提交 cdf79b64 编写于 作者: A Anthony Liguori

Merge remote-tracking branch 'bonzini/iommu-for-anthony' into staging

# By Paolo Bonzini
# Via Paolo Bonzini
* bonzini/iommu-for-anthony: (22 commits)
  memory: add return value to address_space_rw/read/write
  memory: propagate errors on I/O dispatch
  exec: just use io_mem_read/io_mem_write for 8-byte I/O accesses
  memory: correctly handle endian-swapped 64-bit accesses
  memory: split accesses even when the old MMIO callbacks are used
  memory: add big endian support to access_with_adjusted_size
  memory: accept mismatching sizes in memory_region_access_valid
  memory: add address_space_access_valid
  exec: implement .valid.accepts for subpages
  memory: export memory_region_access_valid to exec.c
  exec: introduce memory_access_size
  exec: introduce memory_access_is_direct
  exec: expect mr->ops to be initialized for ROM
  memory: assign MemoryRegionOps to all regions
  memory: move unassigned_mem_ops to memory.c
  memory: add address_space_translate
  memory: dispatch unassigned accesses based on .valid.accepts
  exec: do not use error_mem_read
  exec: make io_mem_unassigned private
  cputlb: simplify tlb_set_page
  ...

Message-id: 1369947836-2638-1-git-send-email-pbonzini@redhat.com
Signed-off-by: NAnthony Liguori <aliguori@us.ibm.com>
......@@ -248,13 +248,18 @@ void tlb_set_page(CPUArchState *env, target_ulong vaddr,
target_ulong code_address;
uintptr_t addend;
CPUTLBEntry *te;
hwaddr iotlb;
hwaddr iotlb, xlat, sz;
assert(size >= TARGET_PAGE_SIZE);
if (size != TARGET_PAGE_SIZE) {
tlb_add_large_page(env, vaddr, size);
}
section = phys_page_find(address_space_memory.dispatch, paddr >> TARGET_PAGE_BITS);
sz = size;
section = address_space_translate(&address_space_memory, paddr, &xlat, &sz,
false);
assert(sz >= TARGET_PAGE_SIZE);
#if defined(DEBUG_TLB)
printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
" prot=%x idx=%d pd=0x%08lx\n",
......@@ -262,22 +267,18 @@ void tlb_set_page(CPUArchState *env, target_ulong vaddr,
#endif
address = vaddr;
if (!(memory_region_is_ram(section->mr) ||
memory_region_is_romd(section->mr))) {
/* IO memory case (romd handled later) */
if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
/* IO memory case */
address |= TLB_MMIO;
}
if (memory_region_is_ram(section->mr) ||
memory_region_is_romd(section->mr)) {
addend = (uintptr_t)memory_region_get_ram_ptr(section->mr)
+ memory_region_section_addr(section, paddr);
} else {
addend = 0;
} else {
/* TLB_MMIO for rom/romd handled below */
addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
}
code_address = address;
iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, prot,
&address);
iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, xlat,
prot, &address);
index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
env->iotlb[mmu_idx][index] = iotlb - vaddr;
......@@ -300,9 +301,7 @@ void tlb_set_page(CPUArchState *env, target_ulong vaddr,
/* Write access calls the I/O callback. */
te->addr_write = address | TLB_MMIO;
} else if (memory_region_is_ram(section->mr)
&& !cpu_physical_memory_is_dirty(
section->mr->ram_addr
+ memory_region_section_addr(section, paddr))) {
&& !cpu_physical_memory_is_dirty(section->mr->ram_addr + xlat)) {
te->addr_write = address | TLB_NOTDIRTY;
} else {
te->addr_write = address;
......
......@@ -298,6 +298,11 @@ bool iommu_dma_memory_valid(DMAContext *dma, dma_addr_t addr, dma_addr_t len,
plen = len;
}
if (!address_space_access_valid(dma->as, paddr, len,
dir == DMA_DIRECTION_FROM_DEVICE)) {
return false;
}
len -= plen;
addr += plen;
}
......
