提交 99ca0219 编写于 作者: B Blue Swirl

Sparc: fix coding style

Before the next patches, fix coding style of the areas affected.
Reviewed-by: NRichard Henderson <rth@twiddle.net>
Signed-off-by: NBlue Swirl <blauwirbel@gmail.com>
上级 bc265319
...@@ -92,7 +92,7 @@ static void do_unassigned_access(target_ulong addr, int is_write, int is_exec, ...@@ -92,7 +92,7 @@ static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
#endif #endif
#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
// Calculates TSB pointer value for fault page size 8k or 64k /* Calculates TSB pointer value for fault page size 8k or 64k */
static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register, static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
uint64_t tag_access_register, uint64_t tag_access_register,
int page_size) int page_size)
...@@ -101,14 +101,14 @@ static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register, ...@@ -101,14 +101,14 @@ static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0; int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
int tsb_size = tsb_register & 0xf; int tsb_size = tsb_register & 0xf;
// discard lower 13 bits which hold tag access context /* discard lower 13 bits which hold tag access context */
uint64_t tag_access_va = tag_access_register & ~0x1fffULL; uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
// now reorder bits /* now reorder bits */
uint64_t tsb_base_mask = ~0x1fffULL; uint64_t tsb_base_mask = ~0x1fffULL;
uint64_t va = tag_access_va; uint64_t va = tag_access_va;
// move va bits to correct position /* move va bits to correct position */
if (page_size == 8*1024) { if (page_size == 8*1024) {
va >>= 9; va >>= 9;
} else if (page_size == 64*1024) { } else if (page_size == 64*1024) {
...@@ -119,7 +119,7 @@ static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register, ...@@ -119,7 +119,7 @@ static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
tsb_base_mask <<= tsb_size; tsb_base_mask <<= tsb_size;
} }
// calculate tsb_base mask and adjust va if split is in use /* calculate tsb_base mask and adjust va if split is in use */
if (tsb_split) { if (tsb_split) {
if (page_size == 8*1024) { if (page_size == 8*1024) {
va &= ~(1ULL << (13 + tsb_size)); va &= ~(1ULL << (13 + tsb_size));
...@@ -132,8 +132,8 @@ static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register, ...@@ -132,8 +132,8 @@ static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL; return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
} }
// Calculates tag target register value by reordering bits /* Calculates tag target register value by reordering bits
// in tag access register in tag access register */
static uint64_t ultrasparc_tag_target(uint64_t tag_access_register) static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
{ {
return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22); return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
...@@ -145,7 +145,7 @@ static void replace_tlb_entry(SparcTLBEntry *tlb, ...@@ -145,7 +145,7 @@ static void replace_tlb_entry(SparcTLBEntry *tlb,
{ {
target_ulong mask, size, va, offset; target_ulong mask, size, va, offset;
// flush page range if translation is valid /* flush page range if translation is valid */
if (TTE_IS_VALID(tlb->tte)) { if (TTE_IS_VALID(tlb->tte)) {
mask = 0xffffffffffffe000ULL; mask = 0xffffffffffffe000ULL;
...@@ -164,7 +164,7 @@ static void replace_tlb_entry(SparcTLBEntry *tlb, ...@@ -164,7 +164,7 @@ static void replace_tlb_entry(SparcTLBEntry *tlb,
} }
static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr, static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
const char* strmmu, CPUState *env1) const char *strmmu, CPUState *env1)
{ {
unsigned int i; unsigned int i;
target_ulong mask; target_ulong mask;
...@@ -172,18 +172,18 @@ static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr, ...@@ -172,18 +172,18 @@ static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
int is_demap_context = (demap_addr >> 6) & 1; int is_demap_context = (demap_addr >> 6) & 1;
// demap context /* demap context */
switch ((demap_addr >> 4) & 3) { switch ((demap_addr >> 4) & 3) {
case 0: // primary case 0: /* primary */
context = env1->dmmu.mmu_primary_context; context = env1->dmmu.mmu_primary_context;
break; break;
case 1: // secondary case 1: /* secondary */
context = env1->dmmu.mmu_secondary_context; context = env1->dmmu.mmu_secondary_context;
break; break;
case 2: // nucleus case 2: /* nucleus */
context = 0; context = 0;
break; break;
case 3: // reserved case 3: /* reserved */
default: default:
return; return;
} }
...@@ -192,14 +192,14 @@ static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr, ...@@ -192,14 +192,14 @@ static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
if (TTE_IS_VALID(tlb[i].tte)) { if (TTE_IS_VALID(tlb[i].tte)) {
if (is_demap_context) { if (is_demap_context) {
// will remove non-global entries matching context value /* will remove non-global entries matching context value */
if (TTE_IS_GLOBAL(tlb[i].tte) || if (TTE_IS_GLOBAL(tlb[i].tte) ||
!tlb_compare_context(&tlb[i], context)) { !tlb_compare_context(&tlb[i], context)) {
continue; continue;
} }
} else { } else {
// demap page /* demap page
// will remove any entry matching VA will remove any entry matching VA */
mask = 0xffffffffffffe000ULL; mask = 0xffffffffffffe000ULL;
mask <<= 3 * ((tlb[i].tte >> 61) & 3); mask <<= 3 * ((tlb[i].tte >> 61) & 3);
...@@ -207,7 +207,7 @@ static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr, ...@@ -207,7 +207,7 @@ static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
continue; continue;
} }
// entry should be global or matching context value /* entry should be global or matching context value */
if (!TTE_IS_GLOBAL(tlb[i].tte) && if (!TTE_IS_GLOBAL(tlb[i].tte) &&
!tlb_compare_context(&tlb[i], context)) { !tlb_compare_context(&tlb[i], context)) {
continue; continue;
...@@ -225,11 +225,11 @@ static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr, ...@@ -225,11 +225,11 @@ static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
static void replace_tlb_1bit_lru(SparcTLBEntry *tlb, static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
uint64_t tlb_tag, uint64_t tlb_tte, uint64_t tlb_tag, uint64_t tlb_tte,
const char* strmmu, CPUState *env1) const char *strmmu, CPUState *env1)
{ {
unsigned int i, replace_used; unsigned int i, replace_used;
// Try replacing invalid entry /* Try replacing invalid entry */
for (i = 0; i < 64; i++) { for (i = 0; i < 64; i++) {
if (!TTE_IS_VALID(tlb[i].tte)) { if (!TTE_IS_VALID(tlb[i].tte)) {
replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
...@@ -241,11 +241,11 @@ static void replace_tlb_1bit_lru(SparcTLBEntry *tlb, ...@@ -241,11 +241,11 @@ static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
} }
} }
// All entries are valid, try replacing unlocked entry /* All entries are valid, try replacing unlocked entry */
for (replace_used = 0; replace_used < 2; ++replace_used) { for (replace_used = 0; replace_used < 2; ++replace_used) {
// Used entries are not replaced on first pass /* Used entries are not replaced on first pass */
for (i = 0; i < 64; i++) { for (i = 0; i < 64; i++) {
if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) { if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
...@@ -253,14 +253,14 @@ static void replace_tlb_1bit_lru(SparcTLBEntry *tlb, ...@@ -253,14 +253,14 @@ static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
#ifdef DEBUG_MMU #ifdef DEBUG_MMU
DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n", DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
strmmu, (replace_used?"used":"unused"), i); strmmu, (replace_used ? "used" : "unused"), i);
dump_mmu(stdout, fprintf, env1); dump_mmu(stdout, fprintf, env1);
#endif #endif
return; return;
} }
} }
// Now reset used bit and search for unused entries again /* Now reset used bit and search for unused entries again */
for (i = 0; i < 64; i++) { for (i = 0; i < 64; i++) {
TTE_SET_UNUSED(tlb[i].tte); TTE_SET_UNUSED(tlb[i].tte);
...@@ -270,7 +270,7 @@ static void replace_tlb_1bit_lru(SparcTLBEntry *tlb, ...@@ -270,7 +270,7 @@ static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
#ifdef DEBUG_MMU #ifdef DEBUG_MMU
DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu); DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
#endif #endif
// error state? /* error state? */
} }
#endif #endif
...@@ -278,8 +278,9 @@ static void replace_tlb_1bit_lru(SparcTLBEntry *tlb, ...@@ -278,8 +278,9 @@ static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
static inline target_ulong address_mask(CPUState *env1, target_ulong addr) static inline target_ulong address_mask(CPUState *env1, target_ulong addr)
{ {
#ifdef TARGET_SPARC64 #ifdef TARGET_SPARC64
if (AM_CHECK(env1)) if (AM_CHECK(env1)) {
addr &= 0xffffffffULL; addr &= 0xffffffffULL;
}
#endif #endif
return addr; return addr;
} }
...@@ -517,23 +518,23 @@ typedef union { ...@@ -517,23 +518,23 @@ typedef union {
uint32_t l[2]; uint32_t l[2];
uint64_t ll; uint64_t ll;
float64 d; float64 d;
} vis64; } VIS64;
typedef union { typedef union {
uint8_t b[4]; uint8_t b[4];
uint16_t w[2]; uint16_t w[2];
uint32_t l; uint32_t l;
float32 f; float32 f;
} vis32; } VIS32;
void helper_fpmerge(void) void helper_fpmerge(void)
{ {
vis64 s, d; VIS64 s, d;
s.d = DT0; s.d = DT0;
d.d = DT1; d.d = DT1;
// Reverse calculation order to handle overlap /* Reverse calculation order to handle overlap */
