提交 fa73f991 编写于 作者: B Blue Swirl

Merge branch 'arm-devs.for-upstream' of git://git.linaro.org/people/pmaydell/qemu-arm

* 'arm-devs.for-upstream' of git://git.linaro.org/people/pmaydell/qemu-arm:
  hw/cadence_gem: Make rx_desc_addr and tx_desc_addr uint32_t
  i.MX31: KZM-ARM11-01 evaluation board
  i.MX31: Interrupt Controller
  i.MX31: Timers
  i.MX31: Clock Control Module
  i.MX: UART support
  Exynos4: add RTC device
  hw/exynos4210.c: Fix misleading initialization of IROM mirror
  hw/exynos4210_pwm.c: Fix STOP status in tick handler.
  ARM: hw/exynos4210_mct.c: Fix a bug which hangs Linux kernel.
......@@ -207,6 +207,12 @@ M: qemu-devel@nongnu.org
S: Orphan
F: hw/gumstix.c
i.MX31
M: Peter Chubb <peter.chubb@nicta.com.au>
S: Odd fixes
F: hw/imx*
F: hw/kzm.c
Integrator CP
M: Paul Brook <paul@codesourcery.com>
M: Peter Maydell <peter.maydell@linaro.org>
......
......@@ -11,6 +11,7 @@ obj-y += realview_gic.o realview.o arm_sysctl.o arm11mpcore.o a9mpcore.o
obj-y += exynos4210_gic.o exynos4210_combiner.o exynos4210.o
obj-y += exynos4_boards.o exynos4210_uart.o exynos4210_pwm.o
obj-y += exynos4210_pmu.o exynos4210_mct.o exynos4210_fimd.o
obj-y += exynos4210_rtc.o
obj-y += arm_l2x0.o
obj-y += arm_mptimer.o a15mpcore.o
obj-y += armv7m.o armv7m_nvic.o stellaris.o pl022.o stellaris_enet.o
......@@ -34,6 +35,8 @@ obj-y += framebuffer.o
obj-y += vexpress.o
obj-y += strongarm.o
obj-y += collie.o
obj-y += imx_serial.o imx_ccm.o imx_timer.o imx_avic.o
obj-y += kzm.o
obj-y += pl041.o lm4549.o
obj-$(CONFIG_FDT) += ../device_tree.o
......
......@@ -339,8 +339,8 @@ typedef struct {
uint8_t phy_loop; /* Are we in phy loopback? */
/* The current DMA descriptor pointers */
target_phys_addr_t rx_desc_addr;
target_phys_addr_t tx_desc_addr;
uint32_t rx_desc_addr;
uint32_t tx_desc_addr;
} GemState;
......
......@@ -33,6 +33,9 @@
/* PWM */
#define EXYNOS4210_PWM_BASE_ADDR 0x139D0000
/* RTC */
#define EXYNOS4210_RTC_BASE_ADDR 0x10070000
/* MCT */
#define EXYNOS4210_MCT_BASE_ADDR 0x10050000
......@@ -216,7 +219,7 @@ Exynos4210State *exynos4210_init(MemoryRegion *system_mem,
/* mirror of iROM */
memory_region_init_alias(&s->irom_alias_mem, "exynos4210.irom_alias",
&s->irom_mem,
EXYNOS4210_IROM_BASE_ADDR,
0,
EXYNOS4210_IROM_SIZE);
memory_region_set_readonly(&s->irom_alias_mem, true);
memory_region_add_subregion(system_mem, EXYNOS4210_IROM_MIRROR_BASE_ADDR,
......@@ -258,6 +261,11 @@ Exynos4210State *exynos4210_init(MemoryRegion *system_mem,
s->irq_table[exynos4210_get_irq(22, 3)],
s->irq_table[exynos4210_get_irq(22, 4)],
NULL);
/* RTC */
sysbus_create_varargs("exynos4210.rtc", EXYNOS4210_RTC_BASE_ADDR,
s->irq_table[exynos4210_get_irq(23, 0)],
s->irq_table[exynos4210_get_irq(23, 1)],
NULL);
/* Multi Core Timer */
dev = qdev_create(NULL, "exynos4210.mct");
......
......@@ -376,10 +376,6 @@ static uint64_t exynos4210_gfrc_get_count(Exynos4210MCTGT *s)
{
uint64_t count = 0;
count = ptimer_get_count(s->ptimer_frc);
if (!count) {
/* Timer event was generated and s->reg.cnt holds adequate value */
return s->reg.cnt;
}
count = s->count - count;
return s->reg.cnt + count;
}
......
......@@ -200,7 +200,7 @@ static void exynos4210_pwm_tick(void *opaque)
ptimer_run(p->timer[id].ptimer, 1);
} else {
/* stop timer, set status to STOP, see Basic Timer Operation */
p->reg_tcon = ~TCON_TIMER_START(id);
p->reg_tcon &= ~TCON_TIMER_START(id);
ptimer_stop(p->timer[id].ptimer);
}
}
......
/*
* Samsung exynos4210 Real Time Clock
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* Ogurtsov Oleg <o.ogurtsov@samsung.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*
*/
/* Description:
* Register RTCCON:
* CLKSEL Bit[1] not used
* CLKOUTEN Bit[9] not used
*/
#include "sysbus.h"
#include "qemu-timer.h"
#include "qemu-common.h"
#include "ptimer.h"
#include "hw.h"
#include "qemu-timer.h"
#include "sysemu.h"
#include "exynos4210.h"
#define DEBUG_RTC 0
#if DEBUG_RTC
#define DPRINTF(fmt, ...) \
do { fprintf(stdout, "RTC: [%24s:%5d] " fmt, __func__, __LINE__, \
## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) do {} while (0)
#endif
#define EXYNOS4210_RTC_REG_MEM_SIZE 0x0100
#define INTP 0x0030
#define RTCCON 0x0040
#define TICCNT 0x0044
#define RTCALM 0x0050
#define ALMSEC 0x0054
#define ALMMIN 0x0058
#define ALMHOUR 0x005C
#define ALMDAY 0x0060
#define ALMMON 0x0064
#define ALMYEAR 0x0068
#define BCDSEC 0x0070
#define BCDMIN 0x0074
#define BCDHOUR 0x0078
#define BCDDAY 0x007C
#define BCDDAYWEEK 0x0080
#define BCDMON 0x0084
#define BCDYEAR 0x0088
#define CURTICNT 0x0090
#define TICK_TIMER_ENABLE 0x0100
#define TICNT_THRESHHOLD 2
#define RTC_ENABLE 0x0001
#define INTP_TICK_ENABLE 0x0001
#define INTP_ALM_ENABLE 0x0002
#define ALARM_INT_ENABLE 0x0040
#define RTC_BASE_FREQ 32768
typedef struct Exynos4210RTCState {
SysBusDevice busdev;
MemoryRegion iomem;
/* registers */
uint32_t reg_intp;
uint32_t reg_rtccon;
uint32_t reg_ticcnt;
uint32_t reg_rtcalm;
uint32_t reg_almsec;
uint32_t reg_almmin;
uint32_t reg_almhour;
uint32_t reg_almday;
uint32_t reg_almmon;
uint32_t reg_almyear;
uint32_t reg_curticcnt;
ptimer_state *ptimer; /* tick timer */
ptimer_state *ptimer_1Hz; /* clock timer */
uint32_t freq;
qemu_irq tick_irq; /* Time Tick Generator irq */
qemu_irq alm_irq; /* alarm irq */
struct tm current_tm; /* current time */
} Exynos4210RTCState;
#define TICCKSEL(value) ((value & (0x0F << 4)) >> 4)
/*** VMState ***/
static const VMStateDescription vmstate_exynos4210_rtc_state = {
.name = "exynos4210.rtc",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(reg_intp, Exynos4210RTCState),
VMSTATE_UINT32(reg_rtccon, Exynos4210RTCState),
VMSTATE_UINT32(reg_ticcnt, Exynos4210RTCState),
VMSTATE_UINT32(reg_rtcalm, Exynos4210RTCState),
VMSTATE_UINT32(reg_almsec, Exynos4210RTCState),
VMSTATE_UINT32(reg_almmin, Exynos4210RTCState),
VMSTATE_UINT32(reg_almhour, Exynos4210RTCState),
VMSTATE_UINT32(reg_almday, Exynos4210RTCState),
VMSTATE_UINT32(reg_almmon, Exynos4210RTCState),
VMSTATE_UINT32(reg_almyear, Exynos4210RTCState),
VMSTATE_UINT32(reg_curticcnt, Exynos4210RTCState),
VMSTATE_PTIMER(ptimer, Exynos4210RTCState),
VMSTATE_PTIMER(ptimer_1Hz, Exynos4210RTCState),
VMSTATE_UINT32(freq, Exynos4210RTCState),
VMSTATE_INT32(current_tm.tm_sec, Exynos4210RTCState),
VMSTATE_INT32(current_tm.tm_min, Exynos4210RTCState),
VMSTATE_INT32(current_tm.tm_hour, Exynos4210RTCState),
VMSTATE_INT32(current_tm.tm_wday, Exynos4210RTCState),
VMSTATE_INT32(current_tm.tm_mday, Exynos4210RTCState),
VMSTATE_INT32(current_tm.tm_mon, Exynos4210RTCState),
VMSTATE_INT32(current_tm.tm_year, Exynos4210RTCState),
VMSTATE_END_OF_LIST()
}
};
#define BCD3DIGITS(x) \
((uint32_t)to_bcd((uint8_t)x) + \
((uint32_t)to_bcd((uint8_t)((x % 1000) / 100)) << 8))
static void check_alarm_raise(Exynos4210RTCState *s)
{
unsigned int alarm_raise = 0;
struct tm stm = s->current_tm;
if ((s->reg_rtcalm & 0x01) &&
(to_bcd((uint8_t)stm.tm_sec) == (uint8_t)s->reg_almsec)) {
alarm_raise = 1;
}
if ((s->reg_rtcalm & 0x02) &&
(to_bcd((uint8_t)stm.tm_min) == (uint8_t)s->reg_almmin)) {
alarm_raise = 1;
}
if ((s->reg_rtcalm & 0x04) &&
(to_bcd((uint8_t)stm.tm_hour) == (uint8_t)s->reg_almhour)) {
alarm_raise = 1;
}
if ((s->reg_rtcalm & 0x08) &&
(to_bcd((uint8_t)stm.tm_mday) == (uint8_t)s->reg_almday)) {
alarm_raise = 1;
}
if ((s->reg_rtcalm & 0x10) &&
(to_bcd((uint8_t)stm.tm_mon) == (uint8_t)s->reg_almmon)) {
alarm_raise = 1;
}
if ((s->reg_rtcalm & 0x20) &&
(BCD3DIGITS(stm.tm_year) == s->reg_almyear)) {
alarm_raise = 1;
}
if (alarm_raise) {
DPRINTF("ALARM IRQ\n");
/* set irq status */
s->reg_intp |= INTP_ALM_ENABLE;
qemu_irq_raise(s->alm_irq);
}
}
/*
* RTC update frequency
* Parameters:
* reg_value - current RTCCON register or his new value
*/
static void exynos4210_rtc_update_freq(Exynos4210RTCState *s,
uint32_t reg_value)
{
uint32_t freq;
freq = s->freq;
/* set frequncy for time generator */
s->freq = RTC_BASE_FREQ / (1 << TICCKSEL(reg_value));
if (freq != s->freq) {
ptimer_set_freq(s->ptimer, s->freq);
DPRINTF("freq=%dHz\n", s->freq);
