_t *varray[4];
	int i, j;

480 481 482 483 484 485 486 487 488 489
	hr_delta = hrtimer_get_next_event();
	if (hr_delta.tv64 != KTIME_MAX) {
		struct timespec tsdelta;
		tsdelta = ktime_to_timespec(hr_delta);
		hr_expires = timespec_to_jiffies(&tsdelta);
		if (hr_expires < 3)
			return hr_expires + jiffies;
	}
	hr_expires += jiffies;

490
	base = __get_cpu_var(tvec_bases);
491
	spin_lock(&base->lock);
L
Linus Torvalds 已提交
492
	expires = base->timer_jiffies + (LONG_MAX >> 1);
A
Al Viro 已提交
493
	list = NULL;
L
Linus Torvalds 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538

	/* Look for timer events in tv1. */
	j = base->timer_jiffies & TVR_MASK;
	do {
		list_for_each_entry(nte, base->tv1.vec + j, entry) {
			expires = nte->expires;
			if (j < (base->timer_jiffies & TVR_MASK))
				list = base->tv2.vec + (INDEX(0));
			goto found;
		}
		j = (j + 1) & TVR_MASK;
	} while (j != (base->timer_jiffies & TVR_MASK));

	/* Check tv2-tv5. */
	varray[0] = &base->tv2;
	varray[1] = &base->tv3;
	varray[2] = &base->tv4;
	varray[3] = &base->tv5;
	for (i = 0; i < 4; i++) {
		j = INDEX(i);
		do {
			if (list_empty(varray[i]->vec + j)) {
				j = (j + 1) & TVN_MASK;
				continue;
			}
			list_for_each_entry(nte, varray[i]->vec + j, entry)
				if (time_before(nte->expires, expires))
					expires = nte->expires;
			if (j < (INDEX(i)) && i < 3)
				list = varray[i + 1]->vec + (INDEX(i + 1));
			goto found;
		} while (j != (INDEX(i)));
	}
found:
	if (list) {
		/*
		 * The search wrapped. We need to look at the next list
		 * from next tv element that would cascade into tv element
		 * where we found the timer element.
		 */
		list_for_each_entry(nte, list, entry) {
			if (time_before(nte->expires, expires))
				expires = nte->expires;
		}
	}
539
	spin_unlock(&base->lock);
540

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	/*
	 * It can happen that other CPUs service timer IRQs and increment
	 * jiffies, but we have not yet got a local timer tick to process
	 * the timer wheels.  In that case, the expiry time can be before
	 * jiffies, but since the high-resolution timer here is relative to
	 * jiffies, the default expression when high-resolution timers are
	 * not active,
	 *
	 *   time_before(MAX_JIFFY_OFFSET + jiffies, expires)
	 *
	 * would falsely evaluate to true.  If that is the case, just
	 * return jiffies so that we can immediately fire the local timer
	 */
	if (time_before(expires, jiffies))
		return jiffies;

557 558 559
	if (time_before(hr_expires, expires))
		return hr_expires;

L
Linus Torvalds 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
	return expires;
}
#endif

/******************************************************************/

/*
 * Timekeeping variables
 */
unsigned long tick_usec = TICK_USEC; 		/* USER_HZ period (usec) */
unsigned long tick_nsec = TICK_NSEC;		/* ACTHZ period (nsec) */

/* 
 * The current time 
 * wall_to_monotonic is what we need to add to xtime (or xtime corrected 
 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
 * at zero at system boot time, so wall_to_monotonic will be negative,
 * however, we will ALWAYS keep the tv_nsec part positive so we can use
 * the usual normalization.
 */
struct timespec xtime __attribute__ ((aligned (16)));
struct timespec wall_to_monotonic __attribute__ ((aligned (16)));

EXPORT_SYMBOL(xtime);

/* Don't completely fail for HZ > 500.  */
int tickadj = 500/HZ ? : 1;		/* microsecs */


/*
 * phase-lock loop variables
 */
/* TIME_ERROR prevents overwriting the CMOS clock */
int time_state = TIME_OK;		/* clock synchronization status	*/
int time_status = STA_UNSYNC;		/* clock status bits		*/
long time_offset;			/* time adjustment (us)		*/
long time_constant = 2;			/* pll time constant		*/
long time_tolerance = MAXFREQ;		/* frequency tolerance (ppm)	*/
long time_precision = 1;		/* clock precision (us)		*/
long time_maxerror = NTP_PHASE_LIMIT;	/* maximum error (us)		*/
long time_esterror = NTP_PHASE_LIMIT;	/* estimated error (us)		*/
long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
					/* frequency offset (scaled ppm)*/
static long time_adj;			/* tick adjust (scaled 1 / HZ)	*/
long time_reftime;			/* time at last adjustment (s)	*/
long time_adjust;
long time_next_adjust;

/*
 * this routine handles the overflow of the microsecond field
 *
 * The tricky bits of code to handle the accurate clock support
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 * They were originally developed for SUN and DEC kernels.
 * All the kudos should go to Dave for this stuff.
 *
 */
static void second_overflow(void)
{
A
Andrew Morton 已提交
619 620 621 622 623 624 625
	long ltemp;

	/* Bump the maxerror field */
	time_maxerror += time_tolerance >> SHIFT_USEC;
	if (time_maxerror > NTP_PHASE_LIMIT) {
		time_maxerror = NTP_PHASE_LIMIT;
		time_status |= STA_UNSYNC;
L
Linus Torvalds 已提交
626
	}
A
Andrew Morton 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677