此差异已折叠。
......@@ -110,9 +110,7 @@ void stq_phys(hwaddr addr, uint64_t val);
void cpu_physical_memory_write_rom(hwaddr addr,
const uint8_t *buf, int len);
extern struct MemoryRegion io_mem_ram;
extern struct MemoryRegion io_mem_rom;
extern struct MemoryRegion io_mem_unassigned;
extern struct MemoryRegion io_mem_notdirty;
#endif
......
......@@ -26,8 +26,6 @@ void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
target_ulong vaddr);
void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
uintptr_t length);
MemoryRegionSection *phys_page_find(struct AddressSpaceDispatch *d,
hwaddr index);
void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length);
void tlb_set_dirty(CPUArchState *env, target_ulong vaddr);
extern int tlb_flush_count;
......@@ -35,11 +33,11 @@ extern int tlb_flush_count;
/* exec.c */
void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr);
hwaddr memory_region_section_get_iotlb(CPUArchState *env,
MemoryRegionSection *section,
target_ulong vaddr,
hwaddr paddr,
int prot,
target_ulong *address);
MemoryRegionSection *section,
target_ulong vaddr,
hwaddr paddr, hwaddr xlat,
int prot,
target_ulong *address);
bool memory_region_is_unassigned(MemoryRegion *mr);
#endif
......
......@@ -367,9 +367,9 @@ bool is_tcg_gen_code(uintptr_t pc_ptr);
#if !defined(CONFIG_USER_ONLY)
struct MemoryRegion *iotlb_to_region(hwaddr index);
uint64_t io_mem_read(struct MemoryRegion *mr, hwaddr addr,
unsigned size);
void io_mem_write(struct MemoryRegion *mr, hwaddr addr,
bool io_mem_read(struct MemoryRegion *mr, hwaddr addr,
uint64_t *pvalue, unsigned size);
bool io_mem_write(struct MemoryRegion *mr, hwaddr addr,
uint64_t value, unsigned size);
void tlb_fill(CPUArchState *env1, target_ulong addr, int is_write, int mmu_idx,
......
......@@ -43,6 +43,11 @@ struct AddressSpaceDispatch {
void address_space_init_dispatch(AddressSpace *as);
void address_space_destroy_dispatch(AddressSpace *as);
extern const MemoryRegionOps unassigned_mem_ops;
bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr,
unsigned size, bool is_write);
ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
MemoryRegion *mr);
ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr);
......
......@@ -751,23 +751,6 @@ void memory_region_set_alias_offset(MemoryRegion *mr,
MemoryRegionSection memory_region_find(MemoryRegion *mr,
hwaddr addr, uint64_t size);
/**
* memory_region_section_addr: get offset within MemoryRegionSection
*
* Returns offset within MemoryRegionSection
*
* @section: the memory region section being queried
* @addr: address in address space
*/
static inline hwaddr
memory_region_section_addr(MemoryRegionSection *section,
hwaddr addr)
{
addr -= section->offset_within_address_space;
addr += section->offset_within_region;
return addr;
}
/**
* address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
*
......@@ -842,32 +825,67 @@ void address_space_destroy(AddressSpace *as);
/**
* address_space_rw: read from or write to an address space.
*
* Return true if the operation hit any unassigned memory.
*
* @as: #AddressSpace to be accessed
* @addr: address within that address space
* @buf: buffer with the data transferred
* @is_write: indicates the transfer direction
*/
void address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
int len, bool is_write);
/**
* address_space_write: write to address space.
*
* Return true if the operation hit any unassigned memory.
*
* @as: #AddressSpace to be accessed
* @addr: address within that address space
* @buf: buffer with the data transferred
*/
void address_space_write(AddressSpace *as, hwaddr addr,
bool address_space_write(AddressSpace *as, hwaddr addr,
const uint8_t *buf, int len);
/**
* address_space_read: read from an address space.
*
* Return true if the operation hit any unassigned memory.
*
* @as: #AddressSpace to be accessed
* @addr: address within that address space
* @buf: buffer with the data transferred
*/
void address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len);
bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len);
/* address_space_translate: translate an address range into an address space
* into a MemoryRegionSection and an address range into that section
*
* @as: #AddressSpace to be accessed
* @addr: address within that address space
* @xlat: pointer to address within the returned memory region section's
* #MemoryRegion.