}
}
/* month is between 0 and 11. */
static int get_days_in_month(int month, int year)
{
static const int days_tab[12] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
int d;
if ((unsigned)month >= 12) {
return 31;
}
d = days_tab[month];
if (month == 1) {
if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0)) {
d++;
}
}
return d;
}
/* update 'tm' to the next second */
static void rtc_next_second(struct tm *tm)
{
int days_in_month;
tm->tm_sec++;
if ((unsigned)tm->tm_sec >= 60) {
tm->tm_sec = 0;
tm->tm_min++;
if ((unsigned)tm->tm_min >= 60) {
tm->tm_min = 0;
tm->tm_hour++;
if ((unsigned)tm->tm_hour >= 24) {
tm->tm_hour = 0;
/* next day */
tm->tm_wday++;
if ((unsigned)tm->tm_wday >= 7) {
tm->tm_wday = 0;
}
days_in_month = get_days_in_month(tm->tm_mon,
tm->tm_year + 1900);
tm->tm_mday++;
if (tm->tm_mday < 1) {
tm->tm_mday = 1;
} else if (tm->tm_mday > days_in_month) {
tm->tm_mday = 1;
tm->tm_mon++;
if (tm->tm_mon >= 12) {
tm->tm_mon = 0;
tm->tm_year++;
}
}
}
}
}
}
/*
* tick handler
*/
static void exynos4210_rtc_tick(void *opaque)
{
Exynos4210RTCState *s = (Exynos4210RTCState *)opaque;
DPRINTF("TICK IRQ\n");
/* set irq status */
s->reg_intp |= INTP_TICK_ENABLE;
/* raise IRQ */
qemu_irq_raise(s->tick_irq);
/* restart timer */
ptimer_set_count(s->ptimer, s->reg_ticcnt);
ptimer_run(s->ptimer, 1);
}
/*
* 1Hz clock handler
*/
static void exynos4210_rtc_1Hz_tick(void *opaque)
{
Exynos4210RTCState *s = (Exynos4210RTCState *)opaque;
rtc_next_second(&s->current_tm);
/* DPRINTF("1Hz tick\n"); */
/* raise IRQ */
if (s->reg_rtcalm & ALARM_INT_ENABLE) {
check_alarm_raise(s);
}
ptimer_set_count(s->ptimer_1Hz, RTC_BASE_FREQ);
ptimer_run(s->ptimer_1Hz, 1);
}
/*
* RTC Read
*/
static uint64_t exynos4210_rtc_read(void *opaque, target_phys_addr_t offset,
unsigned size)
{
uint32_t value = 0;
Exynos4210RTCState *s = (Exynos4210RTCState *)opaque;
switch (offset) {
case INTP:
value = s->reg_intp;
break;
case RTCCON:
value = s->reg_rtccon;
break;
case TICCNT:
value = s->reg_ticcnt;
break;
case RTCALM:
value = s->reg_rtcalm;
break;
case ALMSEC:
value = s->reg_almsec;
break;
case ALMMIN:
value = s->reg_almmin;
break;
case ALMHOUR:
value = s->reg_almhour;
break;
case ALMDAY:
value = s->reg_almday;
break;
case ALMMON:
value = s->reg_almmon;
break;
case ALMYEAR:
value = s->reg_almyear;
break;
case BCDSEC:
value = (uint32_t)to_bcd((uint8_t)s->current_tm.tm_sec);
break;
case BCDMIN:
value = (uint32_t)to_bcd((uint8_t)s->current_tm.tm_min);
break;
case BCDHOUR:
value = (uint32_t)to_bcd((uint8_t)s->current_tm.tm_hour);
break;
case BCDDAYWEEK:
value = (uint32_t)to_bcd((uint8_t)s->current_tm.tm_wday);
break;
case BCDDAY:
value = (uint32_t)to_bcd((uint8_t)s->current_tm.tm_mday);
break;
case BCDMON:
value = (uint32_t)to_bcd((uint8_t)s->current_tm.tm_mon + 1);
break;
case BCDYEAR:
value = BCD3DIGITS(s->current_tm.tm_year);
break;
case CURTICNT:
s->reg_curticcnt = ptimer_get_count(s->ptimer);
value = s->reg_curticcnt;
break;
default:
fprintf(stderr,
"[exynos4210.rtc: bad read offset " TARGET_FMT_plx "]\n",
offset);
break;
}
return value;
}
/*
* RTC Write
*/
static void exynos4210_rtc_write(void *opaque, target_phys_addr_t offset,
uint64_t value, unsigned size)
{
Exynos4210RTCState *s = (Exynos4210RTCState *)opaque;
switch (offset) {
case INTP:
if (value & INTP_ALM_ENABLE) {
qemu_irq_lower(s->alm_irq);
s->reg_intp &= (~INTP_ALM_ENABLE);
}
if (value & INTP_TICK_ENABLE) {
qemu_irq_lower(s->tick_irq);
s->reg_intp &= (~INTP_TICK_ENABLE);
}
break;
case RTCCON:
if (value & RTC_ENABLE) {
exynos4210_rtc_update_freq(s, value);
}
if ((value & RTC_ENABLE) > (s->reg_rtccon & RTC_ENABLE)) {
/* clock timer */
ptimer_set_count(s->ptimer_1Hz, RTC_BASE_FREQ);
ptimer_run(s->ptimer_1Hz, 1);
DPRINTF("run clock timer\n");
}
if ((value & RTC_ENABLE) < (s->reg_rtccon & RTC_ENABLE)) {
/* tick timer */
ptimer_stop(s->ptimer);
/* clock timer */
ptimer_stop(s->ptimer_1Hz);
DPRINTF("stop all timers\n");
}
if (value & RTC_ENABLE) {
if ((value & TICK_TIMER_ENABLE) >
(s->reg_rtccon & TICK_TIMER_ENABLE) &&
(s->reg_ticcnt)) {
ptimer_set_count(s->ptimer, s->reg_ticcnt);
ptimer_run(s->ptimer, 1);
DPRINTF("run tick timer\n");
}
if ((value & TICK_TIMER_ENABLE) <
(s->reg_rtccon & TICK_TIMER_ENABLE)) {
ptimer_stop(s->ptimer);
}
}
s->reg_rtccon = value;
break;
case TICCNT:
if (value > TICNT_THRESHHOLD) {
s->reg_ticcnt = value;
} else {
fprintf(stderr,
"[exynos4210.rtc: bad TICNT value %u ]\n",
(uint32_t)value);
}
break;
case RTCALM:
s->reg_rtcalm = value;
break;
case ALMSEC:
s->reg_almsec = (value & 0x7f);
break;
case ALMMIN:
s->reg_almmin = (value & 0x7f);
break;
case ALMHOUR:
s->reg_almhour = (value & 0x3f);
break;
case ALMDAY:
s->reg_almday = (value & 0x3f);
break;
case ALMMON:
s->reg_almmon = (value & 0x1f);
break;
case ALMYEAR:
s->reg_almyear = (value & 0x0fff);
break;
case BCDSEC:
if (s->reg_rtccon & RTC_ENABLE) {
s->current_tm.tm_sec = (int)from_bcd((uint8_t)value);
}
break;
case BCDMIN:
if (s->reg_rtccon & RTC_ENABLE) {
s->current_tm.tm_min = (int)from_bcd((uint8_t)value);
}
break;
case BCDHOUR:
if (s->reg_rtccon & RTC_ENABLE) {
s->current_tm.tm_hour = (int)from_bcd((uint8_t)value);
}
break;
case BCDDAYWEEK:
if (s->reg_rtccon & RTC_ENABLE) {
s->current_tm.tm_wday = (int)from_bcd((uint8_t)value);
}
break;
case BCDDAY:
if (s->reg_rtccon & RTC_ENABLE) {
s->current_tm.tm_mday = (int)from_bcd((uint8_t)value);
}
break;
case BCDMON:
if (s->reg_rtccon & RTC_ENABLE) {
s->current_tm.tm_mon = (int)from_bcd((uint8_t)value) - 1;
}
break;
case BCDYEAR:
if (s->reg_rtccon & RTC_ENABLE) {
/* 3 digits */
s->current_tm.tm_year = (int)from_bcd((uint8_t)value) +
(int)from_bcd((uint8_t)((value >> 8) & 0x0f)) * 100;
}
break;
default:
fprintf(stderr,
"[exynos4210.rtc: bad write offset " TARGET_FMT_plx "]\n",
offset);
break;
}
}
/*
* Set default values to timer fields and registers
*/
static void exynos4210_rtc_reset(DeviceState *d)
{
Exynos4210RTCState *s = (Exynos4210RTCState *)d;
struct tm tm;
qemu_get_timedate(&tm, 0);
s->current_tm = tm;
DPRINTF("Get time from host: %d-%d-%d %2d:%02d:%02d\n",
s->current_tm.tm_year, s->current_tm.tm_mon, s->current_tm.tm_mday,
s->current_tm.tm_hour, s->current_tm.tm_min, s->current_tm.tm_sec);
s->reg_intp = 0;
s->reg_rtccon = 0;
s->reg_ticcnt = 0;
s->reg_rtcalm = 0;
s->reg_almsec = 0;
s->reg_almmin = 0;
s->reg_almhour = 0;
s->reg_almday = 0;
s->reg_almmon = 0;
s->reg_almyear = 0;
s->reg_curticcnt = 0;
exynos4210_rtc_update_freq(s, s->reg_rtccon);
ptimer_stop(s->ptimer);
ptimer_stop(s->ptimer_1Hz);
}
static const MemoryRegionOps exynos4210_rtc_ops = {
.read = exynos4210_rtc_read,
.write = exynos4210_rtc_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
/*
* RTC timer initialization
*/
static int exynos4210_rtc_init(SysBusDevice *dev)
{
Exynos4210RTCState *s = FROM_SYSBUS(Exynos4210RTCState, dev);
QEMUBH *bh;
bh = qemu_bh_new(exynos4210_rtc_tick, s);
s->ptimer = ptimer_init(bh);
ptimer_set_freq(s->ptimer, RTC_BASE_FREQ);
exynos4210_rtc_update_freq(s, 0);
bh = qemu_bh_new(exynos4210_rtc_1Hz_tick, s);
s->ptimer_1Hz = ptimer_init(bh);
ptimer_set_freq(s->ptimer_1Hz, RTC_BASE_FREQ);
sysbus_init_irq(dev, &s->alm_irq);
sysbus_init_irq(dev, &s->tick_irq);
memory_region_init_io(&s->iomem, &exynos4210_rtc_ops, s, "exynos4210-rtc",
EXYNOS4210_RTC_REG_MEM_SIZE);
sysbus_init_mmio(dev, &s->iomem);
return 0;
}
static void exynos4210_rtc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = exynos4210_rtc_init;
dc->reset = exynos4210_rtc_reset;
dc->vmsd = &vmstate_exynos4210_rtc_state;
}
static const TypeInfo exynos4210_rtc_info = {
.name = "exynos4210.rtc",
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(Exynos4210RTCState),
.class_init = exynos4210_rtc_class_init,
};
static void exynos4210_rtc_register_types(void)
{
type_register_static(&exynos4210_rtc_info);
}
type_init(exynos4210_rtc_register_types)
/*
* i.MX31 emulation
*
* Copyright (C) 2012 Peter Chubb
* NICTA
*
* This code is released under the GPL, version 2.0 or later
* See the file `../COPYING' for details.