	/*
	 * Leap second processing. If in leap-insert state at the end of the
	 * day, the system clock is set back one second; if in leap-delete
	 * state, the system clock is set ahead one second. The microtime()
	 * routine or external clock driver will insure that reported time is
	 * always monotonic. The ugly divides should be replaced.
	 */
	switch (time_state) {
	case TIME_OK:
		if (time_status & STA_INS)
			time_state = TIME_INS;
		else if (time_status & STA_DEL)
			time_state = TIME_DEL;
		break;
	case TIME_INS:
		if (xtime.tv_sec % 86400 == 0) {
			xtime.tv_sec--;
			wall_to_monotonic.tv_sec++;
			/*
			 * The timer interpolator will make time change
			 * gradually instead of an immediate jump by one second
			 */
			time_interpolator_update(-NSEC_PER_SEC);
			time_state = TIME_OOP;
			clock_was_set();
			printk(KERN_NOTICE "Clock: inserting leap second "
					"23:59:60 UTC\n");
		}
		break;
	case TIME_DEL:
		if ((xtime.tv_sec + 1) % 86400 == 0) {
			xtime.tv_sec++;
			wall_to_monotonic.tv_sec--;
			/*
			 * Use of time interpolator for a gradual change of
			 * time
			 */
			time_interpolator_update(NSEC_PER_SEC);
			time_state = TIME_WAIT;
			clock_was_set();
			printk(KERN_NOTICE "Clock: deleting leap second "
					"23:59:59 UTC\n");
		}
		break;
	case TIME_OOP:
		time_state = TIME_WAIT;
		break;
	case TIME_WAIT:
		if (!(time_status & (STA_INS | STA_DEL)))
		time_state = TIME_OK;
L
Linus Torvalds 已提交
678
	}
A
Andrew Morton 已提交
679 680 681 682 683 684 685 686

	/*
	 * Compute the phase adjustment for the next second. In PLL mode, the
	 * offset is reduced by a fixed factor times the time constant. In FLL
	 * mode the offset is used directly. In either mode, the maximum phase
	 * adjustment for each second is clamped so as to spread the adjustment
	 * over not more than the number of seconds between updates.
	 */
L
Linus Torvalds 已提交
687 688
	ltemp = time_offset;
	if (!(time_status & STA_FLL))
J
john stultz 已提交
689 690 691
		ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
	ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
	ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
L
Linus Torvalds 已提交
692 693 694
	time_offset -= ltemp;
	time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);

A
Andrew Morton 已提交
695 696
	/*
	 * Compute the frequency estimate and additional phase adjustment due
R
Roman Zippel 已提交
697
	 * to frequency error for the next second.
A
Andrew Morton 已提交
698
	 */
R
Roman Zippel 已提交
699
	ltemp = time_freq;
A
Andrew Morton 已提交
700
	time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
L
Linus Torvalds 已提交
701 702

#if HZ == 100
A
Andrew Morton 已提交
703 704 705 706 707
	/*
	 * Compensate for (HZ==100) != (1 << SHIFT_HZ).  Add 25% and 3.125% to
	 * get 128.125; => only 0.125% error (p. 14)
	 */
	time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
L
Linus Torvalds 已提交
708
#endif
709
#if HZ == 250
A
Andrew Morton 已提交
710 711 712 713 714
	/*
	 * Compensate for (HZ==250) != (1 << SHIFT_HZ).  Add 1.5625% and
	 * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
	 */
	time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
715
#endif
L
Linus Torvalds 已提交
716
#if HZ == 1000
A
Andrew Morton 已提交
717 718 719 720 721
	/*
	 * Compensate for (HZ==1000) != (1 << SHIFT_HZ).  Add 1.5625% and
	 * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
	 */
	time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
L
Linus Torvalds 已提交
722 723 724
#endif
}

725 726 727 728 729
/*
 * Returns how many microseconds we need to add to xtime this tick
 * in doing an adjustment requested with adjtime.
 */
static long adjtime_adjustment(void)
L
Linus Torvalds 已提交
730
{
731
	long time_adjust_step;
L
Linus Torvalds 已提交
732

733 734
	time_adjust_step = time_adjust;
	if (time_adjust_step) {
A
Andrew Morton 已提交
735 736 737 738 739 740 741 742 743 744
		/*
		 * We are doing an adjtime thing.  Prepare time_adjust_step to
		 * be within bounds.  Note that a positive time_adjust means we
		 * want the clock to run faster.
		 *
		 * Limit the amount of the step to be in the range
		 * -tickadj .. +tickadj
		 */
		time_adjust_step = min(time_adjust_step, (long)tickadj);
		time_adjust_step = max(time_adjust_step, (long)-tickadj);
745 746 747
	}
	return time_adjust_step;
}
A
Andrew Morton 已提交
748

749
/* in the NTP reference this is called "hardclock()" */
750
static void update_ntp_one_tick(void)
751
{
752
	long time_adjust_step;
753 754 755

	time_adjust_step = adjtime_adjustment();
	if (time_adjust_step)
A
Andrew Morton 已提交
756 757
		/* Reduce by this step the amount of time left  */
		time_adjust -= time_adjust_step;
L
Linus Torvalds 已提交
758 759 760 761 762 763 764 765

