- 06 10月, 2011 7 次提交
-
-
由 Nishanth Aravamudan 提交于
For some time we've had a nicely defined macro with the filename for our firmware image. However we didn't actually use it in the place we're supposed to. This patch fixes it. Signed-off-by: NNishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 David Gibson 提交于
Currently our implementation of the H_ENTER hypercall, which inserts a mapping in the hash page table assumes that only ordinary memory is ever mapped, and only permits mapping attribute bits accordingly (WIMG==0010). However, we intend to start adding emulated IO to the pseries platform (and real IO with PCI passthrough on kvm) which means this simple test will no longer suffice. This patch extends the h_enter validation code to check if the given address is a RAM address. If it is it enforces WIMG==0010, otherwise it assumes that it is an IO mapping and instead enforces WIMG=010x. Signed-off-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 David Gibson 提交于
The interrupt controller presented in the device tree for the pseries machine is manipulated by the guest only through hypervisor calls. It has no real or emulated registers for the guest to access. However, it currently has a bogus 'reg' property advertising a register window. Moreover, this property has an invalid format, being a 32-bit zero, when the #address-cells property on the root bus indicates that it needs a 64-bit address. Since the guest never attempts to manipulate the node directly, it works, but it is ugly and can cause warnings when manipulating the device tree in other tools (such as future firmware versions). This patch, therefore, corrects the problem by entirely removing the interrupt-controller node's 'reg' property. Signed-off-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 David Gibson 提交于
Future devices we will be adding to the pseries machine (e.g. PCI) will need nodes in the device tree which explicitly reference the top-level interrupt controller via interrupt-parent or interrupt-map properties. In order to do this, the interrupt controller node needs an assigned phandle. This patch adds the appropriate property, in preparation. Signed-off-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
One of the things we can't fake on PPC is the timer speed. So we need to extract the frequency information from the host and put it back into the guest device tree. Luckily, we already have functions for that from the non-pseries targets, so all we need to do is to connect the dots and the guest suddenly gets to know its real timer speeds. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Alexander Graf 提交于
When running PR style KVM, we need to tell the kernel that we want to run in PAPR mode now. This means that we need to pass some more register information down and enable papr mode. We also need to align the HTAB to htab_size boundary. Using this patch, -M pseries works with kvm even on non-hv kvm implementations, as long as the preceding kernel patches are in. Signed-off-by: NAlexander Graf <agraf@suse.de> --- v1 -> v2: - match on CONFIG_PSERIES v2 -> v3: - remove HIOR pieces from PAPR patch (ABI breakage)
-
由 Paolo Bonzini 提交于
Right now the spapr devices cannot be instantiated with -device, because the IRQs need to be passed to the spapr_*_create functions. Do this instead in the bus's init wrapper. This is particularly important with the conversion from scsi-disk to scsi-{cd,hd} that Markus made. After his patches, if you specify a scsi-cd device attached to an if=none drive, the default VSCSI controller will not be created and, without qdevification, you will not be able to add yours. NOTE from agraf: added small compile fix Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com> Cc: Alexander Graf <agraf@suse.de> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 21 8月, 2011 1 次提交
-
-
由 Anthony Liguori 提交于
qemu_malloc/qemu_free no longer exist after this commit. Signed-off-by: NAnthony Liguori <aliguori@us.ibm.com>
-
- 10 5月, 2011 3 次提交
-
-
由 David Gibson 提交于
Currently the qemu pseries machine numbers its virtual serial devices from 0. However, existing pSeries machines running pHyp number them from 0x30000000. In theory these indices are arbitrary, since everything necessary for the kernel to find them is advertised in the device tree. However the debian installer, at least, incorrectly looks for a device named vty@30... to determine whether to use the hypervisor console. Therefore this patch moves the numbers we use to match the existing pHyp practice, in order to workaround broken userspace apps of this type. Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 David Gibson 提交于
Currently, the qemu emulated pseries machine puts "qemu,emulated-pSeries-LPAR" in the device tree's root level 'model' property. Unfortunately this confuses some installers and ybin, which expect this to start with "IBM" on pSeries machines. This patch addresses this problem, making the property more closely resemble the pattern of existing real hardware. Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Anton Blanchard 提交于
The original pSeries machine was limited to 32 CPUs, more or less arbitrarily. Particularly when we get SMT KVM guests it will be pretty easy to exceed this. Therefore, raise the max number of CPUs in a pseries machine guest to 256. Signed-off-by: NAnton Blanchard <anton@au1.ibm.com> Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 08 4月, 2011 2 次提交
-
-
由 David Gibson 提交于
