提交 bbaf29c7 编写于 作者: E edgar_igl

* target-cris/op.c: Make sure the bit-test insn only updates the XNZ flags.

* target-cris/helper.c: Update ERP for user-mode simulation aswell.
* hw/etraxfs_timer.c: Support multiple timers.
* hw/etraxfs_ser.c: Multiple ports, the data just goes to stdout.


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4004 c046a42c-6fe2-441c-8c8c-71466251a162
上级 bffd92fe
......@@ -26,23 +26,28 @@
#include <ctype.h>
#include "hw.h"
#define RW_TR_DMA_EN 0xb0026004
#define RW_DOUT 0xb002601c
#define RW_STAT_DIN 0xb0026020
#define R_STAT_DIN 0xb0026024
#define D(x)
#define RW_TR_DMA_EN 0x04
#define RW_DOUT 0x1c
#define RW_STAT_DIN 0x20
#define R_STAT_DIN 0x24
static uint32_t ser_readb (void *opaque, target_phys_addr_t addr)
{
CPUState *env = opaque;
CPUState *env;
uint32_t r = 0;
printf ("%s %x pc=%x\n", __func__, addr, env->pc);
env = opaque;
D(printf ("%s %x pc=%x\n", __func__, addr, env->pc));
return r;
}
static uint32_t ser_readw (void *opaque, target_phys_addr_t addr)
{
CPUState *env = opaque;
CPUState *env;
uint32_t r = 0;
printf ("%s %x pc=%x\n", __func__, addr, env->pc);
env = opaque;
D(printf ("%s %x pc=%x\n", __func__, addr, env->pc));
return r;
}
......@@ -51,7 +56,7 @@ static uint32_t ser_readl (void *opaque, target_phys_addr_t addr)
CPUState *env = opaque;
uint32_t r = 0;
switch (addr)
switch (addr & 0xfff)
{
case RW_TR_DMA_EN:
break;
......@@ -70,21 +75,23 @@ static uint32_t ser_readl (void *opaque, target_phys_addr_t addr)
static void
ser_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
{
CPUState *env = opaque;
printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc);
CPUState *env;
env = opaque;
D(printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc));
}
static void
ser_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
{
CPUState *env = opaque;
printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc);
CPUState *env;
env = opaque;
D(printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc));
}
static void
ser_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
CPUState *env = opaque;
switch (addr)
switch (addr & 0xfff)
{
case RW_TR_DMA_EN:
break;
......@@ -119,4 +126,7 @@ void etraxfs_ser_init(CPUState *env, qemu_irq *irqs)
ser_regs = cpu_register_io_memory(0, ser_read, ser_write, env);
cpu_register_physical_memory (0xb0026000, 0x3c, ser_regs);
cpu_register_physical_memory (0xb0028000, 0x3c, ser_regs);
cpu_register_physical_memory (0xb002a000, 0x3c, ser_regs);
cpu_register_physical_memory (0xb002c000, 0x3c, ser_regs);
}
......@@ -26,6 +26,8 @@
#include "hw.h"
#include "qemu-timer.h"
#define D(x)
void etrax_ack_irq(CPUState *env, uint32_t mask);
#define R_TIME 0xb001e038
......@@ -54,9 +56,18 @@ struct fs_timer_t {
CPUState *env;
qemu_irq *irq;
uint32_t mask;
struct timeval last;
};
static struct fs_timer_t timer0;
static struct fs_timer_t timer[2];
static inline int timer_index(target_phys_addr_t addr)
{
int t = 0;
if (addr >= 0xb005e000)
t = 1;
return t;
}
/* diff two timevals. Return a single int in us. */
int diff_timeval_us(struct timeval *a, struct timeval *b)
......@@ -71,16 +82,20 @@ int diff_timeval_us(struct timeval *a, struct timeval *b)
static uint32_t timer_readb (void *opaque, target_phys_addr_t addr)
{
CPUState *env = opaque;
CPUState *env;
uint32_t r = 0;