	/* Changes by adjtime() do not take effect till next tick. */
	if (time_next_adjust != 0) {
		time_adjust = time_next_adjust;
		time_next_adjust = 0;
	}
}

766 767 768 769
/*
 * Return how long ticks are at the moment, that is, how much time
 * update_wall_time_one_tick will add to xtime next time we call it
 * (assuming no calls to do_adjtimex in the meantime).
770 771
 * The return value is in fixed-point nanoseconds shifted by the
 * specified number of bits to the right of the binary point.
772 773
 * This function has no side-effects.
 */
774
u64 current_tick_length(void)
775 776
{
	long delta_nsec;
777
	u64 ret;
778

779 780 781
	/* calculate the finest interval NTP will allow.
	 *    ie: nanosecond value shifted by (SHIFT_SCALE - 10)
	 */
782
	delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
783 784
	ret = (u64)delta_nsec << TICK_LENGTH_SHIFT;
	ret += (s64)time_adj << (TICK_LENGTH_SHIFT - (SHIFT_SCALE - 10));
785 786

	return ret;
787 788
}

789 790 791
/* XXX - all of this timekeeping code should be later moved to time.c */
#include <linux/clocksource.h>
static struct clocksource *clock; /* pointer to current clocksource */
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806

#ifdef CONFIG_GENERIC_TIME
/**
 * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
 *
 * private function, must hold xtime_lock lock when being
 * called. Returns the number of nanoseconds since the
 * last call to update_wall_time() (adjusted by NTP scaling)
 */
static inline s64 __get_nsec_offset(void)
{
	cycle_t cycle_now, cycle_delta;
	s64 ns_offset;

	/* read clocksource: */
807
	cycle_now = clocksource_read(clock);
808 809

	/* calculate the delta since the last update_wall_time: */
810
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841

	/* convert to nanoseconds: */
	ns_offset = cyc2ns(clock, cycle_delta);

	return ns_offset;
}

/**
 * __get_realtime_clock_ts - Returns the time of day in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec. Used by
 * do_gettimeofday() and get_realtime_clock_ts().
 */
static inline void __get_realtime_clock_ts(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
		seq = read_seqbegin(&xtime_lock);

		*ts = xtime;
		nsecs = __get_nsec_offset();

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}

/**
842
 * getnstimeofday - Returns the time of day in a timespec
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec.
 */
void getnstimeofday(struct timespec *ts)
{
	__get_realtime_clock_ts(ts);
}

EXPORT_SYMBOL(getnstimeofday);

/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
 * NOTE: Users should be converted to using get_realtime_clock_ts()
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

	__get_realtime_clock_ts(&now);
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}

EXPORT_SYMBOL(do_gettimeofday);
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
int do_settimeofday(struct timespec *tv)
{
	unsigned long flags;
	time_t wtm_sec, sec = tv->tv_sec;
	long wtm_nsec, nsec = tv->tv_nsec;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

	nsec -= __get_nsec_offset();

	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);

	set_normalized_timespec(&xtime, sec, nsec);
	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);

895
	clock->error = 0;
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
	ntp_clear();

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
static int change_clocksource(void)
{
	struct clocksource *new;
	cycle_t now;
	u64 nsec;
918
	new = clocksource_get_next();
919
	if (clock != new) {
920
		now = clocksource_read(new);
921 922 923 924
		nsec =  __get_nsec_offset();
		timespec_add_ns(&xtime, nsec);

		clock = new;
925
		clock->cycle_last = now;
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
		printk(KERN_INFO "Time: %s clocksource has been installed.\n",
					clock->name);
		return 1;
	} else if (clock->update_callback) {
		return clock->update_callback();
	}
	return 0;
}
#else
#define change_clocksource() (0)
#endif

/**
 * timeofday_is_continuous - check to see if timekeeping is free running
 */
int timekeeping_is_continuous(void)
{
	unsigned long seq;
	int ret;

	do {
		seq = read_seqbegin(&xtime_lock);

		ret = clock->is_continuous;

	} while (read_seqretry(&xtime_lock, seq));

	return ret;
}

L
Linus Torvalds 已提交
956
/*
957
 * timekeeping_init - Initializes the clocksource and common timekeeping values
L
Linus Torvalds 已提交
958
 */
959
void __init timekeeping_init(void)
L
Linus Torvalds 已提交
960
{
961 962 963
	unsigned long flags;

	write_seqlock_irqsave(&xtime_lock, flags);
964 965
	clock = clocksource_get_next();
	clocksource_calculate_interval(clock, tick_nsec);
966
	clock->cycle_last = clocksource_read(clock);
967 968 969 970 971
	ntp_clear();
	write_sequnlock_irqrestore(&xtime_lock, flags);
}