d.VIS_B64(7) = s.VIS_B64(3); d.VIS_B64(7) = s.VIS_B64(3);
d.VIS_B64(6) = d.VIS_B64(3); d.VIS_B64(6) = d.VIS_B64(3);
d.VIS_B64(5) = s.VIS_B64(2); d.VIS_B64(5) = s.VIS_B64(2);
...@@ -541,14 +542,14 @@ void helper_fpmerge(void) ...@@ -541,14 +542,14 @@ void helper_fpmerge(void)
d.VIS_B64(3) = s.VIS_B64(1); d.VIS_B64(3) = s.VIS_B64(1);
d.VIS_B64(2) = d.VIS_B64(1); d.VIS_B64(2) = d.VIS_B64(1);
d.VIS_B64(1) = s.VIS_B64(0); d.VIS_B64(1) = s.VIS_B64(0);
//d.VIS_B64(0) = d.VIS_B64(0); /* d.VIS_B64(0) = d.VIS_B64(0); */
DT0 = d.d; DT0 = d.d;
} }
void helper_fmul8x16(void) void helper_fmul8x16(void)
{ {
vis64 s, d; VIS64 s, d;
uint32_t tmp; uint32_t tmp;
s.d = DT0; s.d = DT0;
...@@ -556,8 +557,9 @@ void helper_fmul8x16(void) ...@@ -556,8 +557,9 @@ void helper_fmul8x16(void)
#define PMUL(r) \ #define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \ tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
if ((tmp & 0xff) > 0x7f) \ if ((tmp & 0xff) > 0x7f) { \
tmp += 0x100; \ tmp += 0x100; \
} \
d.VIS_W64(r) = tmp >> 8; d.VIS_W64(r) = tmp >> 8;
PMUL(0); PMUL(0);
...@@ -571,7 +573,7 @@ void helper_fmul8x16(void) ...@@ -571,7 +573,7 @@ void helper_fmul8x16(void)
void helper_fmul8x16al(void) void helper_fmul8x16al(void)
{ {
vis64 s, d; VIS64 s, d;
uint32_t tmp; uint32_t tmp;
s.d = DT0; s.d = DT0;
...@@ -579,8 +581,9 @@ void helper_fmul8x16al(void) ...@@ -579,8 +581,9 @@ void helper_fmul8x16al(void)
#define PMUL(r) \ #define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \ tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
if ((tmp & 0xff) > 0x7f) \ if ((tmp & 0xff) > 0x7f) { \
tmp += 0x100; \ tmp += 0x100; \
} \
d.VIS_W64(r) = tmp >> 8; d.VIS_W64(r) = tmp >> 8;
PMUL(0); PMUL(0);
...@@ -594,7 +597,7 @@ void helper_fmul8x16al(void) ...@@ -594,7 +597,7 @@ void helper_fmul8x16al(void)
void helper_fmul8x16au(void) void helper_fmul8x16au(void)
{ {
vis64 s, d; VIS64 s, d;
uint32_t tmp; uint32_t tmp;
s.d = DT0; s.d = DT0;
...@@ -602,8 +605,9 @@ void helper_fmul8x16au(void) ...@@ -602,8 +605,9 @@ void helper_fmul8x16au(void)
#define PMUL(r) \ #define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \ tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
if ((tmp & 0xff) > 0x7f) \ if ((tmp & 0xff) > 0x7f) { \
tmp += 0x100; \ tmp += 0x100; \
} \
d.VIS_W64(r) = tmp >> 8; d.VIS_W64(r) = tmp >> 8;
PMUL(0); PMUL(0);
...@@ -617,7 +621,7 @@ void helper_fmul8x16au(void) ...@@ -617,7 +621,7 @@ void helper_fmul8x16au(void)
void helper_fmul8sux16(void) void helper_fmul8sux16(void)
{ {
vis64 s, d; VIS64 s, d;
uint32_t tmp; uint32_t tmp;
s.d = DT0; s.d = DT0;
...@@ -625,8 +629,9 @@ void helper_fmul8sux16(void) ...@@ -625,8 +629,9 @@ void helper_fmul8sux16(void)
#define PMUL(r) \ #define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \ tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
if ((tmp & 0xff) > 0x7f) \ if ((tmp & 0xff) > 0x7f) { \
tmp += 0x100; \ tmp += 0x100; \
} \
d.VIS_W64(r) = tmp >> 8; d.VIS_W64(r) = tmp >> 8;
PMUL(0); PMUL(0);
...@@ -640,7 +645,7 @@ void helper_fmul8sux16(void) ...@@ -640,7 +645,7 @@ void helper_fmul8sux16(void)
void helper_fmul8ulx16(void) void helper_fmul8ulx16(void)
{ {
vis64 s, d; VIS64 s, d;
uint32_t tmp; uint32_t tmp;
s.d = DT0; s.d = DT0;
...@@ -648,8 +653,9 @@ void helper_fmul8ulx16(void) ...@@ -648,8 +653,9 @@ void helper_fmul8ulx16(void)
#define PMUL(r) \ #define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \ tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
if ((tmp & 0xff) > 0x7f) \ if ((tmp & 0xff) > 0x7f) { \
tmp += 0x100; \ tmp += 0x100; \
} \
d.VIS_W64(r) = tmp >> 8; d.VIS_W64(r) = tmp >> 8;
PMUL(0); PMUL(0);
...@@ -663,7 +669,7 @@ void helper_fmul8ulx16(void) ...@@ -663,7 +669,7 @@ void helper_fmul8ulx16(void)
void helper_fmuld8sux16(void) void helper_fmuld8sux16(void)
{ {
vis64 s, d; VIS64 s, d;
uint32_t tmp; uint32_t tmp;
s.d = DT0; s.d = DT0;
...@@ -671,11 +677,12 @@ void helper_fmuld8sux16(void) ...@@ -671,11 +677,12 @@ void helper_fmuld8sux16(void)
#define PMUL(r) \ #define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \ tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
if ((tmp & 0xff) > 0x7f) \ if ((tmp & 0xff) > 0x7f) { \
tmp += 0x100; \ tmp += 0x100; \
} \
d.VIS_L64(r) = tmp; d.VIS_L64(r) = tmp;
// Reverse calculation order to handle overlap /* Reverse calculation order to handle overlap */
PMUL(1); PMUL(1);
PMUL(0); PMUL(0);
#undef PMUL #undef PMUL
...@@ -685,7 +692,7 @@ void helper_fmuld8sux16(void) ...@@ -685,7 +692,7 @@ void helper_fmuld8sux16(void)
void helper_fmuld8ulx16(void) void helper_fmuld8ulx16(void)
{ {
vis64 s, d; VIS64 s, d;
uint32_t tmp; uint32_t tmp;
s.d = DT0; s.d = DT0;
...@@ -693,11 +700,12 @@ void helper_fmuld8ulx16(void) ...@@ -693,11 +700,12 @@ void helper_fmuld8ulx16(void)
#define PMUL(r) \ #define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \ tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
if ((tmp & 0xff) > 0x7f) \ if ((tmp & 0xff) > 0x7f) { \
tmp += 0x100; \ tmp += 0x100; \
} \
d.VIS_L64(r) = tmp; d.VIS_L64(r) = tmp;
// Reverse calculation order to handle overlap /* Reverse calculation order to handle overlap */
PMUL(1); PMUL(1);
PMUL(0); PMUL(0);
#undef PMUL #undef PMUL
...@@ -707,8 +715,8 @@ void helper_fmuld8ulx16(void) ...@@ -707,8 +715,8 @@ void helper_fmuld8ulx16(void)
void helper_fexpand(void) void helper_fexpand(void)
{ {
vis32 s; VIS32 s;
vis64 d; VIS64 d;
s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff); s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
d.d = DT1; d.d = DT1;
...@@ -723,7 +731,7 @@ void helper_fexpand(void) ...@@ -723,7 +731,7 @@ void helper_fexpand(void)
#define VIS_HELPER(name, F) \ #define VIS_HELPER(name, F) \
void name##16(void) \ void name##16(void) \
{ \ { \
vis64 s, d; \ VIS64 s, d; \
\ \
s.d = DT0; \ s.d = DT0; \
d.d = DT1; \ d.d = DT1; \
...@@ -738,7 +746,7 @@ void helper_fexpand(void) ...@@ -738,7 +746,7 @@ void helper_fexpand(void)
\ \
uint32_t name##16s(uint32_t src1, uint32_t src2) \ uint32_t name##16s(uint32_t src1, uint32_t src2) \
{ \ { \
vis32 s, d; \ VIS32 s, d; \
\ \
s.l = src1; \ s.l = src1; \
d.l = src2; \ d.l = src2; \
...@@ -751,7 +759,7 @@ void helper_fexpand(void) ...@@ -751,7 +759,7 @@ void helper_fexpand(void)
\ \
void name##32(void) \ void name##32(void) \
{ \ { \
vis64 s, d; \ VIS64 s, d; \
\ \
s.d = DT0; \ s.d = DT0; \
d.d = DT1; \ d.d = DT1; \
...@@ -764,7 +772,7 @@ void helper_fexpand(void) ...@@ -764,7 +772,7 @@ void helper_fexpand(void)
\ \
uint32_t name##32s(uint32_t src1, uint32_t src2) \ uint32_t name##32s(uint32_t src1, uint32_t src2) \
{ \ { \
vis32 s, d; \ VIS32 s, d; \
\ \
s.l = src1; \ s.l = src1; \
d.l = src2; \ d.l = src2; \
...@@ -782,7 +790,7 @@ VIS_HELPER(helper_fpsub, FSUB) ...@@ -782,7 +790,7 @@ VIS_HELPER(helper_fpsub, FSUB)
#define VIS_CMPHELPER(name, F) \ #define VIS_CMPHELPER(name, F) \
uint64_t name##16(void) \ uint64_t name##16(void) \
{ \ { \
vis64 s, d; \ VIS64 s, d; \
\ \
s.d = DT0; \ s.d = DT0; \
d.d = DT1; \ d.d = DT1; \
...@@ -798,7 +806,7 @@ VIS_HELPER(helper_fpsub, FSUB) ...@@ -798,7 +806,7 @@ VIS_HELPER(helper_fpsub, FSUB)
\ \
uint64_t name##32(void) \ uint64_t name##32(void) \
{ \ { \
vis64 s, d; \ VIS64 s, d; \
\ \
s.d = DT0; \ s.d = DT0; \
d.d = DT1; \ d.d = DT1; \
...@@ -828,16 +836,21 @@ void helper_check_ieee_exceptions(void) ...@@ -828,16 +836,21 @@ void helper_check_ieee_exceptions(void)
status = get_float_exception_flags(&env->fp_status); status = get_float_exception_flags(&env->fp_status);
if (status) { if (status) {
/* Copy IEEE 754 flags into FSR */ /* Copy IEEE 754 flags into FSR */
if (status & float_flag_invalid) if (status & float_flag_invalid) {
env->fsr |= FSR_NVC; env->fsr |= FSR_NVC;
if (status & float_flag_overflow) }
if (status & float_flag_overflow) {
env->fsr |= FSR_OFC; env->fsr |= FSR_OFC;
if (status & float_flag_underflow) }
if (status & float_flag_underflow) {
env->fsr |= FSR_UFC; env->fsr |= FSR_UFC;
if (status & float_flag_divbyzero) }
if (status & float_flag_divbyzero) {
env->fsr |= FSR_DZC; env->fsr |= FSR_DZC;
if (status & float_flag_inexact) }
if (status & float_flag_inexact) {
env->fsr |= FSR_NXC; env->fsr |= FSR_NXC;
}
if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) { if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
/* Unmasked exception, generate a trap */ /* Unmasked exception, generate a trap */
...@@ -1476,11 +1489,11 @@ static target_ulong get_psr(void) ...@@ -1476,11 +1489,11 @@ static target_ulong get_psr(void)
#if !defined (TARGET_SPARC64) #if !defined (TARGET_SPARC64)
return env->version | (env->psr & PSR_ICC) | return env->version | (env->psr & PSR_ICC) |
(env->psref? PSR_EF : 0) | (env->psref ? PSR_EF : 0) |
(env->psrpil << 8) | (env->psrpil << 8) |
(env->psrs? PSR_S : 0) | (env->psrs ? PSR_S : 0) |
(env->psrps? PSR_PS : 0) | (env->psrps ? PSR_PS : 0) |
(env->psret? PSR_ET : 0) | env->cwp; (env->psret ? PSR_ET : 0) | env->cwp;
#else #else
return env->psr & PSR_ICC; return env->psr & PSR_ICC;
#endif #endif
...@@ -1502,16 +1515,16 @@ static void put_psr(target_ulong val) ...@@ -1502,16 +1515,16 @@ static void put_psr(target_ulong val)
{ {
env->psr = val & PSR_ICC; env->psr = val & PSR_ICC;
#if !defined (TARGET_SPARC64) #if !defined (TARGET_SPARC64)
env->psref = (val & PSR_EF)? 1 : 0; env->psref = (val & PSR_EF) ? 1 : 0;
env->psrpil = (val & PSR_PIL) >> 8; env->psrpil = (val & PSR_PIL) >> 8;
#endif #endif
#if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY)) #if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY))