* @len: pointer to length
* @is_write: indicates the transfer direction
*/
MemoryRegionSection *address_space_translate(AddressSpace *as, hwaddr addr,
hwaddr *xlat, hwaddr *len,
bool is_write);
/* address_space_access_valid: check for validity of accessing an address
* space range
*
* Check whether memory is assigned to the given address space range.
*
* For now, addr and len should be aligned to a page size. This limitation
* will be lifted in the future.
*
* @as: #AddressSpace to be accessed
* @addr: address within that address space
* @len: length of the area to be checked
* @is_write: indicates the transfer direction
*/
bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
/* address_space_map: map a physical memory region into a host virtual address
*
......
......@@ -63,31 +63,18 @@ static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
target_ulong addr,
uintptr_t retaddr)
{
DATA_TYPE res;
uint64_t val;
MemoryRegion *mr = iotlb_to_region(physaddr);
physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
env->mem_io_pc = retaddr;
if (mr != &io_mem_ram && mr != &io_mem_rom
&& mr != &io_mem_unassigned
&& mr != &io_mem_notdirty
&& !can_do_io(env)) {
if (mr != &io_mem_rom && mr != &io_mem_notdirty && !can_do_io(env)) {
cpu_io_recompile(env, retaddr);
}
env->mem_io_vaddr = addr;
#if SHIFT <= 2
res = io_mem_read(mr, physaddr, 1 << SHIFT);
#else
#ifdef TARGET_WORDS_BIGENDIAN
res = io_mem_read(mr, physaddr, 4) << 32;
res |= io_mem_read(mr, physaddr + 4, 4);
#else
res = io_mem_read(mr, physaddr, 4);
res |= io_mem_read(mr, physaddr + 4, 4) << 32;
#endif
#endif /* SHIFT > 2 */
return res;
io_mem_read(mr, physaddr, &val, 1 << SHIFT);
return val;
}
/* handle all cases except unaligned access which span two pages */
......@@ -218,26 +205,13 @@ static inline void glue(io_write, SUFFIX)(CPUArchState *env,
MemoryRegion *mr = iotlb_to_region(physaddr);
physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
if (mr != &io_mem_ram && mr != &io_mem_rom
&& mr != &io_mem_unassigned
&& mr != &io_mem_notdirty
&& !can_do_io(env)) {
if (mr != &io_mem_rom && mr != &io_mem_notdirty && !can_do_io(env)) {
cpu_io_recompile(env, retaddr);
}
env->mem_io_vaddr = addr;
env->mem_io_pc = retaddr;
#if SHIFT <= 2
io_mem_write(mr, physaddr, val, 1 << SHIFT);
#else
#ifdef TARGET_WORDS_BIGENDIAN
io_mem_write(mr, physaddr, (val >> 32), 4);
io_mem_write(mr, physaddr + 4, (uint32_t)val, 4);
#else
io_mem_write(mr, physaddr, (uint32_t)val, 4);
io_mem_write(mr, physaddr + 4, val >> 32, 4);
#endif
#endif /* SHIFT > 2 */
}
void glue(glue(helper_st, SUFFIX), MMUSUFFIX)(CPUArchState *env,
......
......@@ -113,7 +113,8 @@ static inline bool dma_memory_valid(DMAContext *dma,
DMADirection dir)
{
if (!dma_has_iommu(dma)) {
return true;
return address_space_access_valid(dma->as, addr, len,
dir == DMA_DIRECTION_FROM_DEVICE);
} else {
return iommu_dma_memory_valid(dma, addr, len, dir);
}
......