972
static int timekeeping_suspended;
973 974 975 976 977 978 979 980 981 982 983 984 985 986
/*
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 * @dev:	unused
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/wall_jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
static int timekeeping_resume(struct sys_device *dev)
{
	unsigned long flags;

	write_seqlock_irqsave(&xtime_lock, flags);
	/* restart the last cycle value */
987
	clock->cycle_last = clocksource_read(clock);
988 989 990 991 992 993 994 995 996 997 998 999
	clock->error = 0;
	timekeeping_suspended = 0;
	write_sequnlock_irqrestore(&xtime_lock, flags);
	return 0;
}

static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
{
	unsigned long flags;

	write_seqlock_irqsave(&xtime_lock, flags);
	timekeeping_suspended = 1;
1000 1001 1002 1003 1004 1005 1006
	write_sequnlock_irqrestore(&xtime_lock, flags);
	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
static struct sysdev_class timekeeping_sysclass = {
	.resume		= timekeeping_resume,
1007
	.suspend	= timekeeping_suspend,
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	set_kset_name("timekeeping"),
};

static struct sys_device device_timer = {
	.id		= 0,
	.cls		= &timekeeping_sysclass,
};

static int __init timekeeping_init_device(void)
{
	int error = sysdev_class_register(&timekeeping_sysclass);
	if (!error)
		error = sysdev_register(&device_timer);
	return error;
}

device_initcall(timekeeping_init_device);

1026
/*
1027
 * If the error is already larger, we look ahead even further
1028 1029
 * to compensate for late or lost adjustments.
 */
1030
static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, s64 *offset)
1031
{
1032 1033 1034
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;
1035 1036

	/*
1037 1038 1039 1040 1041 1042 1043
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
	 * here.  This is tuned so that an error of about 1 msec is adusted
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
1044
	 */
1045 1046 1047 1048
	error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ);
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;
1049 1050

	/*
1051 1052
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
1053
	 */
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	tick_error = current_tick_length() >> (TICK_LENGTH_SHIFT - clock->shift + 1);
	tick_error -= clock->xtime_interval >> 1;
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
1066
	}
1067 1068
	for (adj = 0; error > i; adj++)
		error >>= 1;
1069 1070 1071

	*interval <<= adj;
	*offset <<= adj;
1072
	return mult << adj;
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
static void clocksource_adjust(struct clocksource *clock, s64 offset)
{
	s64 error, interval = clock->cycle_interval;
	int adj;

	error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
	if (error > interval) {
1087 1088 1089 1090 1091
		error >>= 2;
		if (likely(error <= interval))
			adj = 1;
		else
			adj = clocksource_bigadjust(error, &interval, &offset);
1092
	} else if (error < -interval) {
1093 1094 1095 1096 1097 1098 1099
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
			adj = clocksource_bigadjust(error, &interval, &offset);
1100 1101 1102 1103 1104 1105 1106 1107 1108
	} else
		return;

	clock->mult += adj;
	clock->xtime_interval += interval;
	clock->xtime_nsec -= offset;
	clock->error -= (interval - offset) << (TICK_LENGTH_SHIFT - clock->shift);
}

1109 1110 1111 1112 1113 1114 1115
/*
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 * Called from the timer interrupt, must hold a write on xtime_lock.
 */
static void update_wall_time(void)
{
1116
	cycle_t offset;
1117

1118 1119 1120
	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
		return;
1121

1122 1123 1124 1125 1126
#ifdef CONFIG_GENERIC_TIME
	offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
#else
	offset = clock->cycle_interval;
#endif
1127
	clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
1128 1129 1130 1131

	/* normally this loop will run just once, however in the
	 * case of lost or late ticks, it will accumulate correctly.
	 */
1132
	while (offset >= clock->cycle_interval) {
1133
		/* accumulate one interval */
1134 1135 1136 1137 1138 1139 1140 1141 1142
		clock->xtime_nsec += clock->xtime_interval;
		clock->cycle_last += clock->cycle_interval;
		offset -= clock->cycle_interval;

		if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
			clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
			xtime.tv_sec++;
			second_overflow();
		}
1143

1144
		/* interpolator bits */
1145
		time_interpolator_update(clock->xtime_interval
1146 1147 1148 1149 1150
						>> clock->shift);
		/* increment the NTP state machine */
		update_ntp_one_tick();

		/* accumulate error between NTP and clock interval */
1151 1152 1153
		clock->error += current_tick_length();
		clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
	}
1154

1155 1156
	/* correct the clock when NTP error is too big */
	clocksource_adjust(clock, offset);
1157 1158

	/* store full nanoseconds into xtime */
1159
	xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
1160
	clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
1161 1162 1163

	/* check to see if there is a new clocksource to use */
	if (change_clocksource()) {
1164 1165
		clock->error = 0;
		clock->xtime_nsec = 0;
1166
		clocksource_calculate_interval(clock, tick_nsec);
1167
	}
L
Linus Torvalds 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
}

/*
 * Called from the timer interrupt handler to charge one tick to the current 
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
void update_process_times(int user_tick)
{
	struct task_struct *p = current;
	int cpu = smp_processor_id();

	/* Note: this timer irq context must be accounted for as well. */
	if (user_tick)
		account_user_time(p, jiffies_to_cputime(1));
	else
		account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
	run_local_timers();
	if (rcu_pending(cpu))
		rcu_check_callbacks(cpu, user_tick);
	scheduler_tick();
 	run_posix_cpu_timers(p);
}

/*
 * Nr of active tasks - counted in fixed-point numbers
 */
static unsigned long count_active_tasks(void)
{
1196
	return nr_active() * FIXED_1;
L
Linus Torvalds 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
}

/*
 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
 * imply that avenrun[] is the standard name for this kind of thing.
 * Nothing else seems to be standardized: the fractional size etc
 * all seem to differ on different machines.
 *
 * Requires xtime_lock to access.
 */
unsigned long avenrun[3];