cpu_check_irqs(env); cpu_check_irqs(env);
#endif #endif
#if !defined (TARGET_SPARC64) #if !defined (TARGET_SPARC64)
env->psrs = (val & PSR_S)? 1 : 0; env->psrs = (val & PSR_S) ? 1 : 0;
env->psrps = (val & PSR_PS)? 1 : 0; env->psrps = (val & PSR_PS) ? 1 : 0;
env->psret = (val & PSR_ET)? 1 : 0; env->psret = (val & PSR_ET) ? 1 : 0;
set_cwp(val & PSR_CWP); set_cwp(val & PSR_CWP);
#endif #endif
env->cc_op = CC_OP_FLAGS; env->cc_op = CC_OP_FLAGS;
...@@ -1618,8 +1631,7 @@ static void dump_mxcc(CPUState *env) ...@@ -1618,8 +1631,7 @@ static void dump_mxcc(CPUState *env)
static void dump_asi(const char *txt, target_ulong addr, int asi, int size, static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
uint64_t r1) uint64_t r1)
{ {
switch (size) switch (size) {
{
case 1: case 1:
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt, DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
addr, asi, r1 & 0xff); addr, asi, r1 & 0xff);
...@@ -1764,33 +1776,37 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -1764,33 +1776,37 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
} }
break; break;
case 0x01c00a00: /* MXCC control register */ case 0x01c00a00: /* MXCC control register */
if (size == 8) if (size == 8) {
ret = env->mxccregs[3]; ret = env->mxccregs[3];
else } else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size); size);
}
break; break;
case 0x01c00a04: /* MXCC control register */ case 0x01c00a04: /* MXCC control register */
if (size == 4) if (size == 4) {
ret = env->mxccregs[3]; ret = env->mxccregs[3];
else } else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size); size);
}
break; break;
case 0x01c00c00: /* Module reset register */ case 0x01c00c00: /* Module reset register */
if (size == 8) { if (size == 8) {
ret = env->mxccregs[5]; ret = env->mxccregs[5];
// should we do something here? /* should we do something here? */
} else } else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size); size);
}
break; break;
case 0x01c00f00: /* MBus port address register */ case 0x01c00f00: /* MBus port address register */
if (size == 8) if (size == 8) {
ret = env->mxccregs[7]; ret = env->mxccregs[7];
else } else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size); size);
}
break; break;
default: default:
DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
...@@ -1809,10 +1825,11 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -1809,10 +1825,11 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
int mmulev; int mmulev;
mmulev = (addr >> 8) & 15; mmulev = (addr >> 8) & 15;
if (mmulev > 4) if (mmulev > 4) {
ret = 0; ret = 0;
else } else {
ret = mmu_probe(env, addr, mmulev); ret = mmu_probe(env, addr, mmulev);
}
DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n", DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
addr, mmulev, ret); addr, mmulev, ret);
} }
...@@ -1822,21 +1839,22 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -1822,21 +1839,22 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
int reg = (addr >> 8) & 0x1f; int reg = (addr >> 8) & 0x1f;
ret = env->mmuregs[reg]; ret = env->mmuregs[reg];
if (reg == 3) /* Fault status cleared on read */ if (reg == 3) { /* Fault status cleared on read */
env->mmuregs[3] = 0; env->mmuregs[3] = 0;
else if (reg == 0x13) /* Fault status read */ } else if (reg == 0x13) { /* Fault status read */
ret = env->mmuregs[3]; ret = env->mmuregs[3];
else if (reg == 0x14) /* Fault address read */ } else if (reg == 0x14) { /* Fault address read */
ret = env->mmuregs[4]; ret = env->mmuregs[4];
}
DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret); DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
} }
break; break;
case 5: // Turbosparc ITLB Diagnostic case 5: /* Turbosparc ITLB Diagnostic */
case 6: // Turbosparc DTLB Diagnostic case 6: /* Turbosparc DTLB Diagnostic */
case 7: // Turbosparc IOTLB Diagnostic case 7: /* Turbosparc IOTLB Diagnostic */
break; break;
case 9: /* Supervisor code access */ case 9: /* Supervisor code access */
switch(size) { switch (size) {
case 1: case 1:
ret = ldub_code(addr); ret = ldub_code(addr);
break; break;
...@@ -1853,7 +1871,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -1853,7 +1871,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
} }
break; break;
case 0xa: /* User data access */ case 0xa: /* User data access */
switch(size) { switch (size) {
case 1: case 1:
ret = ldub_user(addr); ret = ldub_user(addr);
break; break;
...@@ -1870,7 +1888,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -1870,7 +1888,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
} }
break; break;
case 0xb: /* Supervisor data access */ case 0xb: /* Supervisor data access */
switch(size) { switch (size) {
case 1: case 1:
ret = ldub_kernel(addr); ret = ldub_kernel(addr);
break; break;
...@@ -1892,7 +1910,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -1892,7 +1910,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
case 0xf: /* D-cache data */ case 0xf: /* D-cache data */
break; break;
case 0x20: /* MMU passthrough */ case 0x20: /* MMU passthrough */
switch(size) { switch (size) {
case 1: case 1:
ret = ldub_phys(addr); ret = ldub_phys(addr);
break; break;
...@@ -1909,7 +1927,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -1909,7 +1927,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
} }
break; break;
case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
switch(size) { switch (size) {
case 1: case 1:
ret = ldub_phys((target_phys_addr_t)addr ret = ldub_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32)); | ((target_phys_addr_t)(asi & 0xf) << 32));
...@@ -1929,9 +1947,9 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -1929,9 +1947,9 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
break; break;
} }
break; break;
case 0x30: // Turbosparc secondary cache diagnostic case 0x30: /* Turbosparc secondary cache diagnostic */
case 0x31: // Turbosparc RAM snoop case 0x31: /* Turbosparc RAM snoop */
case 0x32: // Turbosparc page table descriptor diagnostic case 0x32: /* Turbosparc page table descriptor diagnostic */
case 0x39: /* data cache diagnostic register */ case 0x39: /* data cache diagnostic register */
ret = 0; ret = 0;
break; break;
...@@ -1939,7 +1957,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -1939,7 +1957,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
{ {
int reg = (addr >> 8) & 3; int reg = (addr >> 8) & 3;
switch(reg) { switch (reg) {
case 0: /* Breakpoint Value (Addr) */ case 0: /* Breakpoint Value (Addr) */
ret = env->mmubpregs[reg]; ret = env->mmubpregs[reg];
break; break;
...@@ -1977,7 +1995,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -1977,7 +1995,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
break; break;
} }
if (sign) { if (sign) {
switch(size) { switch (size) {
case 1: case 1:
ret = (int8_t) ret; ret = (int8_t) ret;
break; break;
...@@ -2000,7 +2018,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -2000,7 +2018,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
{ {
helper_check_align(addr, size - 1); helper_check_align(addr, size - 1);
switch(asi) { switch (asi) {
case 2: /* SuperSparc MXCC registers and Leon3 cache control */ case 2: /* SuperSparc MXCC registers and Leon3 cache control */
switch (addr) { switch (addr) {
case 0x00: /* Leon3 Cache Control */ case 0x00: /* Leon3 Cache Control */
...@@ -2012,39 +2030,44 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) ...@@ -2012,39 +2030,44 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
break; break;
case 0x01c00000: /* MXCC stream data register 0 */ case 0x01c00000: /* MXCC stream data register 0 */
if (size == 8) if (size == 8) {
env->mxccdata[0] = val; env->mxccdata[0] = val;
else } else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size); size);
}
break; break;
case 0x01c00008: /* MXCC stream data register 1 */ case 0x01c00008: /* MXCC stream data register 1 */
if (size == 8) if (size == 8) {
env->mxccdata[1] = val; env->mxccdata[1] = val;
else } else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size); size);
}
break; break;
case 0x01c00010: /* MXCC stream data register 2 */ case 0x01c00010: /* MXCC stream data register 2 */
if (size == 8) if (size == 8) {
env->mxccdata[2] = val; env->mxccdata[2] = val;
else } else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size); size);
}
break; break;
case 0x01c00018: /* MXCC stream data register 3 */ case 0x01c00018: /* MXCC stream data register 3 */
if (size == 8) if (size == 8) {
env->mxccdata[3] = val; env->mxccdata[3] = val;
else } else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size); size);
}
break; break;
case 0x01c00100: /* MXCC stream source */ case 0x01c00100: /* MXCC stream source */
if (size == 8) if (size == 8) {
env->mxccregs[0] = val; env->mxccregs[0] = val;
else } else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size); size);
}
env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
0); 0);
env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
...@@ -2055,11 +2078,12 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) ...@@ -2055,11 +2078,12 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
24); 24);
break; break;
case 0x01c00200: /* MXCC stream destination */ case 0x01c00200: /* MXCC stream destination */
if (size == 8) if (size == 8) {
env->mxccregs[1] = val; env->mxccregs[1] = val;
else } else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size); size);
}