......@@ -22,6 +22,8 @@
#include "exec/memory-internal.h"
//#define DEBUG_UNASSIGNED
static unsigned memory_region_transaction_depth;
static bool memory_region_update_pending;
static bool global_dirty_log = false;
......@@ -300,6 +302,20 @@ static void flatview_simplify(FlatView *view)
}
}
static void memory_region_oldmmio_read_accessor(void *opaque,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask)
{
MemoryRegion *mr = opaque;
uint64_t tmp;
tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
*value |= (tmp & mask) << shift;
}
static void memory_region_read_accessor(void *opaque,
hwaddr addr,
uint64_t *value,
......@@ -317,6 +333,20 @@ static void memory_region_read_accessor(void *opaque,
*value |= (tmp & mask) << shift;
}
static void memory_region_oldmmio_write_accessor(void *opaque,
hwaddr addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask)
{
MemoryRegion *mr = opaque;
uint64_t tmp;
tmp = (*value >> shift) & mask;
mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
}
static void memory_region_write_accessor(void *opaque,
hwaddr addr,
uint64_t *value,
......@@ -357,11 +387,17 @@ static void access_with_adjusted_size(hwaddr addr,
if (!access_size_max) {
access_size_max = 4;
}
/* FIXME: support unaligned access? */
access_size = MAX(MIN(size, access_size_max), access_size_min);
access_mask = -1ULL >> (64 - access_size * 8);
for (i = 0; i < size; i += access_size) {
/* FIXME: big-endian support */
#ifdef TARGET_WORDS_BIGENDIAN
access(opaque, addr + i, value, access_size,
(size - access_size - i) * 8, access_mask);
#else
access(opaque, addr + i, value, access_size, i * 8, access_mask);
#endif
}
}
......@@ -786,7 +822,8 @@ void memory_region_init(MemoryRegion *mr,
const char *name,
uint64_t size)
{
mr->ops = NULL;
mr->ops = &unassigned_mem_ops;
mr->opaque = NULL;
mr->parent = NULL;
mr->size = int128_make64(size);
if (size == UINT64_MAX) {
......@@ -814,29 +851,74 @@ void memory_region_init(MemoryRegion *mr,
mr->flush_coalesced_mmio = false;
}
static bool memory_region_access_valid(MemoryRegion *mr,
hwaddr addr,
unsigned size,
bool is_write)
static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
unsigned size)
{
if (mr->ops->valid.accepts
&& !mr->ops->valid.accepts(mr->opaque, addr, size, is_write)) {
return false;
}
#ifdef DEBUG_UNASSIGNED
printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
#endif
#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
#endif
return 0;
}
static void unassigned_mem_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
#ifdef DEBUG_UNASSIGNED
printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
#endif
#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
#endif
}
static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
unsigned size, bool is_write)
{
return false;
}
const MemoryRegionOps unassigned_mem_ops = {
.valid.accepts = unassigned_mem_accepts,
.endianness = DEVICE_NATIVE_ENDIAN,
};
bool memory_region_access_valid(MemoryRegion *mr,
hwaddr addr,
unsigned size,
bool is_write)
{
int access_size_min, access_size_max;
int access_size, i;
if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
return false;
}
/* Treat zero as compatibility all valid */
if (!mr->ops->valid.max_access_size) {
if (!mr->ops->valid.accepts) {
return true;
}
if (size > mr->ops->valid.max_access_size
|| size < mr->ops->valid.min_access_size) {
return false;
access_size_min = mr->ops->valid.min_access_size;
if (!mr->ops->valid.min_access_size) {
access_size_min = 1;
}
access_size_max = mr->ops->valid.max_access_size;
if (!mr->ops->valid.max_access_size) {
access_size_max = 4;
}
access_size = MAX(MIN(size, access_size_max), access_size_min);
for (i = 0; i < size; i += access_size) {
if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
is_write)) {
return false;
}
}
return true;
}
......@@ -846,20 +928,16 @@ static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
{
uint64_t data = 0;
if (!memory_region_access_valid(mr, addr, size, false)) {
return -1U; /* FIXME: better signalling */
}
if (!mr->ops->read) {
return mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
if (mr->ops->read) {
access_with_adjusted_size(addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_read_accessor, mr);