EXPORT_SYMBOL(avenrun);

/*
 * calc_load - given tick count, update the avenrun load estimates.
 * This is called while holding a write_lock on xtime_lock.
 */
static inline void calc_load(unsigned long ticks)
{
	unsigned long active_tasks; /* fixed-point */
	static int count = LOAD_FREQ;

	count -= ticks;
	if (count < 0) {
		count += LOAD_FREQ;
		active_tasks = count_active_tasks();
		CALC_LOAD(avenrun[0], EXP_1, active_tasks);
		CALC_LOAD(avenrun[1], EXP_5, active_tasks);
		CALC_LOAD(avenrun[2], EXP_15, active_tasks);
	}
}

/* jiffies at the most recent update of wall time */
unsigned long wall_jiffies = INITIAL_JIFFIES;

/*
 * This read-write spinlock protects us from races in SMP while
 * playing with xtime and avenrun.
 */
#ifndef ARCH_HAVE_XTIME_LOCK
1238
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
L
Linus Torvalds 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247

EXPORT_SYMBOL(xtime_lock);
#endif

/*
 * This function runs timers and the timer-tq in bottom half context.
 */
static void run_timer_softirq(struct softirq_action *h)
{
1248
	tvec_base_t *base = __get_cpu_var(tvec_bases);
L
Linus Torvalds 已提交
1249

1250
 	hrtimer_run_queues();
L
Linus Torvalds 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	if (time_after_eq(jiffies, base->timer_jiffies))
		__run_timers(base);
}

/*
 * Called by the local, per-CPU timer interrupt on SMP.
 */
void run_local_timers(void)
{
	raise_softirq(TIMER_SOFTIRQ);
1261
	softlockup_tick();
L
Linus Torvalds 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
}

/*
 * Called by the timer interrupt. xtime_lock must already be taken
 * by the timer IRQ!
 */
static inline void update_times(void)
{
	unsigned long ticks;

	ticks = jiffies - wall_jiffies;
1273 1274
	wall_jiffies += ticks;
	update_wall_time();
L
Linus Torvalds 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	calc_load(ticks);
}
  
/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */

void do_timer(struct pt_regs *regs)
{
	jiffies_64++;
1287 1288
	/* prevent loading jiffies before storing new jiffies_64 value. */
	barrier();
L
Linus Torvalds 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	update_times();
}

#ifdef __ARCH_WANT_SYS_ALARM

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
asmlinkage unsigned long sys_alarm(unsigned int seconds)
{
1300
	return alarm_setitimer(seconds);
L
Linus Torvalds 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
}

#endif

#ifndef __alpha__

/*
 * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
 * should be moved into arch/i386 instead?
 */

/**
 * sys_getpid - return the thread group id of the current process
 *
 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 * the pid are identical unless CLONE_THREAD was specified on clone() in
 * which case the tgid is the same in all threads of the same group.
 *
 * This is SMP safe as current->tgid does not change.
 */
asmlinkage long sys_getpid(void)
{
	return current->tgid;
}

/*
 * Accessing ->group_leader->real_parent is not SMP-safe, it could
 * change from under us. However, rather than getting any lock
 * we can use an optimistic algorithm: get the parent
 * pid, and go back and check that the parent is still
 * the same. If it has changed (which is extremely unlikely
 * indeed), we just try again..
 *
 * NOTE! This depends on the fact that even if we _do_
 * get an old value of "parent", we can happily dereference
 * the pointer (it was and remains a dereferencable kernel pointer
 * no matter what): we just can't necessarily trust the result
 * until we know that the parent pointer is valid.
 *
 * NOTE2: ->group_leader never changes from under us.
 */
asmlinkage long sys_getppid(void)
{
	int pid;
	struct task_struct *me = current;
	struct task_struct *parent;

	parent = me->group_leader->real_parent;
	for (;;) {
		pid = parent->tgid;
D
David Meybohm 已提交
1351
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
L
Linus Torvalds 已提交
1352 1353 1354 1355 1356 1357 1358
{
		struct task_struct *old = parent;

		/*
		 * Make sure we read the pid before re-reading the
		 * parent pointer:
		 */
1359
		smp_rmb();
L
Linus Torvalds 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		parent = me->group_leader->real_parent;
		if (old != parent)
			continue;
}
#endif
		break;
	}
	return pid;
}

asmlinkage long sys_getuid(void)
{
	/* Only we change this so SMP safe */
	return current->uid;
}

asmlinkage long sys_geteuid(void)
{
	/* Only we change this so SMP safe */
	return current->euid;
}

asmlinkage long sys_getgid(void)
{
	/* Only we change this so SMP safe */
	return current->gid;
}

asmlinkage long sys_getegid(void)
{
	/* Only we change this so SMP safe */
	return  current->egid;
}

#endif

static void process_timeout(unsigned long __data)
{
1398
	wake_up_process((struct task_struct *)__data);
L
Linus Torvalds 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
}