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0, stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
env->mxccdata[0]); env->mxccdata[0]);
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8, stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
...@@ -2070,34 +2094,38 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) ...@@ -2070,34 +2094,38 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
env->mxccdata[3]); env->mxccdata[3]);
break; break;
case 0x01c00a00: /* MXCC control register */ case 0x01c00a00: /* MXCC control register */
if (size == 8) if (size == 8) {
env->mxccregs[3] = val; env->mxccregs[3] = val;
else } else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size); size);
}
break; break;
case 0x01c00a04: /* MXCC control register */ case 0x01c00a04: /* MXCC control register */
if (size == 4) if (size == 4) {
env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL) env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
| val; | val;
else } else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size); size);
}
break; break;
case 0x01c00e00: /* MXCC error register */ case 0x01c00e00: /* MXCC error register */
// writing a 1 bit clears the error /* writing a 1 bit clears the error */
if (size == 8) if (size == 8) {
env->mxccregs[6] &= ~val; env->mxccregs[6] &= ~val;
else } else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size); size);
}
break; break;
case 0x01c00f00: /* MBus port address register */ case 0x01c00f00: /* MBus port address register */
if (size == 8) if (size == 8) {
env->mxccregs[7] = val; env->mxccregs[7] = val;
else } else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size); size);
}
break; break;
default: default:
DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
...@@ -2117,13 +2145,13 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) ...@@ -2117,13 +2145,13 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
mmulev = (addr >> 8) & 15; mmulev = (addr >> 8) & 15;
DPRINTF_MMU("mmu flush level %d\n", mmulev); DPRINTF_MMU("mmu flush level %d\n", mmulev);
switch (mmulev) { switch (mmulev) {
case 0: // flush page case 0: /* flush page */
tlb_flush_page(env, addr & 0xfffff000); tlb_flush_page(env, addr & 0xfffff000);
break; break;
case 1: // flush segment (256k) case 1: /* flush segment (256k) */
case 2: // flush region (16M) case 2: /* flush region (16M) */
case 3: // flush context (4G) case 3: /* flush context (4G) */
case 4: // flush entire case 4: /* flush entire */
tlb_flush(env, 1); tlb_flush(env, 1);
break; break;
default: default:
...@@ -2140,20 +2168,21 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) ...@@ -2140,20 +2168,21 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
uint32_t oldreg; uint32_t oldreg;
oldreg = env->mmuregs[reg]; oldreg = env->mmuregs[reg];
switch(reg) { switch (reg) {
case 0: // Control Register case 0: /* Control Register */
env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) | env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
(val & 0x00ffffff); (val & 0x00ffffff);
// Mappings generated during no-fault mode or MMU /* Mappings generated during no-fault mode or MMU
// disabled mode are invalid in normal mode disabled mode are invalid in normal mode */
if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) != if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
(env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) {
tlb_flush(env, 1); tlb_flush(env, 1);
}
break; break;
case 1: // Context Table Pointer Register case 1: /* Context Table Pointer Register */
env->mmuregs[reg] = val & env->def->mmu_ctpr_mask; env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
break; break;
case 2: // Context Register case 2: /* Context Register */
env->mmuregs[reg] = val & env->def->mmu_cxr_mask; env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
if (oldreg != env->mmuregs[reg]) { if (oldreg != env->mmuregs[reg]) {
/* we flush when the MMU context changes because /* we flush when the MMU context changes because
...@@ -2161,16 +2190,17 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) ...@@ -2161,16 +2190,17 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
tlb_flush(env, 1); tlb_flush(env, 1);
} }
break; break;
case 3: // Synchronous Fault Status Register with Clear case 3: /* Synchronous Fault Status Register with Clear */
case 4: // Synchronous Fault Address Register case 4: /* Synchronous Fault Address Register */
break; break;
case 0x10: // TLB Replacement Control Register case 0x10: /* TLB Replacement Control Register */
env->mmuregs[reg] = val & env->def->mmu_trcr_mask; env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
break; break;
case 0x13: // Synchronous Fault Status Register with Read and Clear case 0x13: /* Synchronous Fault Status Register with Read
and Clear */
env->mmuregs[3] = val & env->def->mmu_sfsr_mask; env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
break; break;
case 0x14: // Synchronous Fault Address Register case 0x14: /* Synchronous Fault Address Register */
env->mmuregs[4] = val; env->mmuregs[4] = val;
break; break;
default: default:
...@@ -2186,12 +2216,12 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) ...@@ -2186,12 +2216,12 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
#endif #endif
} }
break; break;
case 5: // Turbosparc ITLB Diagnostic case 5: /* Turbosparc ITLB Diagnostic */
case 6: // Turbosparc DTLB Diagnostic case 6: /* Turbosparc DTLB Diagnostic */
case 7: // Turbosparc IOTLB Diagnostic case 7: /* Turbosparc IOTLB Diagnostic */
break; break;
case 0xa: /* User data access */ case 0xa: /* User data access */
switch(size) { switch (size) {
case 1: case 1:
stb_user(addr, val); stb_user(addr, val);
break; break;
...@@ -2208,7 +2238,7 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) ...@@ -2208,7 +2238,7 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
} }
break; break;
case 0xb: /* Supervisor data access */ case 0xb: /* Supervisor data access */
switch(size) { switch (size) {
case 1: case 1:
stb_kernel(addr, val); stb_kernel(addr, val);
break; break;
...@@ -2236,9 +2266,9 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) ...@@ -2236,9 +2266,9 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
break; break;
case 0x17: /* Block copy, sta access */ case 0x17: /* Block copy, sta access */
{ {
// val = src /* val = src
// addr = dst addr = dst
// copy 32 bytes copy 32 bytes */
unsigned int i; unsigned int i;
uint32_t src = val & ~3, dst = addr & ~3, temp; uint32_t src = val & ~3, dst = addr & ~3, temp;
...@@ -2250,18 +2280,19 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) ...@@ -2250,18 +2280,19 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
break; break;
case 0x1f: /* Block fill, stda access */ case 0x1f: /* Block fill, stda access */
{ {
// addr = dst /* addr = dst
// fill 32 bytes with val fill 32 bytes with val */
unsigned int i; unsigned int i;
uint32_t dst = addr & 7; uint32_t dst = addr & 7;
for (i = 0; i < 32; i += 8, dst += 8) for (i = 0; i < 32; i += 8, dst += 8) {
stq_kernel(dst, val); stq_kernel(dst, val);
} }
}
break; break;
case 0x20: /* MMU passthrough */ case 0x20: /* MMU passthrough */
{ {
switch(size) { switch (size) {
case 1: case 1:
stb_phys(addr, val); stb_phys(addr, val);
break; break;
...@@ -2280,7 +2311,7 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) ...@@ -2280,7 +2311,7 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
break; break;
case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
{ {
switch(size) { switch (size) {
case 1: case 1:
stb_phys((target_phys_addr_t)addr stb_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32), val); | ((target_phys_addr_t)(asi & 0xf) << 32), val);
...@@ -2301,11 +2332,11 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) ...@@ -2301,11 +2332,11 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
} }
} }
break; break;
case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
case 0x31: // store buffer data, Ross RT620 I-cache flush or case 0x31: /* store buffer data, Ross RT620 I-cache flush or
// Turbosparc snoop RAM Turbosparc snoop RAM */
case 0x32: // store buffer control or Turbosparc page table case 0x32: /* store buffer control or Turbosparc page table
// descriptor diagnostic descriptor diagnostic */
case 0x36: /* I-cache flash clear */ case 0x36: /* I-cache flash clear */
case 0x37: /* D-cache flash clear */ case 0x37: /* D-cache flash clear */
break; break;
...@@ -2313,7 +2344,7 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) ...@@ -2313,7 +2344,7 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
{ {
int reg = (addr >> 8) & 3; int reg = (addr >> 8) & 3;
switch(reg) { switch (reg) {
case 0: /* Breakpoint Value (Addr) */ case 0: /* Breakpoint Value (Addr) */
env->mmubpregs[reg] = (val & 0xfffffffffULL); env->mmubpregs[reg] = (val & 0xfffffffffULL);
break; break;
...@@ -2365,26 +2396,27 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -2365,26 +2396,27 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
target_ulong last_addr = addr; target_ulong last_addr = addr;
#endif #endif
if (asi < 0x80) if (asi < 0x80) {
helper_raise_exception(env, TT_PRIV_ACT); helper_raise_exception(env, TT_PRIV_ACT);
}
helper_check_align(addr, size - 1); helper_check_align(addr, size - 1);
addr = asi_address_mask(env, asi, addr); addr = asi_address_mask(env, asi, addr);
switch (asi) { switch (asi) {
case 0x82: // Primary no-fault case 0x82: /* Primary no-fault */
case 0x8a: // Primary no-fault LE case 0x8a: /* Primary no-fault LE */