} else {
access_with_adjusted_size(addr, &data, size, 1, 4,
memory_region_oldmmio_read_accessor, mr);
}
/* FIXME: support unaligned access */
access_with_adjusted_size(addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_read_accessor, mr);
return data;
}
......@@ -875,44 +953,52 @@ static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
case 4:
*data = bswap32(*data);
break;
case 8:
*data = bswap64(*data);
break;
default:
abort();
}
}
}
static uint64_t memory_region_dispatch_read(MemoryRegion *mr,
hwaddr addr,
unsigned size)
static bool memory_region_dispatch_read(MemoryRegion *mr,
hwaddr addr,
uint64_t *pval,
unsigned size)
{
uint64_t ret;
if (!memory_region_access_valid(mr, addr, size, false)) {
*pval = unassigned_mem_read(mr, addr, size);
return true;
}
ret = memory_region_dispatch_read1(mr, addr, size);
adjust_endianness(mr, &ret, size);
return ret;
*pval = memory_region_dispatch_read1(mr, addr, size);
adjust_endianness(mr, pval, size);
return false;
}
static void memory_region_dispatch_write(MemoryRegion *mr,
static bool memory_region_dispatch_write(MemoryRegion *mr,
hwaddr addr,
uint64_t data,
unsigned size)
{
if (!memory_region_access_valid(mr, addr, size, true)) {
return; /* FIXME: better signalling */
unassigned_mem_write(mr, addr, data, size);
return true;
}
adjust_endianness(mr, &data, size);
if (!mr->ops->write) {
mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, data);
return;
if (mr->ops->write) {
access_with_adjusted_size(addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_write_accessor, mr);
} else {
access_with_adjusted_size(addr, &data, size, 1, 4,
memory_region_oldmmio_write_accessor, mr);
}
/* FIXME: support unaligned access */
access_with_adjusted_size(addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_write_accessor, mr);
return false;
}
void memory_region_init_io(MemoryRegion *mr,
......@@ -977,40 +1063,11 @@ void memory_region_init_rom_device(MemoryRegion *mr,
mr->ram_addr = qemu_ram_alloc(size, mr);
}
static uint64_t invalid_read(void *opaque, hwaddr addr,
unsigned size)
{
MemoryRegion *mr = opaque;
if (!mr->warning_printed) {
fprintf(stderr, "Invalid read from memory region %s\n", mr->name);
mr->warning_printed = true;
}
return -1U;
}
static void invalid_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
MemoryRegion *mr = opaque;
if (!mr->warning_printed) {
fprintf(stderr, "Invalid write to memory region %s\n", mr->name);
mr->warning_printed = true;
}
}
static const MemoryRegionOps reservation_ops = {
.read = invalid_read,
.write = invalid_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
void memory_region_init_reservation(MemoryRegion *mr,
const char *name,
uint64_t size)
{
memory_region_init_io(mr, &reservation_ops, mr, name, size);
memory_region_init_io(mr, &unassigned_mem_ops, mr, name, size);
}
void memory_region_destroy(MemoryRegion *mr)
......@@ -1594,15 +1651,15 @@ void address_space_destroy(AddressSpace *as)
g_free(as->ioeventfds);
}
uint64_t io_mem_read(MemoryRegion *mr, hwaddr addr, unsigned size)
bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
{
return memory_region_dispatch_read(mr, addr, size);
return memory_region_dispatch_read(mr, addr, pval, size);
}
void io_mem_write(MemoryRegion *mr, hwaddr addr,
bool io_mem_write(MemoryRegion *mr, hwaddr addr,
uint64_t val, unsigned size)
{
memory_region_dispatch_write(mr, addr, val, size);
return memory_region_dispatch_write(mr, addr, val, size);
}
typedef struct MemoryRegionList MemoryRegionList;
......
......@@ -1354,15 +1354,15 @@ void tb_invalidate_phys_addr(hwaddr addr)
{
ram_addr_t ram_addr;
MemoryRegionSection *section;
hwaddr l = 1;
section = phys_page_find(address_space_memory.dispatch,
addr >> TARGET_PAGE_BITS);
section = address_space_translate(&address_space_memory, addr, &addr, &l, false);
if (!(memory_region_is_ram(section->mr)
|| memory_region_is_romd(section->mr))) {
return;
}
ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ memory_region_section_addr(section, addr);
+ addr;
tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
}
#endif /* TARGET_HAS_ICE && !defined(CONFIG_USER_ONLY) */
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册