*/
#ifndef IMX_H
#define IMX_H
void imx_serial_create(int uart, const target_phys_addr_t addr, qemu_irq irq);
typedef enum {
NOCLK,
MCU,
HSP,
IPG,
CLK_32k
} IMXClk;
uint32_t imx_clock_frequency(DeviceState *s, IMXClk clock);
void imx_timerp_create(const target_phys_addr_t addr,
qemu_irq irq,
DeviceState *ccm);
void imx_timerg_create(const target_phys_addr_t addr,
qemu_irq irq,
DeviceState *ccm);
#endif /* IMX_H */
/*
* i.MX31 Vectored Interrupt Controller
*
* Note this is NOT the PL192 provided by ARM, but
* a custom implementation by Freescale.
*
* Copyright (c) 2008 OKL
* Copyright (c) 2011 NICTA Pty Ltd
* Originally Written by Hans Jiang
*
* This code is licenced under the GPL version 2 or later. See
* the COPYING file in the top-level directory.
*
* TODO: implement vectors.
*/
#include "hw.h"
#include "sysbus.h"
#include "host-utils.h"
#define DEBUG_INT 1
#undef DEBUG_INT /* comment out for debugging */
#ifdef DEBUG_INT
#define DPRINTF(fmt, args...) \
do { printf("imx_avic: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...) do {} while (0)
#endif
/*
* Define to 1 for messages about attempts to
* access unimplemented registers or similar.
*/
#define DEBUG_IMPLEMENTATION 1
#if DEBUG_IMPLEMENTATION
# define IPRINTF(fmt, args...) \
do { fprintf(stderr, "imx_avic: " fmt, ##args); } while (0)
#else
# define IPRINTF(fmt, args...) do {} while (0)
#endif
#define IMX_AVIC_NUM_IRQS 64
/* Interrupt Control Bits */
#define ABFLAG (1<<25)
#define ABFEN (1<<24)
#define NIDIS (1<<22) /* Normal Interrupt disable */
#define FIDIS (1<<21) /* Fast interrupt disable */
#define NIAD (1<<20) /* Normal Interrupt Arbiter Rise ARM level */
#define FIAD (1<<19) /* Fast Interrupt Arbiter Rise ARM level */
#define NM (1<<18) /* Normal interrupt mode */
#define PRIO_PER_WORD (sizeof(uint32_t) * 8 / 4)
#define PRIO_WORDS (IMX_AVIC_NUM_IRQS/PRIO_PER_WORD)
typedef struct {
SysBusDevice busdev;
MemoryRegion iomem;
uint64_t pending;
uint64_t enabled;
uint64_t is_fiq;
uint32_t intcntl;
uint32_t intmask;
qemu_irq irq;
qemu_irq fiq;
uint32_t prio[PRIO_WORDS]; /* Priorities are 4-bits each */
} IMXAVICState;
static const VMStateDescription vmstate_imx_avic = {
.name = "imx-avic",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64(pending, IMXAVICState),
VMSTATE_UINT64(enabled, IMXAVICState),
VMSTATE_UINT64(is_fiq, IMXAVICState),
VMSTATE_UINT32(intcntl, IMXAVICState),
VMSTATE_UINT32(intmask, IMXAVICState),
VMSTATE_UINT32_ARRAY(prio, IMXAVICState, PRIO_WORDS),
VMSTATE_END_OF_LIST()
},
};
static inline int imx_avic_prio(IMXAVICState *s, int irq)
{
uint32_t word = irq / PRIO_PER_WORD;
uint32_t part = 4 * (irq % PRIO_PER_WORD);
return 0xf & (s->prio[word] >> part);
}
static inline void imx_avic_set_prio(IMXAVICState *s, int irq, int prio)
{
uint32_t word = irq / PRIO_PER_WORD;
uint32_t part = 4 * (irq % PRIO_PER_WORD);
uint32_t mask = ~(0xf << part);
s->prio[word] &= mask;
s->prio[word] |= prio << part;
}
/* Update interrupts. */
static void imx_avic_update(IMXAVICState *s)
{
int i;
uint64_t new = s->pending & s->enabled;
uint64_t flags;
flags = new & s->is_fiq;
qemu_set_irq(s->fiq, !!flags);
flags = new & ~s->is_fiq;
if (!flags || (s->intmask == 0x1f)) {
qemu_set_irq(s->irq, !!flags);
return;
}
/*
* Take interrupt if there's a pending interrupt with
* priority higher than the value of intmask
*/
for (i = 0; i < IMX_AVIC_NUM_IRQS; i++) {
if (flags & (1UL << i)) {
if (imx_avic_prio(s, i) > s->intmask) {
qemu_set_irq(s->irq, 1);
return;
}
}
}
qemu_set_irq(s->irq, 0);
}
static void imx_avic_set_irq(void *opaque, int irq, int level)
{
IMXAVICState *s = (IMXAVICState *)opaque;
if (level) {
DPRINTF("Raising IRQ %d, prio %d\n",
irq, imx_avic_prio(s, irq));
s->pending |= (1ULL << irq);
} else {
DPRINTF("Clearing IRQ %d, prio %d\n",
irq, imx_avic_prio(s, irq));
s->pending &= ~(1ULL << irq);
}
imx_avic_update(s);
}
static uint64_t imx_avic_read(void *opaque,
target_phys_addr_t offset, unsigned size)
{
IMXAVICState *s = (IMXAVICState *)opaque;
DPRINTF("read(offset = 0x%x)\n", offset >> 2);
switch (offset >> 2) {
case 0: /* INTCNTL */
return s->intcntl;
case 1: /* Normal Interrupt Mask Register, NIMASK */
return s->intmask;
case 2: /* Interrupt Enable Number Register, INTENNUM */
case 3: /* Interrupt Disable Number Register, INTDISNUM */
return 0;
case 4: /* Interrupt Enabled Number Register High */
return s->enabled >> 32;
case 5: /* Interrupt Enabled Number Register Low */
return s->enabled & 0xffffffffULL;
case 6: /* Interrupt Type Register High */
return s->is_fiq >> 32;
case 7: /* Interrupt Type Register Low */
return s->is_fiq & 0xffffffffULL;
case 8: /* Normal Interrupt Priority Register 7 */
case 9: /* Normal Interrupt Priority Register 6 */
case 10:/* Normal Interrupt Priority Register 5 */
case 11:/* Normal Interrupt Priority Register 4 */
case 12:/* Normal Interrupt Priority Register 3 */
case 13:/* Normal Interrupt Priority Register 2 */
case 14:/* Normal Interrupt Priority Register 1 */
case 15:/* Normal Interrupt Priority Register 0 */
return s->prio[15-(offset>>2)];
case 16: /* Normal interrupt vector and status register */
{
/*
* This returns the highest priority
* outstanding interrupt. Where there is more than
* one pending IRQ with the same priority,
* take the highest numbered one.