At present, the 'pseries' machine creates a flattened device tree in the machine->init function to pass to either the guest kernel or to firmware. However, the machine->init function runs before processing of -device command line options, which means that the device tree so created will be (incorrectly) missing devices specified that way. Supplying a correct device tree is, in any case, part of the required platform entry conditions. Therefore, this patch moves the creation and loading of the device tree from machine->init to a reset callback. The setup of entry point address and initial register state moves with it, which leads to a slight cleanup. This is not, alas, quite enough to make a fully working reset for pseries. For that we would need to reload the firmware images, which on this machine are loaded into RAM. It's a step in the right direction, though. Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 David Gibson 提交于
Currently the pseries machine init code builds up an array, envs, of CPUState pointers for all the cpus in the system. This is kind of pointless, given the generic code already has a perfectly good linked list of the cpus. In addition, there are a number of places which assume that the cpu's cpu_index field is equal to its index in this array. This is true in practice, because cpu_index values are just assigned sequentially, but it's conceptually incorrect and may not always be true. Therefore, this patch abolishes the envs array, and explicitly uses the generic cpu linked list and cpu_index values throughout. Signed-off-by: NDavid Gibson <david@gibson.dropbear.id.au> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 02 4月, 2011 14 次提交
-
-
由 David Gibson 提交于
Currently, the emulated pSeries machine requires the use of the -kernel parameter in order to explicitly load a guest kernel. This means booting from the virtual disk, cdrom or network is not possible. This patch addresses this limitation by inserting a within-partition firmware image (derived from the "SLOF" free Open Firmware project). If -kernel is not specified, qemu will now load the SLOF image, which has access to the qemu boot device list through the device tree, and can boot from any of the usual virtual devices. In order to support the new firmware, an extension to the emulated machine/hypervisor is necessary. Unlike Linux, which expects multi-CPU entry to be handled kexec() style, the SLOF firmware expects only one CPU to be active at entry, and to use a hypervisor RTAS method to enable the other CPUs one by one. This patch also implements this 'start-cpu' method, so that SLOF can start the secondary CPUs and marshal them into the kexec() holding pattern ready for entry into the guest OS. Linux should, and in the future might directly use the start-cpu method to enable initially disabled CPUs, but for now it does require kexec() entry. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 David Gibson 提交于
Shared-processor partitions are those where a CPU is time-sliced between partitions, rather than being permanently dedicated to a single partition. qemu emulated partitions, since they are just scheduled with the qemu user process, behave mostly like shared processor partitions. In order to better support shared processor partitions (splpar), PAPR defines the "VPA" (Virtual Processor Area), a shared memory communication channel between the hypervisor and partitions. There are also two additional shared memory communication areas for specialized purposes associated with the VPA. A VPA is not essential for operating an splpar, though it can be necessary for obtaining accurate performance measurements in the presence of runtime partition switching. Most importantly, however, the VPA is a prerequisite for PAPR's H_CEDE, hypercall, which allows a partition OS to give up it's shared processor timeslices to other partitions when idle. This patch implements the VPA and H_CEDE hypercalls in qemu. We don't implement any of the more advanced statistics which can be communicated through the VPA. However, this is enough to make normal pSeries kernels do an effective power-save idle on an emulated pSeries, significantly reducing the host load of a qemu emulated pSeries running an idle guest OS. Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Ben Herrenschmidt 提交于
This patch implements the infrastructure and hypercalls necessary for the PAPR specified Virtual SCSI interface. This is the normal method for providing (virtual) disks to PAPR partitions. Signed-off-by: NBen Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 Ben Herrenschmidt 提交于
This patch implements the infrastructure and hypercalls necessary for the PAPR specified CRQ (Command Request Queue) mechanism. This general request queueing system is used by many of the PAPR virtual IO devices, including the virtual scsi adapter. Signed-off-by: NBen Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 David Gibson 提交于
This patch implements the PAPR specified Inter Virtual Machine Logical LAN; that is the virtual hardware used by the Linux ibmveth driver. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 David Gibson 提交于
This patch implements the necessary infrastructure and hypercalls for sPAPR's TCE (Translation Control Entry) IOMMU mechanism. This is necessary for all virtual IO devices which do DMA (i.e. nearly all of them). Signed-off-by: NBen Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 David Gibson 提交于
Now that we have implemented the PAPR "xics" virtualized interrupt controller, we can add interrupts in PAPR VIO devices. This patch adds interrupt support to the PAPR virtual tty/console device. Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 David Gibson 提交于