printf ("%s %x pc=%x\n", __func__, addr, env->pc);
env = opaque;
D(printf ("%s %x pc=%x\n", __func__, addr, env->pc));
return r;
}
static uint32_t timer_readw (void *opaque, target_phys_addr_t addr)
{
CPUState *env = opaque;
CPUState *env;
uint32_t r = 0;
printf ("%s %x pc=%x\n", __func__, addr, env->pc);
env = opaque;
D(printf ("%s %x pc=%x\n", __func__, addr, env->pc));
return r;
}
......@@ -88,24 +103,25 @@ static uint32_t timer_readl (void *opaque, target_phys_addr_t addr)
{
CPUState *env = opaque;
uint32_t r = 0;
int t = timer_index(addr);
switch (addr) {
case R_TMR0_DATA:
break;
case R_TMR1_DATA:
printf ("R_TMR1_DATA\n");
D(printf ("R_TMR1_DATA\n"));
break;
case R_TIME:
{
static struct timeval last;
struct timeval now;
gettimeofday(&now, NULL);
if (!(last.tv_sec == 0 && last.tv_usec == 0)) {
r = diff_timeval_us(&now, &last);
if (!(timer[t].last.tv_sec == 0
&& timer[t].last.tv_usec == 0)) {
r = diff_timeval_us(&now, &timer[t].last);
r *= 1000; /* convert to ns. */
r++; /* make sure we increase for each call. */
}
last = now;
timer[t].last = now;
break;
}
......@@ -125,14 +141,16 @@ static uint32_t timer_readl (void *opaque, target_phys_addr_t addr)
static void
timer_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
{
CPUState *env = opaque;
printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc);
CPUState *env;
env = opaque;
D(printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc));
}
static void
timer_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
{
CPUState *env = opaque;
printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc);
CPUState *env;
env = opaque;
D(printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc));
}
static void write_ctrl(struct fs_timer_t *t, uint32_t v)
......@@ -165,7 +183,7 @@ static void write_ctrl(struct fs_timer_t *t, uint32_t v)
if (t->limit > 2048)
{
t->scale = 2048;
ptimer_set_period(timer0.ptimer, freq_hz / t->scale);
ptimer_set_period(t->ptimer, freq_hz / t->scale);
}
printf ("op=%d\n", op);
......@@ -187,11 +205,11 @@ static void write_ctrl(struct fs_timer_t *t, uint32_t v)
}
}
static void timer_ack_irq(void)
static void timer_ack_irq(struct fs_timer_t *t)
{
if (!(r_intr & timer0.mask & rw_intr_mask)) {
qemu_irq_lower(timer0.irq[0]);
etrax_ack_irq(timer0.env, 1 << 0x1b);
if (!(r_intr & t->mask & rw_intr_mask)) {
qemu_irq_lower(t->irq[0]);
etrax_ack_irq(t->env, 1 << 0x1b);
}
}
......@@ -199,31 +217,33 @@ static void
timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
CPUState *env = opaque;
printf ("%s %x %x pc=%x\n",
__func__, addr, value, env->pc);
int t = timer_index(addr);
D(printf ("%s %x %x pc=%x\n",
__func__, addr, value, env->pc));
switch (addr)
{
case RW_TMR0_DIV:
printf ("RW_TMR0_DIV=%x\n", value);
timer0.limit = value;
D(printf ("RW_TMR0_DIV=%x\n", value));
timer[t].limit = value;
break;
case RW_TMR0_CTRL:
printf ("RW_TMR0_CTRL=%x\n", value);
write_ctrl(&timer0, value);
D(printf ("RW_TMR0_CTRL=%x\n", value));
write_ctrl(&timer[t], value);
break;
case RW_TMR1_DIV:
printf ("RW_TMR1_DIV=%x\n", value);
D(printf ("RW_TMR1_DIV=%x\n", value));
break;
case RW_TMR1_CTRL:
printf ("RW_TMR1_CTRL=%x\n", value);
D(printf ("RW_TMR1_CTRL=%x\n", value));
break;
case RW_INTR_MASK:
printf ("RW_INTR_MASK=%x\n", value);
D(printf ("RW_INTR_MASK=%x\n", value));
rw_intr_mask = value;