*/
uint64_t flags = s->pending & s->enabled & ~s->is_fiq;
int i;
int prio = -1;
int irq = -1;
for (i = 63; i >= 0; --i) {
if (flags & (1ULL<<i)) {
int irq_prio = imx_avic_prio(s, i);
if (irq_prio > prio) {
irq = i;
prio = irq_prio;
}
}
}
if (irq >= 0) {
imx_avic_set_irq(s, irq, 0);
return irq << 16 | prio;
}
return 0xffffffffULL;
}
case 17:/* Fast Interrupt vector and status register */
{
uint64_t flags = s->pending & s->enabled & s->is_fiq;
int i = ctz64(flags);
if (i < 64) {
imx_avic_set_irq(opaque, i, 0);
return i;
}
return 0xffffffffULL;
}
case 18:/* Interrupt source register high */
return s->pending >> 32;
case 19:/* Interrupt source register low */
return s->pending & 0xffffffffULL;
case 20:/* Interrupt Force Register high */
case 21:/* Interrupt Force Register low */
return 0;
case 22:/* Normal Interrupt Pending Register High */
return (s->pending & s->enabled & ~s->is_fiq) >> 32;
case 23:/* Normal Interrupt Pending Register Low */
return (s->pending & s->enabled & ~s->is_fiq) & 0xffffffffULL;
case 24: /* Fast Interrupt Pending Register High */
return (s->pending & s->enabled & s->is_fiq) >> 32;
case 25: /* Fast Interrupt Pending Register Low */
return (s->pending & s->enabled & s->is_fiq) & 0xffffffffULL;
case 0x40: /* AVIC vector 0, use for WFI WAR */
return 0x4;
default:
IPRINTF("imx_avic_read: Bad offset 0x%x\n", (int)offset);
return 0;
}
}
static void imx_avic_write(void *opaque, target_phys_addr_t offset,
uint64_t val, unsigned size)
{
IMXAVICState *s = (IMXAVICState *)opaque;
/* Vector Registers not yet supported */
if (offset >= 0x100 && offset <= 0x2fc) {
IPRINTF("imx_avic_write to vector register %d ignored\n",
(offset - 0x100) >> 2);
return;
}
DPRINTF("imx_avic_write(0x%x) = %x\n",
(unsigned int)offset>>2, (unsigned int)val);
switch (offset >> 2) {
case 0: /* Interrupt Control Register, INTCNTL */
s->intcntl = val & (ABFEN | NIDIS | FIDIS | NIAD | FIAD | NM);
if (s->intcntl & ABFEN) {
s->intcntl &= ~(val & ABFLAG);
}
break;
case 1: /* Normal Interrupt Mask Register, NIMASK */
s->intmask = val & 0x1f;
break;
case 2: /* Interrupt Enable Number Register, INTENNUM */
DPRINTF("enable(%d)\n", (int)val);
val &= 0x3f;
s->enabled |= (1ULL << val);
break;
case 3: /* Interrupt Disable Number Register, INTDISNUM */
DPRINTF("disable(%d)\n", (int)val);
val &= 0x3f;
s->enabled &= ~(1ULL << val);
break;
case 4: /* Interrupt Enable Number Register High */
s->enabled = (s->enabled & 0xffffffffULL) | (val << 32);
break;
case 5: /* Interrupt Enable Number Register Low */
s->enabled = (s->enabled & 0xffffffff00000000ULL) | val;
break;
case 6: /* Interrupt Type Register High */
s->is_fiq = (s->is_fiq & 0xffffffffULL) | (val << 32);
break;
case 7: /* Interrupt Type Register Low */
s->is_fiq = (s->is_fiq & 0xffffffff00000000ULL) | val;
break;
case 8: /* Normal Interrupt Priority Register 7 */
case 9: /* Normal Interrupt Priority Register 6 */
case 10:/* Normal Interrupt Priority Register 5 */
case 11:/* Normal Interrupt Priority Register 4 */
case 12:/* Normal Interrupt Priority Register 3 */
case 13:/* Normal Interrupt Priority Register 2 */
case 14:/* Normal Interrupt Priority Register 1 */
case 15:/* Normal Interrupt Priority Register 0 */
s->prio[15-(offset>>2)] = val;
break;
/* Read-only registers, writes ignored */
case 16:/* Normal Interrupt Vector and Status register */
case 17:/* Fast Interrupt vector and status register */
case 18:/* Interrupt source register high */
case 19:/* Interrupt source register low */
return;
case 20:/* Interrupt Force Register high */
s->pending = (s->pending & 0xffffffffULL) | (val << 32);
break;
case 21:/* Interrupt Force Register low */
s->pending = (s->pending & 0xffffffff00000000ULL) | val;
break;
case 22:/* Normal Interrupt Pending Register High */
case 23:/* Normal Interrupt Pending Register Low */
case 24: /* Fast Interrupt Pending Register High */
case 25: /* Fast Interrupt Pending Register Low */
return;
default:
IPRINTF("imx_avic_write: Bad offset %x\n", (int)offset);
}
imx_avic_update(s);
}
static const MemoryRegionOps imx_avic_ops = {
.read = imx_avic_read,
.write = imx_avic_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void imx_avic_reset(DeviceState *dev)
{
IMXAVICState *s = container_of(dev, IMXAVICState, busdev.qdev);
s->pending = 0;
s->enabled = 0;
s->is_fiq = 0;
s->intmask = 0x1f;
s->intcntl = 0;
memset(s->prio, 0, sizeof s->prio);
}
static int imx_avic_init(SysBusDevice *dev)
{
IMXAVICState *s = FROM_SYSBUS(IMXAVICState, dev);;
memory_region_init_io(&s->iomem, &imx_avic_ops, s, "imx_avic", 0x1000);
sysbus_init_mmio(dev, &s->iomem);
qdev_init_gpio_in(&dev->qdev, imx_avic_set_irq, IMX_AVIC_NUM_IRQS);
sysbus_init_irq(dev, &s->irq);
sysbus_init_irq(dev, &s->fiq);
return 0;
}
static void imx_avic_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = imx_avic_init;
dc->vmsd = &vmstate_imx_avic;
dc->reset = imx_avic_reset;
dc->desc = "i.MX Advanced Vector Interrupt Controller";
}
static const TypeInfo imx_avic_info = {
.name = "imx_avic",
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IMXAVICState),
.class_init = imx_avic_class_init,
};
static void imx_avic_register_types(void)
{
type_register_static(&imx_avic_info);
}
type_init(imx_avic_register_types)
/*
* IMX31 Clock Control Module
*
* Copyright (C) 2012 NICTA
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* To get the timer frequencies right, we need to emulate at least part of
* the CCM.
*/
#include "hw.h"
#include "sysbus.h"
#include "sysemu.h"
#include "imx.h"
#define CKIH_FREQ 26000000 /* 26MHz crystal input */
#define CKIL_FREQ 32768 /* nominal 32khz clock */
//#define DEBUG_CCM 1
#ifdef DEBUG_CCM
#define DPRINTF(fmt, args...) \
do { printf("imx_ccm: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...) do {} while (0)
#endif
static int imx_ccm_post_load(void *opaque, int version_id);
typedef struct {
SysBusDevice busdev;
MemoryRegion iomem;
uint32_t ccmr;
uint32_t pdr0;
uint32_t pdr1;
uint32_t mpctl;
uint32_t spctl;
uint32_t cgr[3];
uint32_t pmcr0;
uint32_t pmcr1;
/* Frequencies precalculated on register changes */
uint32_t pll_refclk_freq;
uint32_t mcu_clk_freq;
uint32_t hsp_clk_freq;
uint32_t ipg_clk_freq;
} IMXCCMState;
static const VMStateDescription vmstate_imx_ccm = {
.name = "imx-ccm",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(ccmr, IMXCCMState),
VMSTATE_UINT32(pdr0, IMXCCMState),
VMSTATE_UINT32(pdr1, IMXCCMState),
VMSTATE_UINT32(mpctl, IMXCCMState),
VMSTATE_UINT32(spctl, IMXCCMState),
VMSTATE_UINT32_ARRAY(cgr, IMXCCMState, 3),
VMSTATE_UINT32(pmcr0, IMXCCMState),
VMSTATE_UINT32(pmcr1, IMXCCMState),
VMSTATE_UINT32(pll_refclk_freq, IMXCCMState),
},
.post_load = imx_ccm_post_load,
};
/* CCMR */
#define CCMR_FPME (1<<0)
#define CCMR_MPE (1<<3)
#define CCMR_MDS (1<<7)
#define CCMR_FPMF (1<<26)
#define CCMR_PRCS (3<<1)
/* PDR0 */
#define PDR0_MCU_PODF_SHIFT (0)
#define PDR0_MCU_PODF_MASK (0x7)
#define PDR0_MAX_PODF_SHIFT (3)
#define PDR0_MAX_PODF_MASK (0x7)
#define PDR0_IPG_PODF_SHIFT (6)
#define PDR0_IPG_PODF_MASK (0x3)
#define PDR0_NFC_PODF_SHIFT (8)
#define PDR0_NFC_PODF_MASK (0x7)
#define PDR0_HSP_PODF_SHIFT (11)
#define PDR0_HSP_PODF_MASK (0x7)
#define PDR0_PER_PODF_SHIFT (16)
#define PDR0_PER_PODF_MASK (0x1f)
#define PDR0_CSI_PODF_SHIFT (23)
#define PDR0_CSI_PODF_MASK (0x1ff)
#define EXTRACT(value, name) (((value) >> PDR0_##name##_PODF_SHIFT) \
& PDR0_##name##_PODF_MASK)
#define INSERT(value, name) (((value) & PDR0_##name##_PODF_MASK) << \
PDR0_##name##_PODF_SHIFT)
/* PLL control registers */
#define PD(v) (((v) >> 26) & 0xf)
#define MFD(v) (((v) >> 16) & 0x3ff)
#define MFI(v) (((v) >> 10) & 0xf);
#define MFN(v) ((v) & 0x3ff)
#define PLL_PD(x) (((x) & 0xf) << 26)
#define PLL_MFD(x) (((x) & 0x3ff) << 16)
#define PLL_MFI(x) (((x) & 0xf) << 10)
#define PLL_MFN(x) (((x) & 0x3ff) << 0)
uint32_t imx_clock_frequency(DeviceState *dev, IMXClk clock)
{
IMXCCMState *s = container_of(dev, IMXCCMState, busdev.qdev);
switch (clock) {
case NOCLK:
return 0;
case MCU:
return s->mcu_clk_freq;
case HSP:
return s->hsp_clk_freq;
case IPG:
return s->ipg_clk_freq;
case CLK_32k:
return CKIL_FREQ;
}
return 0;
}
/*
* Calculate PLL output frequency
*/
static uint32_t calc_pll(uint32_t pllreg, uint32_t base_freq)
{
int32_t mfn = MFN(pllreg); /* Numerator */
uint32_t mfi = MFI(pllreg); /* Integer part */
uint32_t mfd = 1 + MFD(pllreg); /* Denominator */
uint32_t pd = 1 + PD(pllreg); /* Pre-divider */
if (mfi < 5) {
mfi = 5;
}
/* mfn is 10-bit signed twos-complement */
mfn <<= 32 - 10;
mfn >>= 32 - 10;
return ((2 * (base_freq >> 10) * (mfi * mfd + mfn)) /
(mfd * pd)) << 10;
}
static void update_clocks(IMXCCMState *s)
{
/*
* If we ever emulate more clocks, this should switch to a data-driven
* approach
*/
if ((s->ccmr & CCMR_PRCS) == 1) {
s->pll_refclk_freq = CKIL_FREQ * 1024;
} else {
s->pll_refclk_freq = CKIH_FREQ;
}
/* ipg_clk_arm aka MCU clock */
if ((s->ccmr & CCMR_MDS) || !(s->ccmr & CCMR_MPE)) {
s->mcu_clk_freq = s->pll_refclk_freq;
} else {
s->mcu_clk_freq = calc_pll(s->mpctl, s->pll_refclk_freq);
}
/* High-speed clock */
s->hsp_clk_freq = s->mcu_clk_freq / (1 + EXTRACT(s->pdr0, HSP));
s->ipg_clk_freq = s->hsp_clk_freq / (1 + EXTRACT(s->pdr0, IPG));
DPRINTF("Clocks: mcu %uMHz, HSP %uMHz, IPG %uHz\n",
s->mcu_clk_freq / 1000000,
s->hsp_clk_freq / 1000000,
s->ipg_clk_freq);
}
static void imx_ccm_reset(DeviceState *dev)
{
IMXCCMState *s = container_of(dev, IMXCCMState, busdev.qdev);
s->ccmr = 0x074b0b7b;
s->pdr0 = 0xff870b48;
s->pdr1 = 0x49fcfe7f;
s->mpctl = PLL_PD(1) | PLL_MFD(0) | PLL_MFI(6) | PLL_MFN(0);
s->cgr[0] = s->cgr[1] = s->cgr[2] = 0xffffffff;
s->spctl = PLL_PD(1) | PLL_MFD(4) | PLL_MFI(0xc) | PLL_MFN(1);
s->pmcr0 = 0x80209828;
update_clocks(s);
}
static uint64_t imx_ccm_read(void *opaque, target_phys_addr_t offset,
unsigned size)
{
IMXCCMState *s = (IMXCCMState *)opaque;
DPRINTF("read(offset=%x)", offset >> 2);
switch (offset >> 2) {
case 0: /* CCMR */
DPRINTF(" ccmr = 0x%x\n", s->ccmr);
return s->ccmr;
case 1:
DPRINTF(" pdr0 = 0x%x\n", s->pdr0);
return s->pdr0;
case 2:
DPRINTF(" pdr1 = 0x%x\n", s->pdr1);
return s->pdr1;
case 4:
DPRINTF(" mpctl = 0x%x\n", s->mpctl);
return s->mpctl;
case 6:
DPRINTF(" spctl = 0x%x\n", s->spctl);
return s->spctl;
case 8:
DPRINTF(" cgr0 = 0x%x\n", s->cgr[0]);
return s->cgr[0];
case 9:
DPRINTF(" cgr1 = 0x%x\n", s->cgr[1]);
return s->cgr[1];
case 10:
DPRINTF(" cgr2 = 0x%x\n", s->cgr[2]);
return s->cgr[2];
case 18: /* LTR1 */
return 0x00004040;
case 23:
DPRINTF(" pcmr0 = 0x%x\n", s->pmcr0);
return s->pmcr0;
}
DPRINTF(" return 0\n");
return 0;
}
static void imx_ccm_write(void *opaque, target_phys_addr_t offset,
uint64_t value, unsigned size)
{
IMXCCMState *s = (IMXCCMState *)opaque;
DPRINTF("write(offset=%x, value = %x)\n",
offset >> 2, (unsigned int)value);
switch (offset >> 2) {
case 0:
s->ccmr = CCMR_FPMF | (value & 0x3b6fdfff);
break;
case 1:
s->pdr0 = value & 0xff9f3fff;
break;
case 2:
s->pdr1 = value;
break;
case 4:
s->mpctl = value & 0xbfff3fff;
break;
case 6:
s->spctl = value & 0xbfff3fff;
break;
case 8:
s->cgr[0] = value;
return;
case 9:
s->cgr[1] = value;
return;
case 10:
s->cgr[2] = value;
return;
default:
return;
}
update_clocks(s);
}
static const struct MemoryRegionOps imx_ccm_ops = {
.read = imx_ccm_read,
.write = imx_ccm_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int imx_ccm_init(SysBusDevice *dev)
{
IMXCCMState *s = FROM_SYSBUS(typeof(*s), dev);
memory_region_init_io(&s->iomem, &imx_ccm_ops, s, "imx_ccm", 0x1000);
sysbus_init_mmio(dev, &s->iomem);
return 0;
}
static int imx_ccm_post_load(void *opaque, int version_id)
{
IMXCCMState *s = (IMXCCMState *)opaque;
update_clocks(s);
return 0;
}
static void imx_ccm_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *sbc = SYS_BUS_DEVICE_CLASS(klass);
sbc->init = imx_ccm_init;
dc->reset = imx_ccm_reset;
dc->vmsd = &vmstate_imx_ccm;
dc->desc = "i.MX Clock Control Module";
}
static TypeInfo imx_ccm_info = {
.name = "imx_ccm",
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IMXCCMState),
.class_init = imx_ccm_class_init,
};
static void imx_ccm_register_types(void)
{
type_register_static(&imx_ccm_info);
}
type_init(imx_ccm_register_types)
/*
* IMX31 UARTS
*
* Copyright (c) 2008 OKL
* Originally Written by Hans Jiang
* Copyright (c) 2011 NICTA Pty Ltd.