/**
 * schedule_timeout - sleep until timeout
 * @timeout: timeout value in jiffies
 *
 * Make the current task sleep until @timeout jiffies have
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
 * pass before the routine returns. The routine will return 0
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task. In this case the remaining time
 * in jiffies will be returned, or 0 if the timer expired in time
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
 * the CPU away without a bound on the timeout. In this case the return
 * value will be %MAX_SCHEDULE_TIMEOUT.
 *
 * In all cases the return value is guaranteed to be non-negative.
 */
fastcall signed long __sched schedule_timeout(signed long timeout)
{
	struct timer_list timer;
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
		if (timeout < 0)
		{
			printk(KERN_ERR "schedule_timeout: wrong timeout "
A
Andrew Morton 已提交
1455 1456
				"value %lx from %p\n", timeout,
				__builtin_return_address(0));
L
Linus Torvalds 已提交
1457 1458 1459 1460 1461 1462 1463
			current->state = TASK_RUNNING;
			goto out;
		}
	}

	expire = timeout + jiffies;

1464 1465
	setup_timer(&timer, process_timeout, (unsigned long)current);
	__mod_timer(&timer, expire);
L
Linus Torvalds 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	schedule();
	del_singleshot_timer_sync(&timer);

	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);

1476 1477 1478 1479
/*
 * We can use __set_current_state() here because schedule_timeout() calls
 * schedule() unconditionally.
 */
1480 1481
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
A
Andrew Morton 已提交
1482 1483
	__set_current_state(TASK_INTERRUPTIBLE);
	return schedule_timeout(timeout);
1484 1485 1486 1487 1488
}
EXPORT_SYMBOL(schedule_timeout_interruptible);

signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
A
Andrew Morton 已提交
1489 1490
	__set_current_state(TASK_UNINTERRUPTIBLE);
	return schedule_timeout(timeout);
1491 1492 1493
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);

L
Linus Torvalds 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
/* Thread ID - the internal kernel "pid" */
asmlinkage long sys_gettid(void)
{
	return current->pid;
}

/*
 * sys_sysinfo - fill in sysinfo struct
 */ 
asmlinkage long sys_sysinfo(struct sysinfo __user *info)
{
	struct sysinfo val;
	unsigned long mem_total, sav_total;
	unsigned int mem_unit, bitcount;
	unsigned long seq;

	memset((char *)&val, 0, sizeof(struct sysinfo));

	do {
		struct timespec tp;
		seq = read_seqbegin(&xtime_lock);

		/*
		 * This is annoying.  The below is the same thing
		 * posix_get_clock_monotonic() does, but it wants to
		 * take the lock which we want to cover the loads stuff
		 * too.
		 */

		getnstimeofday(&tp);
		tp.tv_sec += wall_to_monotonic.tv_sec;
		tp.tv_nsec += wall_to_monotonic.tv_nsec;
		if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
			tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
			tp.tv_sec++;
		}
		val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);

		val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
		val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
		val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);

		val.procs = nr_threads;
	} while (read_seqretry(&xtime_lock, seq));

	si_meminfo(&val);
	si_swapinfo(&val);

	/*
	 * If the sum of all the available memory (i.e. ram + swap)
	 * is less than can be stored in a 32 bit unsigned long then
	 * we can be binary compatible with 2.2.x kernels.  If not,
	 * well, in that case 2.2.x was broken anyways...
	 *
	 *  -Erik Andersen <andersee@debian.org>
	 */

	mem_total = val.totalram + val.totalswap;
	if (mem_total < val.totalram || mem_total < val.totalswap)
		goto out;
	bitcount = 0;
	mem_unit = val.mem_unit;
	while (mem_unit > 1) {
		bitcount++;
		mem_unit >>= 1;
		sav_total = mem_total;
		mem_total <<= 1;
		if (mem_total < sav_total)
			goto out;
	}

	/*
	 * If mem_total did not overflow, multiply all memory values by
	 * val.mem_unit and set it to 1.  This leaves things compatible
	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
	 * kernels...
	 */

	val.mem_unit = 1;
	val.totalram <<= bitcount;
	val.freeram <<= bitcount;
	val.sharedram <<= bitcount;
	val.bufferram <<= bitcount;
	val.totalswap <<= bitcount;
	val.freeswap <<= bitcount;
	val.totalhigh <<= bitcount;
	val.freehigh <<= bitcount;

 out:
	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
		return -EFAULT;

	return 0;
}

1589 1590 1591 1592 1593 1594 1595
/*
 * lockdep: we want to track each per-CPU base as a separate lock-class,
 * but timer-bases are kmalloc()-ed, so we need to attach separate
 * keys to them:
 */
static struct lock_class_key base_lock_keys[NR_CPUS];

1596
static int __devinit init_timers_cpu(int cpu)
L
Linus Torvalds 已提交
1597 1598 1599
{
	int j;
	tvec_base_t *base;
A
Andrew Morton 已提交
1600
	static char __devinitdata tvec_base_done[NR_CPUS];
1601

A
Andrew Morton 已提交
1602
	if (!tvec_base_done[cpu]) {
1603 1604 1605
		static char boot_done;

		if (boot_done) {
A
Andrew Morton 已提交
1606 1607 1608
			/*
			 * The APs use this path later in boot
			 */
1609 1610 1611 1612 1613
			base = kmalloc_node(sizeof(*base), GFP_KERNEL,
						cpu_to_node(cpu));
			if (!base)
				return -ENOMEM;
			memset(base, 0, sizeof(*base));
A
Andrew Morton 已提交
1614
			per_cpu(tvec_bases, cpu) = base;
1615
		} else {
A
Andrew Morton 已提交
1616 1617 1618 1619 1620 1621
			/*
			 * This is for the boot CPU - we use compile-time
			 * static initialisation because per-cpu memory isn't
			 * ready yet and because the memory allocators are not
			 * initialised either.
			 */
1622
			boot_done = 1;
A
Andrew Morton 已提交
1623
			base = &boot_tvec_bases;
1624
		}
A
Andrew Morton 已提交
1625 1626 1627
		tvec_base_done[cpu] = 1;
	} else {
		base = per_cpu(tvec_bases, cpu);
1628
	}
A
Andrew Morton 已提交
1629