if (page_check_range(addr, size, PAGE_READ) == -1) { if (page_check_range(addr, size, PAGE_READ) == -1) {
#ifdef DEBUG_ASI #ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret); dump_asi("read ", last_addr, asi, size, ret);
#endif #endif
return 0; return 0;
} }
// Fall through /* Fall through */
case 0x80: // Primary case 0x80: /* Primary */
case 0x88: // Primary LE case 0x88: /* Primary LE */
{ {
switch(size) { switch (size) {
case 1: case 1:
ret = ldub_raw(addr); ret = ldub_raw(addr);
break; break;
...@@ -2401,18 +2433,18 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -2401,18 +2433,18 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
} }
} }
break; break;
case 0x83: // Secondary no-fault case 0x83: /* Secondary no-fault */
case 0x8b: // Secondary no-fault LE case 0x8b: /* Secondary no-fault LE */
if (page_check_range(addr, size, PAGE_READ) == -1) { if (page_check_range(addr, size, PAGE_READ) == -1) {
#ifdef DEBUG_ASI #ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret); dump_asi("read ", last_addr, asi, size, ret);
#endif #endif
return 0; return 0;
} }
// Fall through /* Fall through */
case 0x81: // Secondary case 0x81: /* Secondary */
case 0x89: // Secondary LE case 0x89: /* Secondary LE */
// XXX /* XXX */
break; break;
default: default:
break; break;
...@@ -2420,11 +2452,11 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -2420,11 +2452,11 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
/* Convert from little endian */ /* Convert from little endian */
switch (asi) { switch (asi) {
case 0x88: // Primary LE case 0x88: /* Primary LE */
case 0x89: // Secondary LE case 0x89: /* Secondary LE */
case 0x8a: // Primary no-fault LE case 0x8a: /* Primary no-fault LE */
case 0x8b: // Secondary no-fault LE case 0x8b: /* Secondary no-fault LE */
switch(size) { switch (size) {
case 2: case 2:
ret = bswap16(ret); ret = bswap16(ret);
break; break;
...@@ -2443,7 +2475,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -2443,7 +2475,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
/* Convert to signed number */ /* Convert to signed number */
if (sign) { if (sign) {
switch(size) { switch (size) {
case 1: case 1:
ret = (int8_t) ret; ret = (int8_t) ret;
break; break;
...@@ -2468,17 +2500,18 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) ...@@ -2468,17 +2500,18 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
#ifdef DEBUG_ASI #ifdef DEBUG_ASI
dump_asi("write", addr, asi, size, val); dump_asi("write", addr, asi, size, val);
#endif #endif
if (asi < 0x80) if (asi < 0x80) {
helper_raise_exception(env, TT_PRIV_ACT); helper_raise_exception(env, TT_PRIV_ACT);
}
helper_check_align(addr, size - 1); helper_check_align(addr, size - 1);
addr = asi_address_mask(env, asi, addr); addr = asi_address_mask(env, asi, addr);
/* Convert to little endian */ /* Convert to little endian */
switch (asi) { switch (asi) {
case 0x88: // Primary LE case 0x88: /* Primary LE */
case 0x89: // Secondary LE case 0x89: /* Secondary LE */
switch(size) { switch (size) {
case 2: case 2:
val = bswap16(val); val = bswap16(val);
break; break;
...@@ -2495,11 +2528,11 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) ...@@ -2495,11 +2528,11 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
break; break;
} }
switch(asi) { switch (asi) {
case 0x80: // Primary case 0x80: /* Primary */
case 0x88: // Primary LE case 0x88: /* Primary LE */
{ {
switch(size) { switch (size) {
case 1: case 1:
stb_raw(addr, val); stb_raw(addr, val);
break; break;
...@@ -2516,15 +2549,15 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) ...@@ -2516,15 +2549,15 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
} }
} }
break; break;
case 0x81: // Secondary case 0x81: /* Secondary */
case 0x89: // Secondary LE case 0x89: /* Secondary LE */
// XXX /* XXX */
return; return;
case 0x82: // Primary no-fault, RO case 0x82: /* Primary no-fault, RO */
case 0x83: // Secondary no-fault, RO case 0x83: /* Secondary no-fault, RO */
case 0x8a: // Primary no-fault LE, RO case 0x8a: /* Primary no-fault LE, RO */
case 0x8b: // Secondary no-fault LE, RO case 0x8b: /* Secondary no-fault LE, RO */
default: default:
do_unassigned_access(addr, 1, 0, 1, size); do_unassigned_access(addr, 1, 0, 1, size);
return; return;
...@@ -2545,8 +2578,9 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -2545,8 +2578,9 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|| (cpu_has_hypervisor(env) || (cpu_has_hypervisor(env)
&& asi >= 0x30 && asi < 0x80 && asi >= 0x30 && asi < 0x80
&& !(env->hpstate & HS_PRIV))) && !(env->hpstate & HS_PRIV))) {
helper_raise_exception(env, TT_PRIV_ACT); helper_raise_exception(env, TT_PRIV_ACT);
}
helper_check_align(addr, size - 1); helper_check_align(addr, size - 1);
addr = asi_address_mask(env, asi, addr); addr = asi_address_mask(env, asi, addr);
...@@ -2575,19 +2609,19 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -2575,19 +2609,19 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
} }
switch (asi) { switch (asi) {
case 0x10: // As if user primary case 0x10: /* As if user primary */
case 0x11: // As if user secondary case 0x11: /* As if user secondary */
case 0x18: // As if user primary LE case 0x18: /* As if user primary LE */
case 0x19: // As if user secondary LE case 0x19: /* As if user secondary LE */
case 0x80: // Primary case 0x80: /* Primary */
case 0x81: // Secondary case 0x81: /* Secondary */
case 0x88: // Primary LE case 0x88: /* Primary LE */
case 0x89: // Secondary LE case 0x89: /* Secondary LE */
case 0xe2: // UA2007 Primary block init case 0xe2: /* UA2007 Primary block init */
case 0xe3: // UA2007 Secondary block init case 0xe3: /* UA2007 Secondary block init */
if ((asi & 0x80) && (env->pstate & PS_PRIV)) { if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
if (cpu_hypervisor_mode(env)) { if (cpu_hypervisor_mode(env)) {
switch(size) { switch (size) {
case 1: case 1:
ret = ldub_hypv(addr); ret = ldub_hypv(addr);
break; break;
...@@ -2605,7 +2639,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -2605,7 +2639,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
} else { } else {
/* secondary space access has lowest asi bit equal to 1 */ /* secondary space access has lowest asi bit equal to 1 */
if (asi & 1) { if (asi & 1) {
switch(size) { switch (size) {
case 1: case 1:
ret = ldub_kernel_secondary(addr); ret = ldub_kernel_secondary(addr);
break; break;
...@@ -2621,7 +2655,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -2621,7 +2655,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
break; break;
} }
} else { } else {
switch(size) { switch (size) {
case 1: case 1:
ret = ldub_kernel(addr); ret = ldub_kernel(addr);
break; break;
...@@ -2641,7 +2675,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -2641,7 +2675,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
} else { } else {
/* secondary space access has lowest asi bit equal to 1 */ /* secondary space access has lowest asi bit equal to 1 */
if (asi & 1) { if (asi & 1) {
switch(size) { switch (size) {
case 1: case 1:
ret = ldub_user_secondary(addr); ret = ldub_user_secondary(addr);
break; break;
...@@ -2657,7 +2691,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -2657,7 +2691,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
break; break;
} }
} else { } else {
switch(size) { switch (size) {
case 1: case 1:
ret = ldub_user(addr); ret = ldub_user(addr);
break; break;
...@@ -2675,12 +2709,12 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -2675,12 +2709,12 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
} }
} }
break; break;
case 0x14: // Bypass case 0x14: /* Bypass */
case 0x15: // Bypass, non-cacheable case 0x15: /* Bypass, non-cacheable */
case 0x1c: // Bypass LE case 0x1c: /* Bypass LE */
case 0x1d: // Bypass, non-cacheable LE case 0x1d: /* Bypass, non-cacheable LE */
{ {
switch(size) { switch (size) {
case 1: case 1:
ret = ldub_phys(addr); ret = ldub_phys(addr);
break; break;
...@@ -2697,15 +2731,15 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -2697,15 +2731,15 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
} }
break; break;
} }
case 0x24: // Nucleus quad LDD 128 bit atomic case 0x24: /* Nucleus quad LDD 128 bit atomic */
case 0x2c: // Nucleus quad LDD 128 bit atomic LE case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
// Only ldda allowed Only ldda allowed */
helper_raise_exception(env, TT_ILL_INSN); helper_raise_exception(env, TT_ILL_INSN);
return 0; return 0;
case 0x04: // Nucleus case 0x04: /* Nucleus */
case 0x0c: // Nucleus Little Endian (LE) case 0x0c: /* Nucleus Little Endian (LE) */
{ {
switch(size) { switch (size) {
case 1: case 1:
ret = ldub_nucleus(addr); ret = ldub_nucleus(addr);
break; break;
...@@ -2722,18 +2756,18 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -2722,18 +2756,18 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
} }
break; break;
} }
case 0x4a: // UPA config case 0x4a: /* UPA config */
// XXX /* XXX */
break; break;
case 0x45: // LSU case 0x45: /* LSU */
ret = env->lsu; ret = env->lsu;
break; break;
case 0x50: // I-MMU regs case 0x50: /* I-MMU regs */
{ {
int reg = (addr >> 3) & 0xf; int reg = (addr >> 3) & 0xf;
if (reg == 0) { if (reg == 0) {
// I-TSB Tag Target register /* I-TSB Tag Target register */
ret = ultrasparc_tag_target(env->immu.tag_access); ret = ultrasparc_tag_target(env->immu.tag_access);
} else { } else {
ret = env->immuregs[reg]; ret = env->immuregs[reg];