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* This is a `bare-bones' implementation of the IMX series serial ports.
* TODO:
* -- implement FIFOs. The real hardware has 32 word transmit
* and receive FIFOs; we currently use a 1-char buffer
* -- implement DMA
* -- implement BAUD-rate and modem lines, for when the backend
* is a real serial device.
*/
#include "hw.h"
#include "sysbus.h"
#include "sysemu.h"
#include "qemu-char.h"
#include "imx.h"
//#define DEBUG_SERIAL 1
#ifdef DEBUG_SERIAL
#define DPRINTF(fmt, args...) \
do { printf("imx_serial: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...) do {} while (0)
#endif
/*
* Define to 1 for messages about attempts to
* access unimplemented registers or similar.
*/
//#define DEBUG_IMPLEMENTATION 1
#ifdef DEBUG_IMPLEMENTATION
# define IPRINTF(fmt, args...) \
do { fprintf(stderr, "imx_serial: " fmt, ##args); } while (0)
#else
# define IPRINTF(fmt, args...) do {} while (0)
#endif
typedef struct {
SysBusDevice busdev;
MemoryRegion iomem;
int32_t readbuff;
uint32_t usr1;
uint32_t usr2;
uint32_t ucr1;
uint32_t ucr2;
uint32_t uts1;
/*
* The registers below are implemented just so that the
* guest OS sees what it has written
*/
uint32_t onems;
uint32_t ufcr;
uint32_t ubmr;
uint32_t ubrc;
uint32_t ucr3;
qemu_irq irq;
CharDriverState *chr;
} IMXSerialState;
static const VMStateDescription vmstate_imx_serial = {
.name = "imx-serial",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_INT32(readbuff, IMXSerialState),
VMSTATE_UINT32(usr1, IMXSerialState),
VMSTATE_UINT32(usr2, IMXSerialState),
VMSTATE_UINT32(ucr1, IMXSerialState),
VMSTATE_UINT32(uts1, IMXSerialState),
VMSTATE_UINT32(onems, IMXSerialState),
VMSTATE_UINT32(ufcr, IMXSerialState),
VMSTATE_UINT32(ubmr, IMXSerialState),
VMSTATE_UINT32(ubrc, IMXSerialState),
VMSTATE_UINT32(ucr3, IMXSerialState),
VMSTATE_END_OF_LIST()
},
};
#define URXD_CHARRDY (1<<15) /* character read is valid */
#define URXD_ERR (1<<14) /* Character has error */
#define URXD_BRK (1<<11) /* Break received */
#define USR1_PARTYER (1<<15) /* Parity Error */
#define USR1_RTSS (1<<14) /* RTS pin status */
#define USR1_TRDY (1<<13) /* Tx ready */
#define USR1_RTSD (1<<12) /* RTS delta: pin changed state */
#define USR1_ESCF (1<<11) /* Escape sequence interrupt */
#define USR1_FRAMERR (1<<10) /* Framing error */
#define USR1_RRDY (1<<9) /* receiver ready */
#define USR1_AGTIM (1<<8) /* Aging timer interrupt */
#define USR1_DTRD (1<<7) /* DTR changed */
#define USR1_RXDS (1<<6) /* Receiver is idle */
#define USR1_AIRINT (1<<5) /* Aysnch IR interrupt */
#define USR1_AWAKE (1<<4) /* Falling edge detected on RXd pin */
#define USR2_ADET (1<<15) /* Autobaud complete */
#define USR2_TXFE (1<<14) /* Transmit FIFO empty */
#define USR2_DTRF (1<<13) /* DTR/DSR transition */
#define USR2_IDLE (1<<12) /* UART has been idle for too long */
#define USR2_ACST (1<<11) /* Autobaud counter stopped */
#define USR2_RIDELT (1<<10) /* Ring Indicator delta */
#define USR2_RIIN (1<<9) /* Ring Indicator Input */
#define USR2_IRINT (1<<8) /* Serial Infrared Interrupt */
#define USR2_WAKE (1<<7) /* Start bit detected */
#define USR2_DCDDELT (1<<6) /* Data Carrier Detect delta */
#define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */
#define USR2_RTSF (1<<4) /* RTS transition */
#define USR2_TXDC (1<<3) /* Transmission complete */
#define USR2_BRCD (1<<2) /* Break condition detected */
#define USR2_ORE (1<<1) /* Overrun error */
#define USR2_RDR (1<<0) /* Receive data ready */
#define UCR1_TRDYEN (1<<13) /* Tx Ready Interrupt Enable */
#define UCR1_RRDYEN (1<<9) /* Rx Ready Interrupt Enable */
#define UCR1_TXMPTYEN (1<<6) /* Tx Empty Interrupt Enable */
#define UCR1_UARTEN (1<<0) /* UART Enable */
#define UCR2_TXEN (1<<2) /* Transmitter enable */
#define UCR2_RXEN (1<<1) /* Receiver enable */
#define UCR2_SRST (1<<0) /* Reset complete */
#define UTS1_TXEMPTY (1<<6)
#define UTS1_RXEMPTY (1<<5)
#define UTS1_TXFULL (1<<4)
#define UTS1_RXFULL (1<<3)
static void imx_update(IMXSerialState *s)
{
uint32_t flags;
flags = (s->usr1 & s->ucr1) & (USR1_TRDY|USR1_RRDY);
if (!(s->ucr1 & UCR1_TXMPTYEN)) {
flags &= ~USR1_TRDY;
}
qemu_set_irq(s->irq, !!flags);
}
static void imx_serial_reset(IMXSerialState *s)
{
s->usr1 = USR1_TRDY | USR1_RXDS;
/*
* Fake attachment of a terminal: assert RTS.
*/
s->usr1 |= USR1_RTSS;
s->usr2 = USR2_TXFE | USR2_TXDC | USR2_DCDIN;
s->uts1 = UTS1_RXEMPTY | UTS1_TXEMPTY;
s->ucr1 = 0;
s->ucr2 = UCR2_SRST;
s->ucr3 = 0x700;
s->ubmr = 0;
s->ubrc = 4;
s->readbuff = URXD_ERR;
}
static void imx_serial_reset_at_boot(DeviceState *dev)
{
IMXSerialState *s = container_of(dev, IMXSerialState, busdev.qdev);
imx_serial_reset(s);
/*
* enable the uart on boot, so messages from the linux decompresser
* are visible. On real hardware this is done by the boot rom
* before anything else is loaded.
*/
s->ucr1 = UCR1_UARTEN;
s->ucr2 = UCR2_TXEN;
}
static uint64_t imx_serial_read(void *opaque, target_phys_addr_t offset,
unsigned size)
{
IMXSerialState *s = (IMXSerialState *)opaque;
uint32_t c;
DPRINTF("read(offset=%x)\n", offset >> 2);
switch (offset >> 2) {
case 0x0: /* URXD */
c = s->readbuff;
if (!(s->uts1 & UTS1_RXEMPTY)) {
/* Character is valid */
c |= URXD_CHARRDY;
s->usr1 &= ~USR1_RRDY;
s->usr2 &= ~USR2_RDR;
s->uts1 |= UTS1_RXEMPTY;
imx_update(s);
qemu_chr_accept_input(s->chr);
}
return c;
case 0x20: /* UCR1 */
return s->ucr1;
case 0x21: /* UCR2 */
return s->ucr2;
case 0x25: /* USR1 */
return s->usr1;
case 0x26: /* USR2 */
return s->usr2;
case 0x2A: /* BRM Modulator */
return s->ubmr;
case 0x2B: /* Baud Rate Count */
return s->ubrc;
case 0x2d: /* Test register */
return s->uts1;
case 0x24: /* UFCR */
return s->ufcr;
case 0x2c:
return s->onems;
case 0x22: /* UCR3 */
return s->ucr3;
case 0x23: /* UCR4 */
case 0x29: /* BRM Incremental */
return 0x0; /* TODO */
default:
IPRINTF("imx_serial_read: bad offset: 0x%x\n", (int)offset);
return 0;
}
}
static void imx_serial_write(void *opaque, target_phys_addr_t offset,
uint64_t value, unsigned size)
{
IMXSerialState *s = (IMXSerialState *)opaque;
unsigned char ch;
DPRINTF("write(offset=%x, value = %x) to %s\n",
offset >> 2,
(unsigned int)value, s->chr ? s->chr->label : "NODEV");
switch (offset >> 2) {
case 0x10: /* UTXD */
ch = value;
if (s->ucr2 & UCR2_TXEN) {
if (s->chr) {
qemu_chr_fe_write(s->chr, &ch, 1);
}
s->usr1 &= ~USR1_TRDY;
imx_update(s);
s->usr1 |= USR1_TRDY;
imx_update(s);
}
break;
case 0x20: /* UCR1 */
s->ucr1 = value & 0xffff;
DPRINTF("write(ucr1=%x)\n", (unsigned int)value);
imx_update(s);
break;
case 0x21: /* UCR2 */
/*
* Only a few bits in control register 2 are implemented as yet.