1630
	spin_lock_init(&base->lock);
1631 1632
	lockdep_set_class(&base->lock, base_lock_keys + cpu);

L
Linus Torvalds 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	for (j = 0; j < TVN_SIZE; j++) {
		INIT_LIST_HEAD(base->tv5.vec + j);
		INIT_LIST_HEAD(base->tv4.vec + j);
		INIT_LIST_HEAD(base->tv3.vec + j);
		INIT_LIST_HEAD(base->tv2.vec + j);
	}
	for (j = 0; j < TVR_SIZE; j++)
		INIT_LIST_HEAD(base->tv1.vec + j);

	base->timer_jiffies = jiffies;
1643
	return 0;
L
Linus Torvalds 已提交
1644 1645 1646
}

#ifdef CONFIG_HOTPLUG_CPU
1647
static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
L
Linus Torvalds 已提交
1648 1649 1650 1651 1652
{
	struct timer_list *timer;

	while (!list_empty(head)) {
		timer = list_entry(head->next, struct timer_list, entry);
1653
		detach_timer(timer, 0);
1654
		timer->base = new_base;
L
Linus Torvalds 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
		internal_add_timer(new_base, timer);
	}
}

static void __devinit migrate_timers(int cpu)
{
	tvec_base_t *old_base;
	tvec_base_t *new_base;
	int i;

	BUG_ON(cpu_online(cpu));
1666 1667
	old_base = per_cpu(tvec_bases, cpu);
	new_base = get_cpu_var(tvec_bases);
L
Linus Torvalds 已提交
1668 1669

	local_irq_disable();
1670 1671 1672 1673
	spin_lock(&new_base->lock);
	spin_lock(&old_base->lock);

	BUG_ON(old_base->running_timer);
L
Linus Torvalds 已提交
1674 1675

	for (i = 0; i < TVR_SIZE; i++)
1676 1677 1678 1679 1680 1681 1682 1683
		migrate_timer_list(new_base, old_base->tv1.vec + i);
	for (i = 0; i < TVN_SIZE; i++) {
		migrate_timer_list(new_base, old_base->tv2.vec + i);
		migrate_timer_list(new_base, old_base->tv3.vec + i);
		migrate_timer_list(new_base, old_base->tv4.vec + i);
		migrate_timer_list(new_base, old_base->tv5.vec + i);
	}

1684 1685
	spin_unlock(&old_base->lock);
	spin_unlock(&new_base->lock);
L
Linus Torvalds 已提交
1686 1687 1688 1689 1690
	local_irq_enable();
	put_cpu_var(tvec_bases);
}
#endif /* CONFIG_HOTPLUG_CPU */

1691
static int __cpuinit timer_cpu_notify(struct notifier_block *self,
L
Linus Torvalds 已提交
1692 1693 1694 1695 1696
				unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	switch(action) {
	case CPU_UP_PREPARE:
1697 1698
		if (init_timers_cpu(cpu) < 0)
			return NOTIFY_BAD;
L
Linus Torvalds 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
		migrate_timers(cpu);
		break;
#endif
	default:
		break;
	}
	return NOTIFY_OK;
}

1711
static struct notifier_block __cpuinitdata timers_nb = {
L
Linus Torvalds 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	.notifier_call	= timer_cpu_notify,
};


void __init init_timers(void)
{
	timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
				(void *)(long)smp_processor_id());
	register_cpu_notifier(&timers_nb);
	open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
}

#ifdef CONFIG_TIME_INTERPOLATION

1726 1727
struct time_interpolator *time_interpolator __read_mostly;
static struct time_interpolator *time_interpolator_list __read_mostly;
L
Linus Torvalds 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
static DEFINE_SPINLOCK(time_interpolator_lock);

static inline u64 time_interpolator_get_cycles(unsigned int src)
{
	unsigned long (*x)(void);

	switch (src)
	{
		case TIME_SOURCE_FUNCTION:
			x = time_interpolator->addr;
			return x();

		case TIME_SOURCE_MMIO64	:
1741
			return readq_relaxed((void __iomem *)time_interpolator->addr);
L
Linus Torvalds 已提交
1742 1743

		case TIME_SOURCE_MMIO32	:
1744
			return readl_relaxed((void __iomem *)time_interpolator->addr);
L
Linus Torvalds 已提交
1745 1746 1747 1748 1749

		default: return get_cycles();
	}
}

1750
static inline u64 time_interpolator_get_counter(int writelock)
L
Linus Torvalds 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
{
	unsigned int src = time_interpolator->source;

	if (time_interpolator->jitter)
	{
		u64 lcycle;
		u64 now;

		do {
			lcycle = time_interpolator->last_cycle;
			now = time_interpolator_get_cycles(src);
			if (lcycle && time_after(lcycle, now))
				return lcycle;
1764 1765 1766 1767 1768 1769 1770 1771 1772