...@@ -2741,102 +2775,102 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -2741,102 +2775,102 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
break; break;
} }
case 0x51: // I-MMU 8k TSB pointer case 0x51: /* I-MMU 8k TSB pointer */
{ {
// env->immuregs[5] holds I-MMU TSB register value /* env->immuregs[5] holds I-MMU TSB register value
// env->immuregs[6] holds I-MMU Tag Access register value env->immuregs[6] holds I-MMU Tag Access register value */
ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access, ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
8*1024); 8*1024);
break; break;
} }
case 0x52: // I-MMU 64k TSB pointer case 0x52: /* I-MMU 64k TSB pointer */
{ {
// env->immuregs[5] holds I-MMU TSB register value /* env->immuregs[5] holds I-MMU TSB register value
// env->immuregs[6] holds I-MMU Tag Access register value env->immuregs[6] holds I-MMU Tag Access register value */
ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access, ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
64*1024); 64*1024);
break; break;
} }
case 0x55: // I-MMU data access case 0x55: /* I-MMU data access */
{ {
int reg = (addr >> 3) & 0x3f; int reg = (addr >> 3) & 0x3f;
ret = env->itlb[reg].tte; ret = env->itlb[reg].tte;
break; break;
} }
case 0x56: // I-MMU tag read case 0x56: /* I-MMU tag read */
{ {
int reg = (addr >> 3) & 0x3f; int reg = (addr >> 3) & 0x3f;
ret = env->itlb[reg].tag; ret = env->itlb[reg].tag;
break; break;
} }
case 0x58: // D-MMU regs case 0x58: /* D-MMU regs */
{ {
int reg = (addr >> 3) & 0xf; int reg = (addr >> 3) & 0xf;
if (reg == 0) { if (reg == 0) {
// D-TSB Tag Target register /* D-TSB Tag Target register */
ret = ultrasparc_tag_target(env->dmmu.tag_access); ret = ultrasparc_tag_target(env->dmmu.tag_access);
} else { } else {
ret = env->dmmuregs[reg]; ret = env->dmmuregs[reg];
} }
break; break;
} }
case 0x59: // D-MMU 8k TSB pointer case 0x59: /* D-MMU 8k TSB pointer */
{ {
// env->dmmuregs[5] holds D-MMU TSB register value /* env->dmmuregs[5] holds D-MMU TSB register value
// env->dmmuregs[6] holds D-MMU Tag Access register value env->dmmuregs[6] holds D-MMU Tag Access register value */
ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access, ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
8*1024); 8*1024);
break; break;
} }
case 0x5a: // D-MMU 64k TSB pointer case 0x5a: /* D-MMU 64k TSB pointer */
{ {
// env->dmmuregs[5] holds D-MMU TSB register value /* env->dmmuregs[5] holds D-MMU TSB register value
// env->dmmuregs[6] holds D-MMU Tag Access register value env->dmmuregs[6] holds D-MMU Tag Access register value */
ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access, ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
64*1024); 64*1024);
break; break;
} }
case 0x5d: // D-MMU data access case 0x5d: /* D-MMU data access */
{ {
int reg = (addr >> 3) & 0x3f; int reg = (addr >> 3) & 0x3f;
ret = env->dtlb[reg].tte; ret = env->dtlb[reg].tte;
break; break;
} }
case 0x5e: // D-MMU tag read case 0x5e: /* D-MMU tag read */
{ {
int reg = (addr >> 3) & 0x3f; int reg = (addr >> 3) & 0x3f;
ret = env->dtlb[reg].tag; ret = env->dtlb[reg].tag;
break; break;
} }
case 0x46: // D-cache data case 0x46: /* D-cache data */
case 0x47: // D-cache tag access case 0x47: /* D-cache tag access */
case 0x4b: // E-cache error enable case 0x4b: /* E-cache error enable */
case 0x4c: // E-cache asynchronous fault status case 0x4c: /* E-cache asynchronous fault status */
case 0x4d: // E-cache asynchronous fault address case 0x4d: /* E-cache asynchronous fault address */
case 0x4e: // E-cache tag data case 0x4e: /* E-cache tag data */
case 0x66: // I-cache instruction access case 0x66: /* I-cache instruction access */
case 0x67: // I-cache tag access case 0x67: /* I-cache tag access */
case 0x6e: // I-cache predecode case 0x6e: /* I-cache predecode */
case 0x6f: // I-cache LRU etc. case 0x6f: /* I-cache LRU etc. */
case 0x76: // E-cache tag case 0x76: /* E-cache tag */
case 0x7e: // E-cache tag case 0x7e: /* E-cache tag */
break; break;
case 0x5b: // D-MMU data pointer case 0x5b: /* D-MMU data pointer */
case 0x48: // Interrupt dispatch, RO case 0x48: /* Interrupt dispatch, RO */
case 0x49: // Interrupt data receive case 0x49: /* Interrupt data receive */
case 0x7f: // Incoming interrupt vector, RO case 0x7f: /* Incoming interrupt vector, RO */
// XXX /* XXX */
break; break;
case 0x54: // I-MMU data in, WO case 0x54: /* I-MMU data in, WO */
case 0x57: // I-MMU demap, WO case 0x57: /* I-MMU demap, WO */
case 0x5c: // D-MMU data in, WO case 0x5c: /* D-MMU data in, WO */
case 0x5f: // D-MMU demap, WO case 0x5f: /* D-MMU demap, WO */
case 0x77: // Interrupt vector, WO case 0x77: /* Interrupt vector, WO */
default: default:
do_unassigned_access(addr, 0, 0, 1, size); do_unassigned_access(addr, 0, 0, 1, size);
ret = 0; ret = 0;
...@@ -2845,13 +2879,13 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -2845,13 +2879,13 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
/* Convert from little endian */ /* Convert from little endian */
switch (asi) { switch (asi) {
case 0x0c: // Nucleus Little Endian (LE) case 0x0c: /* Nucleus Little Endian (LE) */
case 0x18: // As if user primary LE case 0x18: /* As if user primary LE */
case 0x19: // As if user secondary LE case 0x19: /* As if user secondary LE */
case 0x1c: // Bypass LE case 0x1c: /* Bypass LE */
case 0x1d: // Bypass, non-cacheable LE case 0x1d: /* Bypass, non-cacheable LE */
case 0x88: // Primary LE case 0x88: /* Primary LE */
case 0x89: // Secondary LE case 0x89: /* Secondary LE */
switch(size) { switch(size) {
case 2: case 2:
ret = bswap16(ret); ret = bswap16(ret);
...@@ -2871,7 +2905,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) ...@@ -2871,7 +2905,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
/* Convert to signed number */ /* Convert to signed number */
if (sign) { if (sign) {
switch(size) { switch (size) {
case 1: case 1:
ret = (int8_t) ret; ret = (int8_t) ret;
break; break;
...@@ -2902,22 +2936,23 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) ...@@ -2902,22 +2936,23 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|| (cpu_has_hypervisor(env) || (cpu_has_hypervisor(env)
&& asi >= 0x30 && asi < 0x80 && asi >= 0x30 && asi < 0x80
&& !(env->hpstate & HS_PRIV))) && !(env->hpstate & HS_PRIV))) {
helper_raise_exception(env, TT_PRIV_ACT); helper_raise_exception(env, TT_PRIV_ACT);
}
helper_check_align(addr, size - 1); helper_check_align(addr, size - 1);
addr = asi_address_mask(env, asi, addr); addr = asi_address_mask(env, asi, addr);
/* Convert to little endian */ /* Convert to little endian */
switch (asi) { switch (asi) {
case 0x0c: // Nucleus Little Endian (LE) case 0x0c: /* Nucleus Little Endian (LE) */
case 0x18: // As if user primary LE case 0x18: /* As if user primary LE */
case 0x19: // As if user secondary LE case 0x19: /* As if user secondary LE */
case 0x1c: // Bypass LE case 0x1c: /* Bypass LE */
case 0x1d: // Bypass, non-cacheable LE case 0x1d: /* Bypass, non-cacheable LE */
case 0x88: // Primary LE case 0x88: /* Primary LE */
case 0x89: // Secondary LE case 0x89: /* Secondary LE */
switch(size) { switch (size) {
case 2: case 2:
val = bswap16(val); val = bswap16(val);
break; break;
...@@ -2934,20 +2969,20 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) ...@@ -2934,20 +2969,20 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
break; break;
} }
switch(asi) { switch (asi) {
case 0x10: // As if user primary case 0x10: /* As if user primary */
case 0x11: // As if user secondary case 0x11: /* As if user secondary */
case 0x18: // As if user primary LE case 0x18: /* As if user primary LE */
case 0x19: // As if user secondary LE case 0x19: /* As if user secondary LE */
case 0x80: // Primary case 0x80: /* Primary */
case 0x81: // Secondary case 0x81: /* Secondary */
case 0x88: // Primary LE case 0x88: /* Primary LE */
case 0x89: // Secondary LE case 0x89: /* Secondary LE */
case 0xe2: // UA2007 Primary block init case 0xe2: /* UA2007 Primary block init */
case 0xe3: // UA2007 Secondary block init case 0xe3: /* UA2007 Secondary block init */
if ((asi & 0x80) && (env->pstate & PS_PRIV)) { if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
if (cpu_hypervisor_mode(env)) { if (cpu_hypervisor_mode(env)) {
switch(size) { switch (size) {
case 1: case 1:
stb_hypv(addr, val); stb_hypv(addr, val);
break; break;
...@@ -2965,7 +3000,7 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) ...@@ -2965,7 +3000,7 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
} else { } else {
/* secondary space access has lowest asi bit equal to 1 */ /* secondary space access has lowest asi bit equal to 1 */
if (asi & 1) { if (asi & 1) {
switch(size) { switch (size) {
case 1: case 1:
stb_kernel_secondary(addr, val); stb_kernel_secondary(addr, val);
break; break;
...@@ -2981,7 +3016,7 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) ...@@ -2981,7 +3016,7 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
break; break;
} }
} else { } else {
switch(size) { switch (size) {
case 1: case 1:
stb_kernel(addr, val); stb_kernel(addr, val);
break; break;
...@@ -3001,7 +3036,7 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) ...@@ -3001,7 +3036,7 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
} else { } else {
/* secondary space access has lowest asi bit equal to 1 */ /* secondary space access has lowest asi bit equal to 1 */
if (asi & 1) { if (asi & 1) {
switch(size) { switch (size) {
case 1: case 1:
stb_user_secondary(addr, val); stb_user_secondary(addr, val);
break; break;
...@@ -3017,7 +3052,7 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) ...@@ -3017,7 +3052,7 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
break; break;
} }
} else { } else {
switch(size) { switch (size) {
case 1: case 1:
stb_user(addr, val); stb_user(addr, val);
break; break;
...@@ -3035,12 +3070,12 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) ...@@ -3035,12 +3070,12 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
} }
} }
break; break;
case 0x14: // Bypass case 0x14: /* Bypass */
case 0x15: // Bypass, non-cacheable case 0x15: /* Bypass, non-cacheable */
case 0x1c: // Bypass LE case 0x1c: /* Bypass LE */
case 0x1d: // Bypass, non-cacheable LE case 0x1d: /* Bypass, non-cacheable LE */
{ {
switch(size) { switch (size) {
case 1: case 1:
stb_phys(addr, val); stb_phys(addr, val);
break; break;
...@@ -3057,15 +3092,15 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) ...@@ -3057,15 +3092,15 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
} }
} }
return; return;
case 0x24: // Nucleus quad LDD 128 bit atomic case 0x24: /* Nucleus quad LDD 128 bit atomic */
case 0x2c: // Nucleus quad LDD 128 bit atomic LE case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
// Only ldda allowed Only ldda allowed */
helper_raise_exception(env, TT_ILL_INSN); helper_raise_exception(env, TT_ILL_INSN);
return; return;
case 0x04: // Nucleus case 0x04: /* Nucleus */
case 0x0c: // Nucleus Little Endian (LE) case 0x0c: /* Nucleus Little Endian (LE) */
{ {
switch(size) { switch (size) {
case 1: case 1:
stb_nucleus(addr, val); stb_nucleus(addr, val);
break; break;
...@@ -3083,17 +3118,17 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) ...@@ -3083,17 +3118,17 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
break; break;
} }
case 0x4a: // UPA config case 0x4a: /* UPA config */
// XXX /* XXX */
return; return;
case 0x45: // LSU case 0x45: /* LSU */
{ {
uint64_t oldreg; uint64_t oldreg;
oldreg = env->lsu; oldreg = env->lsu;
env->lsu = val & (DMMU_E | IMMU_E); env->lsu = val & (DMMU_E | IMMU_E);
// Mappings generated during D/I MMU disabled mode are /* Mappings generated during D/I MMU disabled mode are
// invalid in normal mode invalid in normal mode */
if (oldreg != env->lsu) { if (oldreg != env->lsu) {
DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
oldreg, env->lsu); oldreg, env->lsu);
...@@ -3104,31 +3139,32 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) ...@@ -3104,31 +3139,32 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
} }
return; return;
} }
case 0x50: // I-MMU regs case 0x50: /* I-MMU regs */
{ {
int reg = (addr >> 3) & 0xf; int reg = (addr >> 3) & 0xf;
uint64_t oldreg; uint64_t oldreg;
oldreg = env->immuregs[reg]; oldreg = env->immuregs[reg];
switch(reg) { switch (reg) {
case 0: // RO case 0: /* RO */
return; return;
case 1: // Not in I-MMU case 1: /* Not in I-MMU */
case 2: case 2:
return; return;
case 3: // SFSR case 3: /* SFSR */
if ((val & 1) == 0) if ((val & 1) == 0) {
val = 0; // Clear SFSR val = 0; /* Clear SFSR */
}
env->immu.sfsr = val; env->immu.sfsr = val;
break; break;
case 4: // RO case 4: /* RO */
return; return;
case 5: // TSB access case 5: /* TSB access */
DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016" DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
PRIx64 "\n", env->immu.tsb, val); PRIx64 "\n", env->immu.tsb, val);
env->immu.tsb = val; env->immu.tsb = val;
break; break;
case 6: // Tag access case 6: /* Tag access */
env->immu.tag_access = val; env->immu.tag_access = val;
break; break;
case 7: case 7:
...@@ -3147,12 +3183,12 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) ...@@ -3147,12 +3183,12 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
#endif #endif
return; return;
} }
case 0x54: // I-MMU data in case 0x54: /* I-MMU data in */
replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env); replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
return; return;
case 0x55: // I-MMU data access case 0x55: /* I-MMU data access */
{ {
// TODO: auto demap /* TODO: auto demap */
unsigned int i = (addr >> 3) & 0x3f; unsigned int i = (addr >> 3) & 0x3f;
...@@ -3164,48 +3200,48 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) ...@@ -3164,48 +3200,48 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
#endif #endif
return; return;
} }
case 0x57: // I-MMU demap case 0x57: /* I-MMU demap */
demap_tlb(env->itlb, addr, "immu", env); demap_tlb(env->itlb, addr, "immu", env);
return; return;
case 0x58: // D-MMU regs case 0x58: /* D-MMU regs */
{ {
int reg = (addr >> 3) & 0xf; int reg = (addr >> 3) & 0xf;
uint64_t oldreg; uint64_t oldreg;
oldreg = env->dmmuregs[reg]; oldreg = env->dmmuregs[reg];
switch(reg) { switch (reg) {
case 0: // RO case 0: /* RO */
case 4: case 4:
return; return;
case 3: // SFSR case 3: /* SFSR */
if ((val & 1) == 0) { if ((val & 1) == 0) {
val = 0; // Clear SFSR, Fault address val = 0; /* Clear SFSR, Fault address */
env->dmmu.sfar = 0; env->dmmu.sfar = 0;
} }
env->dmmu.sfsr = val; env->dmmu.sfsr = val;
break; break;
case 1: // Primary context case 1: /* Primary context */
env->dmmu.mmu_primary_context = val; env->dmmu.mmu_primary_context = val;
/* can be optimized to only flush MMU_USER_IDX /* can be optimized to only flush MMU_USER_IDX
and MMU_KERNEL_IDX entries */ and MMU_KERNEL_IDX entries */
tlb_flush(env, 1); tlb_flush(env, 1);
break; break;
case 2: // Secondary context case 2: /* Secondary context */
env->dmmu.mmu_secondary_context = val; env->dmmu.mmu_secondary_context = val;
/* can be optimized to only flush MMU_USER_SECONDARY_IDX /* can be optimized to only flush MMU_USER_SECONDARY_IDX
and MMU_KERNEL_SECONDARY_IDX entries */ and MMU_KERNEL_SECONDARY_IDX entries */
tlb_flush(env, 1); tlb_flush(env, 1);
break; break;
case 5: // TSB access case 5: /* TSB access */
DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016" DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
PRIx64 "\n", env->dmmu.tsb, val); PRIx64 "\n", env->dmmu.tsb, val);
env->dmmu.tsb = val; env->dmmu.tsb = val;
break; break;
case 6: // Tag access case 6: /* Tag access */
env->dmmu.tag_access = val; env->dmmu.tag_access = val;
break; break;
case 7: // Virtual Watchpoint case 7: /* Virtual Watchpoint */
case 8: // Physical Watchpoint case 8: /* Physical Watchpoint */
default: default:
env->dmmuregs[reg] = val; env->dmmuregs[reg] = val;
break; break;
...@@ -3220,10 +3256,10 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) ...@@ -3220,10 +3256,10 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
#endif #endif
return; return;
} }
case 0x5c: // D-MMU data in case 0x5c: /* D-MMU data in */
replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env); replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
return; return;
case 0x5d: // D-MMU data access case 0x5d: /* D-MMU data access */
{ {
unsigned int i = (addr >> 3) & 0x3f; unsigned int i = (addr >> 3) & 0x3f;
...@@ -3235,38 +3271,38 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) ...@@ -3235,38 +3271,38 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
#endif #endif
return; return;
} }
case 0x5f: // D-MMU demap case 0x5f: /* D-MMU demap */
demap_tlb(env->dtlb, addr, "dmmu", env); demap_tlb(env->dtlb, addr, "dmmu", env);
return; return;
case 0x49: // Interrupt data receive case 0x49: /* Interrupt data receive */
// XXX /* XXX */
return; return;
case 0x46: // D-cache data case 0x46: /* D-cache data */
case 0x47: // D-cache tag access case 0x47: /* D-cache tag access */
case 0x4b: // E-cache error enable case 0x4b: /* E-cache error enable */
case 0x4c: // E-cache asynchronous fault status case 0x4c: /* E-cache asynchronous fault status */
case 0x4d: // E-cache asynchronous fault address case 0x4d: /* E-cache asynchronous fault address */
case 0x4e: // E-cache tag data case 0x4e: /* E-cache tag data */
case 0x66: // I-cache instruction access case 0x66: /* I-cache instruction access */
case 0x67: // I-cache tag access case 0x67: /* I-cache tag access */
case 0x6e: // I-cache predecode case 0x6e: /* I-cache predecode */
case 0x6f: // I-cache LRU etc. case 0x6f: /* I-cache LRU etc. */
case 0x76: // E-cache tag case 0x76: /* E-cache tag */
case 0x7e: // E-cache tag case 0x7e: /* E-cache tag */
return; return;
case 0x51: // I-MMU 8k TSB pointer, RO case 0x51: /* I-MMU 8k TSB pointer, RO */
case 0x52: // I-MMU 64k TSB pointer, RO case 0x52: /* I-MMU 64k TSB pointer, RO */
case 0x56: // I-MMU tag read, RO case 0x56: /* I-MMU tag read, RO */
case 0x59: // D-MMU 8k TSB pointer, RO case 0x59: /* D-MMU 8k TSB pointer, RO */
case 0x5a: // D-MMU 64k TSB pointer, RO case 0x5a: /* D-MMU 64k TSB pointer, RO */
case 0x5b: // D-MMU data pointer, RO case 0x5b: /* D-MMU data pointer, RO */
case 0x5e: // D-MMU tag read, RO case 0x5e: /* D-MMU tag read, RO */
case 0x48: // Interrupt dispatch, RO case 0x48: /* Interrupt dispatch, RO */
case 0x7f: // Incoming interrupt vector, RO case 0x7f: /* Incoming interrupt vector, RO */
case 0x82: // Primary no-fault, RO case 0x82: /* Primary no-fault, RO */
case 0x83: // Secondary no-fault, RO case 0x83: /* Secondary no-fault, RO */
case 0x8a: // Primary no-fault LE, RO case 0x8a: /* Primary no-fault LE, RO */
case 0x8b: // Secondary no-fault LE, RO case 0x8b: /* Secondary no-fault LE, RO */
default: default:
do_unassigned_access(addr, 1, 0, 1, size); do_unassigned_access(addr, 1, 0, 1, size);
return; return;