* If it's intended to use a real serial device as a back-end, this
* register will have to be implemented more fully.
*/
if (!(value & UCR2_SRST)) {
imx_serial_reset(s);
imx_update(s);
value |= UCR2_SRST;
}
if (value & UCR2_RXEN) {
if (!(s->ucr2 & UCR2_RXEN)) {
qemu_chr_accept_input(s->chr);
}
}
s->ucr2 = value & 0xffff;
break;
case 0x25: /* USR1 */
value &= USR1_AWAKE | USR1_AIRINT | USR1_DTRD | USR1_AGTIM |
USR1_FRAMERR | USR1_ESCF | USR1_RTSD | USR1_PARTYER;
s->usr1 &= ~value;
break;
case 0x26: /* USR2 */
/*
* Writing 1 to some bits clears them; all other
* values are ignored
*/
value &= USR2_ADET | USR2_DTRF | USR2_IDLE | USR2_ACST |
USR2_RIDELT | USR2_IRINT | USR2_WAKE |
USR2_DCDDELT | USR2_RTSF | USR2_BRCD | USR2_ORE;
s->usr2 &= ~value;
break;
/*
* Linux expects to see what it writes to these registers
* We don't currently alter the baud rate
*/
case 0x29: /* UBIR */
s->ubrc = value & 0xffff;
break;
case 0x2a: /* UBMR */
s->ubmr = value & 0xffff;
break;
case 0x2c: /* One ms reg */
s->onems = value & 0xffff;
break;
case 0x24: /* FIFO control register */
s->ufcr = value & 0xffff;
break;
case 0x22: /* UCR3 */
s->ucr3 = value & 0xffff;
break;
case 0x2d: /* UTS1 */
case 0x23: /* UCR4 */
IPRINTF("Unimplemented Register %x written to\n", offset >> 2);
/* TODO */
break;
default:
IPRINTF("imx_serial_write: Bad offset 0x%x\n", (int)offset);
}
}
static int imx_can_receive(void *opaque)
{
IMXSerialState *s = (IMXSerialState *)opaque;
return !(s->usr1 & USR1_RRDY);
}
static void imx_put_data(void *opaque, uint32_t value)
{
IMXSerialState *s = (IMXSerialState *)opaque;
DPRINTF("received char\n");
s->usr1 |= USR1_RRDY;
s->usr2 |= USR2_RDR;
s->uts1 &= ~UTS1_RXEMPTY;
s->readbuff = value;
imx_update(s);
}
static void imx_receive(void *opaque, const uint8_t *buf, int size)
{
imx_put_data(opaque, *buf);
}
static void imx_event(void *opaque, int event)
{
if (event == CHR_EVENT_BREAK) {
imx_put_data(opaque, URXD_BRK);
}
}
static const struct MemoryRegionOps imx_serial_ops = {
.read = imx_serial_read,
.write = imx_serial_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int imx_serial_init(SysBusDevice *dev)
{
IMXSerialState *s = FROM_SYSBUS(IMXSerialState, dev);
memory_region_init_io(&s->iomem, &imx_serial_ops, s, "imx-serial", 0x1000);
sysbus_init_mmio(dev, &s->iomem);
sysbus_init_irq(dev, &s->irq);
if (s->chr) {
qemu_chr_add_handlers(s->chr, imx_can_receive, imx_receive,
imx_event, s);
} else {
DPRINTF("No char dev for uart at 0x%lx\n",
(unsigned long)s->iomem.ram_addr);
}
return 0;
}
void imx_serial_create(int uart, const target_phys_addr_t addr, qemu_irq irq)
{
DeviceState *dev;
SysBusDevice *bus;
CharDriverState *chr;
const char chr_name[] = "serial";
char label[ARRAY_SIZE(chr_name) + 1];
dev = qdev_create(NULL, "imx-serial");
if (uart >= MAX_SERIAL_PORTS) {
hw_error("Cannot assign uart %d: QEMU supports only %d ports\n",
uart, MAX_SERIAL_PORTS);
}
chr = serial_hds[uart];
if (!chr) {
snprintf(label, ARRAY_SIZE(label), "%s%d", chr_name, uart);
chr = qemu_chr_new(label, "null", NULL);
if (!(chr)) {
hw_error("Can't assign serial port to imx-uart%d.\n", uart);
}
}
qdev_prop_set_chr(dev, "chardev", chr);
bus = sysbus_from_qdev(dev);
qdev_init_nofail(dev);
if (addr != (target_phys_addr_t)-1) {
sysbus_mmio_map(bus, 0, addr);
}
sysbus_connect_irq(bus, 0, irq);
}
static Property imx32_serial_properties[] = {
DEFINE_PROP_CHR("chardev", IMXSerialState, chr),
DEFINE_PROP_END_OF_LIST(),
};
static void imx_serial_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = imx_serial_init;
dc->vmsd = &vmstate_imx_serial;
dc->reset = imx_serial_reset_at_boot;
dc->desc = "i.MX series UART";
dc->props = imx32_serial_properties;
}
static TypeInfo imx_serial_info = {
.name = "imx-serial",
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IMXSerialState),
.class_init = imx_serial_class_init,
};
static void imx_serial_register_types(void)
{
type_register_static(&imx_serial_info);
}
type_init(imx_serial_register_types)
/*
* IMX31 Timer
*
* Copyright (c) 2008 OK Labs
* Copyright (c) 2011 NICTA Pty Ltd
* Originally Written by Hans Jiang
* Updated by Peter Chubb
*
* This code is licenced under GPL version 2 or later. See
* the COPYING file in the top-level directory.
*
*/
#include "hw.h"
#include "qemu-timer.h"
#include "ptimer.h"
#include "sysbus.h"
#include "imx.h"
//#define DEBUG_TIMER 1
#ifdef DEBUG_TIMER
# define DPRINTF(fmt, args...) \
do { printf("imx_timer: " fmt , ##args); } while (0)
#else
# define DPRINTF(fmt, args...) do {} while (0)
#endif
/*
* Define to 1 for messages about attempts to
* access unimplemented registers or similar.
*/
#define DEBUG_IMPLEMENTATION 1
#if DEBUG_IMPLEMENTATION
# define IPRINTF(fmt, args...) \
do { fprintf(stderr, "imx_timer: " fmt, ##args); } while (0)
#else
# define IPRINTF(fmt, args...) do {} while (0)
#endif
/*
* GPT : General purpose timer
*
* This timer counts up continuously while it is enabled, resetting itself
* to 0 when it reaches TIMER_MAX (in freerun mode) or when it
* reaches the value of ocr1 (in periodic mode). WE simulate this using a
* QEMU ptimer counting down from ocr1 and reloading from ocr1 in
* periodic mode, or counting from ocr1 to zero, then TIMER_MAX - ocr1.
* waiting_rov is set when counting from TIMER_MAX.
*
* In the real hardware, there are three comparison registers that can
* trigger interrupts, and compare channel 1 can be used to
* force-reset the timer. However, this is a `bare-bones'
* implementation: only what Linux 3.x uses has been implemented
* (free-running timer from 0 to OCR1 or TIMER_MAX) .
*/
#define TIMER_MAX 0XFFFFFFFFUL
/* Control register. Not all of these bits have any effect (yet) */
#define GPT_CR_EN (1 << 0) /* GPT Enable */
#define GPT_CR_ENMOD (1 << 1) /* GPT Enable Mode */
#define GPT_CR_DBGEN (1 << 2) /* GPT Debug mode enable */
#define GPT_CR_WAITEN (1 << 3) /* GPT Wait Mode Enable */
#define GPT_CR_DOZEN (1 << 4) /* GPT Doze mode enable */
#define GPT_CR_STOPEN (1 << 5) /* GPT Stop Mode Enable */
#define GPT_CR_CLKSRC_SHIFT (6)
#define GPT_CR_CLKSRC_MASK (0x7)
#define GPT_CR_FRR (1 << 9) /* Freerun or Restart */
#define GPT_CR_SWR (1 << 15) /* Software Reset */
#define GPT_CR_IM1 (3 << 16) /* Input capture channel 1 mode (2 bits) */
#define GPT_CR_IM2 (3 << 18) /* Input capture channel 2 mode (2 bits) */
#define GPT_CR_OM1 (7 << 20) /* Output Compare Channel 1 Mode (3 bits) */
#define GPT_CR_OM2 (7 << 23) /* Output Compare Channel 2 Mode (3 bits) */
#define GPT_CR_OM3 (7 << 26) /* Output Compare Channel 3 Mode (3 bits) */
#define GPT_CR_FO1 (1 << 29) /* Force Output Compare Channel 1 */
#define GPT_CR_FO2 (1 << 30) /* Force Output Compare Channel 2 */
#define GPT_CR_FO3 (1 << 31) /* Force Output Compare Channel 3 */
#define GPT_SR_OF1 (1 << 0)
#define GPT_SR_ROV (1 << 5)
#define GPT_IR_OF1IE (1 << 0)
#define GPT_IR_ROVIE (1 << 5)
typedef struct {
SysBusDevice busdev;
ptimer_state *timer;
MemoryRegion iomem;
DeviceState *ccm;
uint32_t cr;
uint32_t pr;
uint32_t sr;
uint32_t ir;
uint32_t ocr1;
uint32_t cnt;
uint32_t waiting_rov;
qemu_irq irq;
} IMXTimerGState;
static const VMStateDescription vmstate_imx_timerg = {
.name = "imx-timerg",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(cr, IMXTimerGState),
VMSTATE_UINT32(pr, IMXTimerGState),
VMSTATE_UINT32(sr, IMXTimerGState),
VMSTATE_UINT32(ir, IMXTimerGState),
VMSTATE_UINT32(ocr1, IMXTimerGState),
VMSTATE_UINT32(cnt, IMXTimerGState),
VMSTATE_UINT32(waiting_rov, IMXTimerGState),
VMSTATE_PTIMER(timer, IMXTimerGState),
VMSTATE_END_OF_LIST()
}
};
static const IMXClk imx_timerg_clocks[] = {
NOCLK, /* 000 No clock source */
IPG, /* 001 ipg_clk, 532MHz*/
IPG, /* 010 ipg_clk_highfreq */
NOCLK, /* 011 not defined */
CLK_32k, /* 100 ipg_clk_32k */
NOCLK, /* 101 not defined */
NOCLK, /* 110 not defined */
NOCLK, /* 111 not defined */
};
static void imx_timerg_set_freq(IMXTimerGState *s)
{
int clksrc;
uint32_t freq;
clksrc = (s->cr >> GPT_CR_CLKSRC_SHIFT) & GPT_CR_CLKSRC_MASK;
freq = imx_clock_frequency(s->ccm, imx_timerg_clocks[clksrc]) / (1 + s->pr);
DPRINTF("Setting gtimer clksrc %d to frequency %d\n", clksrc, freq);
if (freq) {
ptimer_set_freq(s->timer, freq);
}
}
static void imx_timerg_update(IMXTimerGState *s)
{
uint32_t flags = s->sr & s->ir & (GPT_SR_OF1 | GPT_SR_ROV);
DPRINTF("g-timer SR: %s %s IR=%s %s, %s\n",
s->sr & GPT_SR_OF1 ? "OF1" : "",
s->sr & GPT_SR_ROV ? "ROV" : "",
s->ir & GPT_SR_OF1 ? "OF1" : "",
s->ir & GPT_SR_ROV ? "ROV" : "",
s->cr & GPT_CR_EN ? "CR_EN" : "Not Enabled");
qemu_set_irq(s->irq, (s->cr & GPT_CR_EN) && flags);
}
static uint32_t imx_timerg_update_counts(IMXTimerGState *s)
{
uint64_t target = s->waiting_rov ? TIMER_MAX : s->ocr1;
uint64_t cnt = ptimer_get_count(s->timer);
s->cnt = target - cnt;
return s->cnt;
}
static void imx_timerg_reload(IMXTimerGState *s, uint32_t timeout)
{
uint64_t diff_cnt;
if (!(s->cr & GPT_CR_FRR)) {
IPRINTF("IMX_timerg_reload --- called in reset-mode\n");
return;
}
/*
* For small timeouts, qemu sometimes runs too slow.