break;
case RW_ACK_INTR:
r_intr &= ~value;
timer_ack_irq();
timer_ack_irq(&timer[t]);
break;
default:
printf ("%s %x %x pc=%x\n",
......@@ -247,7 +267,6 @@ static CPUWriteMemoryFunc *timer_write[] = {
static void timer_irq(void *opaque)
{
struct fs_timer_t *t = opaque;
r_intr |= t->mask;
if (t->mask & rw_intr_mask) {
qemu_irq_raise(t->irq[0]);
......@@ -258,12 +277,19 @@ void etraxfs_timer_init(CPUState *env, qemu_irq *irqs)
{
int timer_regs;
timer0.bh = qemu_bh_new(timer_irq, &timer0);
timer0.ptimer = ptimer_init(timer0.bh);
timer0.irq = irqs + 0x1b;
timer0.mask = 1;
timer0.env = env;
timer[0].bh = qemu_bh_new(timer_irq, &timer[0]);
timer[0].ptimer = ptimer_init(timer[0].bh);
timer[0].irq = irqs + 0x1b;
timer[0].mask = 1;
timer[0].env = env;
timer[1].bh = qemu_bh_new(timer_irq, &timer[1]);
timer[1].ptimer = ptimer_init(timer[1].bh);
timer[1].irq = irqs + 0x1b;
timer[1].mask = 1;
timer[1].env = env;
timer_regs = cpu_register_io_memory(0, timer_read, timer_write, env);
cpu_register_physical_memory (0xb001e000, 0x5c, timer_regs);
cpu_register_physical_memory (0xb005e000, 0x5c, timer_regs);
}
......@@ -32,22 +32,23 @@
void do_interrupt (CPUState *env)
{
env->exception_index = -1;
env->exception_index = -1;
env->pregs[PR_ERP] = env->pc;
}
int cpu_cris_handle_mmu_fault(CPUState * env, target_ulong address, int rw,
int mmu_idx, int is_softmmu)
{
env->exception_index = 0xaa;
env->debug1 = address;
cpu_dump_state(env, stderr, fprintf, 0);
printf("%s addr=%x env->pc=%x\n", __func__, address, env->pc);
return 1;
env->exception_index = 0xaa;
env->debug1 = address;
cpu_dump_state(env, stderr, fprintf, 0);
env->pregs[PR_ERP] = env->pc;
return 1;
}
target_phys_addr_t cpu_get_phys_page_debug(CPUState * env, target_ulong addr)
{
return addr;
return addr;
}
#else /* !CONFIG_USER_ONLY */
......@@ -61,7 +62,6 @@ int cpu_cris_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
address &= TARGET_PAGE_MASK;
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
// printf ("%s pc=%x %x w=%d smmu=%d\n", __func__, env->pc, address, rw, is_softmmu);
miss = cris_mmu_translate(&res, env, address, rw, mmu_idx);
if (miss)
{
......@@ -73,7 +73,6 @@ int cpu_cris_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
{
phy = res.phy;
}
// printf ("a=%x phy=%x\n", address, phy);
return tlb_set_page(env, address, phy, prot, mmu_idx, is_softmmu);
}
......@@ -113,7 +112,6 @@ void do_interrupt(CPUState *env)
break;
case EXCP_MMU_MISS:
// printf ("MMU miss\n");
irqnum = 4;
ebp = env->pregs[PR_EBP];
isr = ldl_code(ebp + irqnum * 4);
......
......@@ -967,6 +967,8 @@ void OPPROTO op_btst_T0_T1 (void)
The N flag is set according to the selected bit in the dest reg.
The Z flag is set if the selected bit and all bits to the right are
zero.
The X flag is cleared.
Other flags are left untouched.
The destination reg is not affected.*/
unsigned int fz, sbit, bset, mask, masked_t0;
......@@ -975,8 +977,11 @@ void OPPROTO op_btst_T0_T1 (void)
mask = sbit == 31 ? -1 : (1 << (sbit + 1)) - 1;
masked_t0 = T0 & mask;
fz = !(masked_t0 | bset);
/* Clear the X, N and Z flags. */
T0 = env->pregs[PR_CCS] & ~(X_FLAG | N_FLAG | Z_FLAG);
/* Set the N and Z flags accordingly. */
T0 = (bset << 3) | (fz << 2);
T0 |= (bset << 3) | (fz << 2);
RETURN();
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册