			/* When holding the xtime write lock, there's no need
			 * to add the overhead of the cmpxchg.  Readers are
			 * force to retry until the write lock is released.
			 */
			if (writelock) {
				time_interpolator->last_cycle = now;
				return now;
			}
L
Linus Torvalds 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
			/* Keep track of the last timer value returned. The use of cmpxchg here
			 * will cause contention in an SMP environment.
			 */
		} while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
		return now;
	}
	else
		return time_interpolator_get_cycles(src);
}

void time_interpolator_reset(void)
{
	time_interpolator->offset = 0;
1786
	time_interpolator->last_counter = time_interpolator_get_counter(1);
L
Linus Torvalds 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
}

#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)

unsigned long time_interpolator_get_offset(void)
{
	/* If we do not have a time interpolator set up then just return zero */
	if (!time_interpolator)
		return 0;

	return time_interpolator->offset +
1798
		GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
L
Linus Torvalds 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
}

#define INTERPOLATOR_ADJUST 65536
#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST

static void time_interpolator_update(long delta_nsec)
{
	u64 counter;
	unsigned long offset;

	/* If there is no time interpolator set up then do nothing */
	if (!time_interpolator)
		return;

A
Andrew Morton 已提交
1813 1814 1815 1816 1817 1818 1819 1820
	/*
	 * The interpolator compensates for late ticks by accumulating the late
	 * time in time_interpolator->offset. A tick earlier than expected will
	 * lead to a reset of the offset and a corresponding jump of the clock
	 * forward. Again this only works if the interpolator clock is running
	 * slightly slower than the regular clock and the tuning logic insures
	 * that.
	 */
L
Linus Torvalds 已提交
1821

1822
	counter = time_interpolator_get_counter(1);
A
Andrew Morton 已提交
1823 1824
	offset = time_interpolator->offset +
			GET_TI_NSECS(counter, time_interpolator);
L
Linus Torvalds 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

	if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
		time_interpolator->offset = offset - delta_nsec;
	else {
		time_interpolator->skips++;
		time_interpolator->ns_skipped += delta_nsec - offset;
		time_interpolator->offset = 0;
	}
	time_interpolator->last_counter = counter;

	/* Tuning logic for time interpolator invoked every minute or so.
	 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
	 * Increase interpolator clock speed if we skip too much time.
	 */
	if (jiffies % INTERPOLATOR_ADJUST == 0)
	{
1841
		if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
L
Linus Torvalds 已提交
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
			time_interpolator->nsec_per_cyc--;
		if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
			time_interpolator->nsec_per_cyc++;
		time_interpolator->skips = 0;
		time_interpolator->ns_skipped = 0;
	}
}

static inline int
is_better_time_interpolator(struct time_interpolator *new)
{
	if (!time_interpolator)
		return 1;
	return new->frequency > 2*time_interpolator->frequency ||
	    (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
}

void
register_time_interpolator(struct time_interpolator *ti)
{
	unsigned long flags;

	/* Sanity check */
1865
	BUG_ON(ti->frequency == 0 || ti->mask == 0);
L
Linus Torvalds 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

	ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
	spin_lock(&time_interpolator_lock);
	write_seqlock_irqsave(&xtime_lock, flags);
	if (is_better_time_interpolator(ti)) {
		time_interpolator = ti;
		time_interpolator_reset();
	}
	write_sequnlock_irqrestore(&xtime_lock, flags);

	ti->next = time_interpolator_list;
	time_interpolator_list = ti;
	spin_unlock(&time_interpolator_lock);
}

void
unregister_time_interpolator(struct time_interpolator *ti)
{
	struct time_interpolator *curr, **prev;
	unsigned long flags;

	spin_lock(&time_interpolator_lock);
	prev = &time_interpolator_list;
	for (curr = *prev; curr; curr = curr->next) {
		if (curr == ti) {
			*prev = curr->next;
			break;
		}
		prev = &curr->next;
	}

	write_seqlock_irqsave(&xtime_lock, flags);
	if (ti == time_interpolator) {
		/* we lost the best time-interpolator: */
		time_interpolator = NULL;
		/* find the next-best interpolator */
		for (curr = time_interpolator_list; curr; curr = curr->next)
			if (is_better_time_interpolator(curr))
				time_interpolator = curr;
		time_interpolator_reset();
	}
	write_sequnlock_irqrestore(&xtime_lock, flags);
	spin_unlock(&time_interpolator_lock);
}
#endif /* CONFIG_TIME_INTERPOLATION */

/**
 * msleep - sleep safely even with waitqueue interruptions
 * @msecs: Time in milliseconds to sleep for
 */
void msleep(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1920 1921
	while (timeout)
		timeout = schedule_timeout_uninterruptible(timeout);
L
Linus Torvalds 已提交
1922 1923 1924 1925 1926
}

EXPORT_SYMBOL(msleep);

/**
1927
 * msleep_interruptible - sleep waiting for signals
L
Linus Torvalds 已提交
1928 1929 1930 1931 1932 1933
 * @msecs: Time in milliseconds to sleep for
 */
unsigned long msleep_interruptible(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1934 1935
	while (timeout && !signal_pending(current))
		timeout = schedule_timeout_interruptible(timeout);
L
Linus Torvalds 已提交
1936 1937 1938 1939
	return jiffies_to_msecs(timeout);
}

EXPORT_SYMBOL(msleep_interruptible);