* Better deliver a late interrupt than none.
*
* In Reset mode (FRR bit clear)
* the ptimer reloads itself from OCR1;
* in free-running mode we need to fake
* running from 0 to ocr1 to TIMER_MAX
*/
if (timeout > s->cnt) {
diff_cnt = timeout - s->cnt;
} else {
diff_cnt = 0;
}
ptimer_set_count(s->timer, diff_cnt);
}
static uint64_t imx_timerg_read(void *opaque, target_phys_addr_t offset,
unsigned size)
{
IMXTimerGState *s = (IMXTimerGState *)opaque;
DPRINTF("g-read(offset=%x)", offset >> 2);
switch (offset >> 2) {
case 0: /* Control Register */
DPRINTF(" cr = %x\n", s->cr);
return s->cr;
case 1: /* prescaler */
DPRINTF(" pr = %x\n", s->pr);
return s->pr;
case 2: /* Status Register */
DPRINTF(" sr = %x\n", s->sr);
return s->sr;
case 3: /* Interrupt Register */
DPRINTF(" ir = %x\n", s->ir);
return s->ir;
case 4: /* Output Compare Register 1 */
DPRINTF(" ocr1 = %x\n", s->ocr1);
return s->ocr1;
case 9: /* cnt */
imx_timerg_update_counts(s);
DPRINTF(" cnt = %x\n", s->cnt);
return s->cnt;
}
IPRINTF("imx_timerg_read: Bad offset %x\n",
(int)offset >> 2);
return 0;
}
static void imx_timerg_reset(DeviceState *dev)
{
IMXTimerGState *s = container_of(dev, IMXTimerGState, busdev.qdev);
/*
* Soft reset doesn't touch some bits; hard reset clears them
*/
s->cr &= ~(GPT_CR_EN|GPT_CR_DOZEN|GPT_CR_WAITEN|GPT_CR_DBGEN);
s->sr = 0;
s->pr = 0;
s->ir = 0;
s->cnt = 0;
s->ocr1 = TIMER_MAX;
ptimer_stop(s->timer);
ptimer_set_limit(s->timer, TIMER_MAX, 1);
imx_timerg_set_freq(s);
}
static void imx_timerg_write(void *opaque, target_phys_addr_t offset,
uint64_t value, unsigned size)
{
IMXTimerGState *s = (IMXTimerGState *)opaque;
DPRINTF("g-write(offset=%x, value = 0x%x)\n", (unsigned int)offset >> 2,
(unsigned int)value);
switch (offset >> 2) {
case 0: {
uint32_t oldcr = s->cr;
/* CR */
if (value & GPT_CR_SWR) { /* force reset */
value &= ~GPT_CR_SWR;
imx_timerg_reset(&s->busdev.qdev);
imx_timerg_update(s);
}
s->cr = value & ~0x7c00;
imx_timerg_set_freq(s);
if ((oldcr ^ value) & GPT_CR_EN) {
if (value & GPT_CR_EN) {
if (value & GPT_CR_ENMOD) {
ptimer_set_count(s->timer, s->ocr1);
s->cnt = 0;
}
ptimer_run(s->timer,
(value & GPT_CR_FRR) && (s->ocr1 != TIMER_MAX));
} else {
ptimer_stop(s->timer);
};
}
return;
}
case 1: /* Prescaler */
s->pr = value & 0xfff;
imx_timerg_set_freq(s);
return;
case 2: /* SR */
/*
* No point in implementing the status register bits to do with
* external interrupt sources.
*/
value &= GPT_SR_OF1 | GPT_SR_ROV;
s->sr &= ~value;
imx_timerg_update(s);
return;
case 3: /* IR -- interrupt register */
s->ir = value & 0x3f;
imx_timerg_update(s);
return;
case 4: /* OCR1 -- output compare register */
/* In non-freerun mode, reset count when this register is written */
if (!(s->cr & GPT_CR_FRR)) {
s->waiting_rov = 0;
ptimer_set_limit(s->timer, value, 1);
} else {
imx_timerg_update_counts(s);
if (value > s->cnt) {
s->waiting_rov = 0;
imx_timerg_reload(s, value);
} else {
s->waiting_rov = 1;
imx_timerg_reload(s, TIMER_MAX - s->cnt);
}
}
s->ocr1 = value;
return;
default:
IPRINTF("imx_timerg_write: Bad offset %x\n",
(int)offset >> 2);
}
}
static void imx_timerg_timeout(void *opaque)
{
IMXTimerGState *s = (IMXTimerGState *)opaque;
DPRINTF("imx_timerg_timeout, waiting rov=%d\n", s->waiting_rov);
if (s->cr & GPT_CR_FRR) {
/*
* Free running timer from 0 -> TIMERMAX
* Generates interrupt at TIMER_MAX and at cnt==ocr1
* If ocr1 == TIMER_MAX, then no need to reload timer.
*/
if (s->ocr1 == TIMER_MAX) {
DPRINTF("s->ocr1 == TIMER_MAX, FRR\n");
s->sr |= GPT_SR_OF1 | GPT_SR_ROV;
imx_timerg_update(s);
return;
}
if (s->waiting_rov) {
/*
* We were waiting for cnt==TIMER_MAX
*/
s->sr |= GPT_SR_ROV;
s->waiting_rov = 0;
s->cnt = 0;
imx_timerg_reload(s, s->ocr1);
} else {
/* Must have got a cnt==ocr1 timeout. */
s->sr |= GPT_SR_OF1;
s->cnt = s->ocr1;
s->waiting_rov = 1;
imx_timerg_reload(s, TIMER_MAX);
}
imx_timerg_update(s);
return;
}
s->sr |= GPT_SR_OF1;
imx_timerg_update(s);
}
static const MemoryRegionOps imx_timerg_ops = {
.read = imx_timerg_read,
.write = imx_timerg_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int imx_timerg_init(SysBusDevice *dev)
{
IMXTimerGState *s = FROM_SYSBUS(IMXTimerGState, dev);
QEMUBH *bh;
sysbus_init_irq(dev, &s->irq);
memory_region_init_io(&s->iomem, &imx_timerg_ops,
s, "imxg-timer",
0x00001000);
sysbus_init_mmio(dev, &s->iomem);
bh = qemu_bh_new(imx_timerg_timeout, s);
s->timer = ptimer_init(bh);
/* Hard reset resets extra bits in CR */
s->cr = 0;
return 0;
}
/*
* EPIT: Enhanced periodic interrupt timer
*/
#define CR_EN (1 << 0)
#define CR_ENMOD (1 << 1)
#define CR_OCIEN (1 << 2)
#define CR_RLD (1 << 3)
#define CR_PRESCALE_SHIFT (4)
#define CR_PRESCALE_MASK (0xfff)
#define CR_SWR (1 << 16)
#define CR_IOVW (1 << 17)
#define CR_DBGEN (1 << 18)
#define CR_EPIT (1 << 19)
#define CR_DOZEN (1 << 20)
#define CR_STOPEN (1 << 21)
#define CR_CLKSRC_SHIFT (24)
#define CR_CLKSRC_MASK (0x3 << CR_CLKSRC_SHIFT)
/*
* Exact clock frequencies vary from board to board.
* These are typical.