This patch adds infrastructure to support interrupts from PAPR virtual IO devices. This includes correctly advertising those interrupts in the device tree, and implementing the H_VIO_SIGNAL hypercall, used to enable and disable individual device interrupts. Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 David Gibson 提交于
PAPR defines an interrupt control architecture which is logically divided into ICS (Interrupt Control Presentation, each unit is responsible for presenting interrupts to a particular "interrupt server", i.e. CPU) and ICS (Interrupt Control Source, each unit responsible for one or more hardware interrupts as numbered globally across the system). All PAPR virtual IO devices expect to deliver interrupts via this mechanism. In Linux, this interrupt controller system is handled by the "xics" driver. On pSeries systems, access to the interrupt controller is virtualized via hypercalls and RTAS methods. However, the virtualized interface is very similar to the underlying interrupt controller hardware, and similar PICs exist un-virtualized in some other systems. This patch implements both the ICP and ICS sides of the PAPR interrupt controller. For now, only the hypercall virtualized interface is provided, however it would be relatively straightforward to graft an emulated register interface onto the underlying interrupt logic if we want to add a machine with a hardware ICS/ICP system in the future. There are some limitations in this implementation: it is assumed for now that only one instance of the ICS exists, although a full xics system can have several, each responsible for a different group of hardware irqs. ICP/ICS can handle both level-sensitve (LSI) and message signalled (MSI) interrupt inputs. For now, this implementation supports only MSI interrupts, since that is used by PAPR virtual IO devices. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 David Gibson 提交于
This patch adds several small utility hypercalls and RTAS methods to the pSeries platform emulation. Specifically: * 'display-character' rtas call This just prints a character to the console, it's occasionally used for early debug of the OS. The support includes a hack to make this RTAS call respond on the normal token value present on real hardware, since some early debugging tools just assume this value without checking the device tree. * 'get-time-of-day' rtas call This one just takes the host real time, converts to the PAPR described format and returns it to the guest. * 'power-off' rtas call This one shuts down the emulated system. * H_DABR hypercall On pSeries, the DABR debug register is usually a hypervisor resource and virtualized through this hypercall. If the hypercall is not present, Linux will under some circumstances attempt to manipulate the DABR directly which will fail on this emulated machine. This stub implementation is enough to stop that behaviour, although it doesn't actually implement the requested DABR operations as yet. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 David Gibson 提交于
On pSeries machines, operating systems can instantiate "RTAS" (Run-Time Abstraction Services), a runtime component of the firmware which implements a number of low-level, infrequently used operations. On logical partitions under a hypervisor, many of the RTAS functions require hypervisor privilege. For simplicity, therefore, hypervisor systems typically implement the in-partition RTAS as just a tiny wrapper around a hypercall which actually implements the various RTAS functions. This patch implements such a hypercall based RTAS for our emulated pSeries machine. A tiny in-partition "firmware" calls a new hypercall, which looks up available RTAS services in a table. Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 David Gibson 提交于
On pSeries logical partitions, excepting the old POWER4-style full system partitions, the guest does not have direct access to the hardware page table. Instead, the pagetable exists in hypervisor memory, and the guest must manipulate it with hypercalls. However, our current pSeries emulation more closely resembles the old style where the guest must set up and handle the pagetables itself. This patch converts it to act like a modern partition. This involves two things: first, the hash translation path is modified to permit the has table to be stored externally to the emulated machine's RAM. The pSeries machine init code configures the CPUs to use this mode. Secondly, we emulate the PAPR hypercalls for manipulating the external hashed page table. Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 David Gibson 提交于
This extends the "pseries" (PAPR) machine to include a virtual IO bus supporting the PAPR defined hypercall based virtual IO mechanisms. So far only one VIO device is provided, the vty / vterm, providing a full console (polled only, for now). Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
由 David Gibson 提交于
This patch adds a "pseries" machine to qemu. This aims to emulate a logical partition on an IBM pSeries machine, compliant to the "PowerPC Architecture Platform Requirements" (PAPR) document. This initial version is quite limited, it implements a basic machine and PAPR hypercall emulation. So far only one hypercall is present - H_PUT_TERM_CHAR - so that a (write-only) console is available. Multiple CPUs are permitted, with SMP entry handled kexec() style. The machine so far more resembles an old POWER4 style "full system partition" rather than a modern LPAR, in that the guest manages the page tables directly, rather than via hypercalls. The machine requires qemu to be configured with --enable-fdt. The machine can (so far) only be booted with -kernel - i.e. no partition firmware is provided. Signed-off-by: NDavid Gibson <dwg@au1.ibm.com> Signed-off-by: NAlexander Graf <agraf@suse.de>
-