*/
static const IMXClk imx_timerp_clocks[] = {
0, /* disabled */
IPG, /* ipg_clk, ~532MHz */
IPG, /* ipg_clk_highfreq */
CLK_32k, /* ipg_clk_32k -- ~32kHz */
};
typedef struct {
SysBusDevice busdev;
ptimer_state *timer;
MemoryRegion iomem;
DeviceState *ccm;
uint32_t cr;
uint32_t lr;
uint32_t cmp;
uint32_t freq;
int int_level;
qemu_irq irq;
} IMXTimerPState;
/*
* Update interrupt status
*/
static void imx_timerp_update(IMXTimerPState *s)
{
if (s->int_level && (s->cr & CR_OCIEN)) {
qemu_irq_raise(s->irq);
} else {
qemu_irq_lower(s->irq);
}
}
static void imx_timerp_reset(DeviceState *dev)
{
IMXTimerPState *s = container_of(dev, IMXTimerPState, busdev.qdev);
s->cr = 0;
s->lr = TIMER_MAX;
s->int_level = 0;
s->cmp = 0;
ptimer_stop(s->timer);
ptimer_set_count(s->timer, TIMER_MAX);
}
static uint64_t imx_timerp_read(void *opaque, target_phys_addr_t offset,
unsigned size)
{
IMXTimerPState *s = (IMXTimerPState *)opaque;
DPRINTF("p-read(offset=%x)", offset >> 2);
switch (offset >> 2) {
case 0: /* Control Register */
DPRINTF("cr %x\n", s->cr);
return s->cr;
case 1: /* Status Register */
DPRINTF("int_level %x\n", s->int_level);
return s->int_level;
case 2: /* LR - ticks*/
DPRINTF("lr %x\n", s->lr);
return s->lr;
case 3: /* CMP */
DPRINTF("cmp %x\n", s->cmp);
return s->cmp;
case 4: /* CNT */
return ptimer_get_count(s->timer);
}
IPRINTF("imx_timerp_read: Bad offset %x\n",
(int)offset >> 2);
return 0;
}
static void set_timerp_freq(IMXTimerPState *s)
{
int clksrc;
unsigned prescaler;
uint32_t freq;
clksrc = (s->cr & CR_CLKSRC_MASK) >> CR_CLKSRC_SHIFT;
prescaler = 1 + ((s->cr >> CR_PRESCALE_SHIFT) & CR_PRESCALE_MASK);
freq = imx_clock_frequency(s->ccm, imx_timerp_clocks[clksrc]) / prescaler;
s->freq = freq;
DPRINTF("Setting ptimer frequency to %u\n", freq);
if (freq) {
ptimer_set_freq(s->timer, freq);
}
}
static void imx_timerp_write(void *opaque, target_phys_addr_t offset,
uint64_t value, unsigned size)
{
IMXTimerPState *s = (IMXTimerPState *)opaque;
DPRINTF("p-write(offset=%x, value = %x)\n", (unsigned int)offset >> 2,
(unsigned int)value);
switch (offset >> 2) {
case 0: /* CR */
if (value & CR_SWR) {
imx_timerp_reset(&s->busdev.qdev);
value &= ~CR_SWR;
}
s->cr = value & 0x03ffffff;
set_timerp_freq(s);
if (s->freq && (s->cr & CR_EN)) {
if (!(s->cr & CR_ENMOD)) {
ptimer_set_count(s->timer, s->lr);
}
ptimer_run(s->timer, 0);
} else {
ptimer_stop(s->timer);
}
break;
case 1: /* SR - ACK*/
s->int_level = 0;
imx_timerp_update(s);
break;
case 2: /* LR - set ticks */
s->lr = value;
ptimer_set_limit(s->timer, value, !!(s->cr & CR_IOVW));
break;
case 3: /* CMP */
s->cmp = value;
if (value) {
IPRINTF(
"Values for EPIT comparison other than zero not supported\n"
);
}
break;
default:
IPRINTF("imx_timerp_write: Bad offset %x\n",
(int)offset >> 2);
}
}
static void imx_timerp_tick(void *opaque)
{
IMXTimerPState *s = (IMXTimerPState *)opaque;
DPRINTF("imxp tick\n");
if (!(s->cr & CR_RLD)) {
ptimer_set_count(s->timer, TIMER_MAX);
}
s->int_level = 1;
imx_timerp_update(s);
}
void imx_timerp_create(const target_phys_addr_t addr,
qemu_irq irq,
DeviceState *ccm)
{
IMXTimerPState *pp;
DeviceState *dev;
dev = sysbus_create_simple("imx_timerp", addr, irq);
pp = container_of(dev, IMXTimerPState, busdev.qdev);
pp->ccm = ccm;
}
static const MemoryRegionOps imx_timerp_ops = {
.read = imx_timerp_read,
.write = imx_timerp_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const VMStateDescription vmstate_imx_timerp = {
.name = "imx-timerp",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(cr, IMXTimerPState),
VMSTATE_UINT32(lr, IMXTimerPState),
VMSTATE_UINT32(cmp, IMXTimerPState),
VMSTATE_UINT32(freq, IMXTimerPState),
VMSTATE_INT32(int_level, IMXTimerPState),
VMSTATE_PTIMER(timer, IMXTimerPState),
VMSTATE_END_OF_LIST()
}
};
static int imx_timerp_init(SysBusDevice *dev)
{
IMXTimerPState *s = FROM_SYSBUS(IMXTimerPState, dev);
QEMUBH *bh;
DPRINTF("imx_timerp_init\n");
sysbus_init_irq(dev, &s->irq);
memory_region_init_io(&s->iomem, &imx_timerp_ops,
s, "imxp-timer",
0x00001000);
sysbus_init_mmio(dev, &s->iomem);
bh = qemu_bh_new(imx_timerp_tick, s);
s->timer = ptimer_init(bh);
return 0;
}
void imx_timerg_create(const target_phys_addr_t addr,
qemu_irq irq,
DeviceState *ccm)
{
IMXTimerGState *pp;
DeviceState *dev;
dev = sysbus_create_simple("imx_timerg", addr, irq);
pp = container_of(dev, IMXTimerGState, busdev.qdev);
pp->ccm = ccm;
}
static void imx_timerg_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = imx_timerg_init;
dc->vmsd = &vmstate_imx_timerg;
dc->reset = imx_timerg_reset;
dc->desc = "i.MX general timer";
}
static void imx_timerp_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = imx_timerp_init;
dc->vmsd = &vmstate_imx_timerp;
dc->reset = imx_timerp_reset;
dc->desc = "i.MX periodic timer";
}
static const TypeInfo imx_timerp_info = {
.name = "imx_timerp",
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IMXTimerPState),
.class_init = imx_timerp_class_init,
};
static const TypeInfo imx_timerg_info = {
.name = "imx_timerg",
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IMXTimerGState),
.class_init = imx_timerg_class_init,
};
static void imx_timer_register_types(void)
{
type_register_static(&imx_timerp_info);
type_register_static(&imx_timerg_info);
}
type_init(imx_timer_register_types)
/*
* KZM Board System emulation.
*
* Copyright (c) 2008 OKL and 2011 NICTA
* Written by Hans at OK-Labs
* Updated by Peter Chubb.
*
* This code is licenced under the GPL, version 2 or later.
* See the file `COPYING' in the top level directory.
*
* It (partially) emulates a Kyoto Microcomputer
* KZM-ARM11-01 evaluation board, with a Freescale
* i.MX31 SoC
*/
#include "sysbus.h"
#include "exec-memory.h"
#include "hw.h"
#include "arm-misc.h"
#include "devices.h"
#include "net.h"
#include "sysemu.h"
#include "boards.h"
#include "pc.h" /* for the FPGA UART that emulates a 16550 */
#include "imx.h"
/* Memory map for Kzm Emulation Baseboard:
* 0x00000000-0x00003fff 16k secure ROM IGNORED
* 0x00004000-0x00407fff Reserved IGNORED
* 0x00404000-0x00407fff ROM IGNORED
* 0x00408000-0x0fffffff Reserved IGNORED
* 0x10000000-0x1fffbfff RAM aliasing IGNORED
* 0x1fffc000-0x1fffffff RAM EMULATED
* 0x20000000-0x2fffffff Reserved IGNORED
* 0x30000000-0x7fffffff I.MX31 Internal Register Space
* 0x43f00000 IO_AREA0
* 0x43f90000 UART1 EMULATED
* 0x43f94000 UART2 EMULATED
* 0x68000000 AVIC EMULATED
* 0x53f80000 CCM EMULATED
* 0x53f94000 PIT 1 EMULATED
* 0x53f98000 PIT 2 EMULATED
* 0x53f90000 GPT EMULATED
* 0x80000000-0x87ffffff RAM EMULATED
* 0x88000000-0x8fffffff RAM Aliasing EMULATED
* 0xa0000000-0xafffffff NAND Flash IGNORED
* 0xb0000000-0xb3ffffff Unavailable IGNORED
* 0xb4000000-0xb4000fff 8-bit free space IGNORED
* 0xb4001000-0xb400100f Board control IGNORED
* 0xb4001003 DIP switch
* 0xb4001010-0xb400101f 7-segment LED IGNORED
* 0xb4001020-0xb400102f LED IGNORED
* 0xb4001030-0xb400103f LED IGNORED
* 0xb4001040-0xb400104f FPGA, UART EMULATED
* 0xb4001050-0xb400105f FPGA, UART EMULATED
* 0xb4001060-0xb40fffff FPGA IGNORED
* 0xb6000000-0xb61fffff LAN controller EMULATED
* 0xb6200000-0xb62fffff FPGA NAND Controller IGNORED
* 0xb6300000-0xb7ffffff Free IGNORED
* 0xb8000000-0xb8004fff Memory control registers IGNORED
* 0xc0000000-0xc3ffffff PCMCIA/CF IGNORED
* 0xc4000000-0xffffffff Reserved IGNORED
*/
#define KZM_RAMADDRESS (0x80000000)
#define KZM_FPGA (0xb4001040)
static struct arm_boot_info kzm_binfo = {
.loader_start = KZM_RAMADDRESS,
.board_id = 1722,
};
static void kzm_init(ram_addr_t ram_size,
const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
ARMCPU *cpu;
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *ram = g_new(MemoryRegion, 1);
MemoryRegion *sram = g_new(MemoryRegion, 1);
MemoryRegion *ram_alias = g_new(MemoryRegion, 1);
qemu_irq *cpu_pic;
DeviceState *dev;
DeviceState *ccm;
if (!cpu_model) {
cpu_model = "arm1136";
}
cpu = cpu_arm_init(cpu_model);
if (!cpu) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
/* On a real system, the first 16k is a `secure boot rom' */
memory_region_init_ram(ram, "kzm.ram", ram_size);
vmstate_register_ram_global(ram);
memory_region_add_subregion(address_space_mem, KZM_RAMADDRESS, ram);
memory_region_init_alias(ram_alias, "ram.alias", ram, 0, ram_size);
memory_region_add_subregion(address_space_mem, 0x88000000, ram_alias);
memory_region_init_ram(sram, "kzm.sram", 0x4000);
memory_region_add_subregion(address_space_mem, 0x1FFFC000, sram);
cpu_pic = arm_pic_init_cpu(cpu);
dev = sysbus_create_varargs("imx_avic", 0x68000000,
cpu_pic[ARM_PIC_CPU_IRQ],
cpu_pic[ARM_PIC_CPU_FIQ], NULL);
imx_serial_create(0, 0x43f90000, qdev_get_gpio_in(dev, 45));
imx_serial_create(1, 0x43f94000, qdev_get_gpio_in(dev, 32));
ccm = sysbus_create_simple("imx_ccm", 0x53f80000, NULL);
imx_timerp_create(0x53f94000, qdev_get_gpio_in(dev, 28), ccm);
imx_timerp_create(0x53f98000, qdev_get_gpio_in(dev, 27), ccm);
imx_timerg_create(0x53f90000, qdev_get_gpio_in(dev, 29), ccm);
if (nd_table[0].vlan) {
lan9118_init(&nd_table[0], 0xb6000000, qdev_get_gpio_in(dev, 52));
}
if (serial_hds[2]) { /* touchscreen */
serial_mm_init(address_space_mem, KZM_FPGA+0x10, 0,
qdev_get_gpio_in(dev, 52),
14745600, serial_hds[2],
DEVICE_NATIVE_ENDIAN);
}
kzm_binfo.ram_size = ram_size;
kzm_binfo.kernel_filename = kernel_filename;
kzm_binfo.kernel_cmdline = kernel_cmdline;
kzm_binfo.initrd_filename = initrd_filename;
kzm_binfo.nb_cpus = 1;
arm_load_kernel(cpu, &kzm_binfo);
}
static QEMUMachine kzm_machine = {
.name = "kzm",
.desc = "ARM KZM Emulation Baseboard (ARM1136)",
.init = kzm_init,
};
static void kzm_machine_init(void)
{
qemu_register_machine(&kzm_machine);
}
machine_init(kzm_machine_init)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册