...@@ -3279,20 +3315,22 @@ void helper_ldda_asi(target_ulong addr, int asi, int rd) ...@@ -3279,20 +3315,22 @@ void helper_ldda_asi(target_ulong addr, int asi, int rd)
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|| (cpu_has_hypervisor(env) || (cpu_has_hypervisor(env)
&& asi >= 0x30 && asi < 0x80 && asi >= 0x30 && asi < 0x80
&& !(env->hpstate & HS_PRIV))) && !(env->hpstate & HS_PRIV))) {
helper_raise_exception(env, TT_PRIV_ACT); helper_raise_exception(env, TT_PRIV_ACT);
}
addr = asi_address_mask(env, asi, addr); addr = asi_address_mask(env, asi, addr);
switch (asi) { switch (asi) {
#if !defined(CONFIG_USER_ONLY) #if !defined(CONFIG_USER_ONLY)
case 0x24: // Nucleus quad LDD 128 bit atomic case 0x24: /* Nucleus quad LDD 128 bit atomic */
case 0x2c: // Nucleus quad LDD 128 bit atomic LE case 0x2c: /* Nucleus quad LDD 128 bit atomic LE */
helper_check_align(addr, 0xf); helper_check_align(addr, 0xf);
if (rd == 0) { if (rd == 0) {
env->gregs[1] = ldq_nucleus(addr + 8); env->gregs[1] = ldq_nucleus(addr + 8);
if (asi == 0x2c) if (asi == 0x2c) {
bswap64s(&env->gregs[1]); bswap64s(&env->gregs[1]);
}
} else if (rd < 8) { } else if (rd < 8) {
env->gregs[rd] = ldq_nucleus(addr); env->gregs[rd] = ldq_nucleus(addr);
env->gregs[rd + 1] = ldq_nucleus(addr + 8); env->gregs[rd + 1] = ldq_nucleus(addr + 8);
...@@ -3312,9 +3350,9 @@ void helper_ldda_asi(target_ulong addr, int asi, int rd) ...@@ -3312,9 +3350,9 @@ void helper_ldda_asi(target_ulong addr, int asi, int rd)
#endif #endif
default: default:
helper_check_align(addr, 0x3); helper_check_align(addr, 0x3);
if (rd == 0) if (rd == 0) {
env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0); env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
else if (rd < 8) { } else if (rd < 8) {
env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0); env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0); env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
} else { } else {
...@@ -3374,7 +3412,7 @@ void helper_ldf_asi(target_ulong addr, int asi, int size, int rd) ...@@ -3374,7 +3412,7 @@ void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
break; break;
} }
switch(size) { switch (size) {
default: default:
case 4: case 4:
*((uint32_t *)&env->fpr[rd]) = helper_ld_asi(addr, asi, size, 0); *((uint32_t *)&env->fpr[rd]) = helper_ld_asi(addr, asi, size, 0);
...@@ -3447,7 +3485,7 @@ void helper_stf_asi(target_ulong addr, int asi, int size, int rd) ...@@ -3447,7 +3485,7 @@ void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
break; break;
} }
switch(size) { switch (size) {
default: default:
case 4: case 4:
helper_st_asi(addr, *(uint32_t *)&env->fpr[rd], asi, size); helper_st_asi(addr, *(uint32_t *)&env->fpr[rd], asi, size);
...@@ -3476,8 +3514,9 @@ target_ulong helper_cas_asi(target_ulong addr, target_ulong val1, ...@@ -3476,8 +3514,9 @@ target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
val2 &= 0xffffffffUL; val2 &= 0xffffffffUL;
ret = helper_ld_asi(addr, asi, 4, 0); ret = helper_ld_asi(addr, asi, 4, 0);
ret &= 0xffffffffUL; ret &= 0xffffffffUL;
if (val2 == ret) if (val2 == ret) {
helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4); helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
}
return ret; return ret;
} }
...@@ -3487,8 +3526,9 @@ target_ulong helper_casx_asi(target_ulong addr, target_ulong val1, ...@@ -3487,8 +3526,9 @@ target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
target_ulong ret; target_ulong ret;
ret = helper_ld_asi(addr, asi, 8, 0); ret = helper_ld_asi(addr, asi, 8, 0);
if (val2 == ret) if (val2 == ret) {
helper_st_asi(addr, val1, asi, 8); helper_st_asi(addr, val1, asi, 8);
}
return ret; return ret;
} }
#endif /* TARGET_SPARC64 */ #endif /* TARGET_SPARC64 */
...@@ -3498,8 +3538,9 @@ void helper_rett(void) ...@@ -3498,8 +3538,9 @@ void helper_rett(void)
{ {
unsigned int cwp; unsigned int cwp;
if (env->psret == 1) if (env->psret == 1) {
helper_raise_exception(env, TT_ILL_INSN); helper_raise_exception(env, TT_ILL_INSN);
}
env->psret = 1; env->psret = 1;
cwp = cwp_inc(env->cwp + 1) ; cwp = cwp_inc(env->cwp + 1) ;
...@@ -3563,7 +3604,7 @@ static target_ulong helper_sdiv_common(target_ulong a, target_ulong b, int cc) ...@@ -3563,7 +3604,7 @@ static target_ulong helper_sdiv_common(target_ulong a, target_ulong b, int cc)
x0 = x0 / x1; x0 = x0 / x1;
if ((int32_t) x0 != x0) { if ((int32_t) x0 != x0) {
x0 = x0 < 0 ? 0x80000000: 0x7fffffff; x0 = x0 < 0 ? 0x80000000 : 0x7fffffff;
overflow = 1; overflow = 1;
} }
...@@ -3637,7 +3678,7 @@ void helper_lddf(target_ulong addr, int mem_idx) ...@@ -3637,7 +3678,7 @@ void helper_lddf(target_ulong addr, int mem_idx)
void helper_ldqf(target_ulong addr, int mem_idx) void helper_ldqf(target_ulong addr, int mem_idx)
{ {
// XXX add 128 bit load /* XXX add 128 bit load */
CPU_QuadU u; CPU_QuadU u;
helper_check_align(addr, 7); helper_check_align(addr, 7);
...@@ -3673,7 +3714,7 @@ void helper_ldqf(target_ulong addr, int mem_idx) ...@@ -3673,7 +3714,7 @@ void helper_ldqf(target_ulong addr, int mem_idx)
void helper_stqf(target_ulong addr, int mem_idx) void helper_stqf(target_ulong addr, int mem_idx)
{ {
// XXX add 128 bit store /* XXX add 128 bit store */
CPU_QuadU u; CPU_QuadU u;
helper_check_align(addr, 7); helper_check_align(addr, 7);
...@@ -3797,7 +3838,7 @@ void helper_save(void) ...@@ -3797,7 +3838,7 @@ void helper_save(void)
((env->wstate & 0x7) << 2))); ((env->wstate & 0x7) << 2)));
} else { } else {
if (env->cleanwin - env->canrestore == 0) { if (env->cleanwin - env->canrestore == 0) {
// XXX Clean windows without trap /* XXX Clean windows without trap */
helper_raise_exception(env, TT_CLRWIN); helper_raise_exception(env, TT_CLRWIN);
} else { } else {
env->cansave--; env->cansave--;
...@@ -3837,21 +3878,24 @@ void helper_flushw(void) ...@@ -3837,21 +3878,24 @@ void helper_flushw(void)
void helper_saved(void) void helper_saved(void)
{ {
env->cansave++; env->cansave++;
if (env->otherwin == 0) if (env->otherwin == 0) {
env->canrestore--; env->canrestore--;
else } else {
env->otherwin--; env->otherwin--;
}
} }
void helper_restored(void) void helper_restored(void)
{ {
env->canrestore++; env->canrestore++;
if (env->cleanwin < env->nwindows - 1) if (env->cleanwin < env->nwindows - 1) {
env->cleanwin++; env->cleanwin++;
if (env->otherwin == 0) }
if (env->otherwin == 0) {
env->cansave--; env->cansave--;
else } else {
env->otherwin--; env->otherwin--;
}
} }
static target_ulong get_ccr(void) static target_ulong get_ccr(void)
...@@ -3937,8 +3981,8 @@ void helper_wrccr(target_ulong new_ccr) ...@@ -3937,8 +3981,8 @@ void helper_wrccr(target_ulong new_ccr)
put_ccr(new_ccr); put_ccr(new_ccr);
} }
// CWP handling is reversed in V9, but we still use the V8 register /* CWP handling is reversed in V9, but we still use the V8 register
// order. order. */
target_ulong helper_rdcwp(void) target_ulong helper_rdcwp(void)
{ {
return get_cwp64(); return get_cwp64();
...@@ -3949,11 +3993,11 @@ void helper_wrcwp(target_ulong new_cwp) ...@@ -3949,11 +3993,11 @@ void helper_wrcwp(target_ulong new_cwp)
put_cwp64(new_cwp); put_cwp64(new_cwp);
} }
// This function uses non-native bit order /* This function uses non-native bit order */
#define GET_FIELD(X, FROM, TO) \ #define GET_FIELD(X, FROM, TO) \
((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1)) ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
// This function uses the order in the manuals, i.e. bit 0 is 2^0 /* This function uses the order in the manuals, i.e. bit 0 is 2^0 */
#define GET_FIELD_SP(X, FROM, TO) \ #define GET_FIELD_SP(X, FROM, TO) \
GET_FIELD(X, 63 - (TO), 63 - (FROM)) GET_FIELD(X, 63 - (TO), 63 - (FROM))
...@@ -4007,7 +4051,7 @@ static inline void change_pstate(uint32_t new_pstate) ...@@ -4007,7 +4051,7 @@ static inline void change_pstate(uint32_t new_pstate)
uint64_t *src, *dst; uint64_t *src, *dst;
if (env->def->features & CPU_FEATURE_GL) { if (env->def->features & CPU_FEATURE_GL) {
// PS_AG is not implemented in this case /* PS_AG is not implemented in this case */
new_pstate &= ~PS_AG; new_pstate &= ~PS_AG;
} }
...@@ -4017,13 +4061,12 @@ static inline void change_pstate(uint32_t new_pstate) ...@@ -4017,13 +4061,12 @@ static inline void change_pstate(uint32_t new_pstate)
if (new_pstate_regs != pstate_regs) { if (new_pstate_regs != pstate_regs) {
DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n", DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n",
pstate_regs, new_pstate_regs); pstate_regs, new_pstate_regs);
// Switch global register bank /* Switch global register bank */
src = get_gregset(new_pstate_regs); src = get_gregset(new_pstate_regs);
dst = get_gregset(pstate_regs); dst = get_gregset(pstate_regs);
memcpy32(dst, env->gregs); memcpy32(dst, env->gregs);
memcpy32(env->gregs, src); memcpy32(env->gregs, src);
} } else {
else {
DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n", DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n",
new_pstate_regs); new_pstate_regs);
} }
...@@ -4067,7 +4110,7 @@ void helper_wrpil(target_ulong new_pil) ...@@ -4067,7 +4110,7 @@ void helper_wrpil(target_ulong new_pil)
void helper_done(void) void helper_done(void)
{ {
trap_state* tsptr = cpu_tsptr(env); trap_state *tsptr = cpu_tsptr(env);
env->pc = tsptr->tnpc; env->pc = tsptr->tnpc;
env->npc = tsptr->tnpc + 4; env->npc = tsptr->tnpc + 4;
...@@ -4088,7 +4131,7 @@ void helper_done(void) ...@@ -4088,7 +4131,7 @@ void helper_done(void)
void helper_retry(void) void helper_retry(void)
{ {
trap_state* tsptr = cpu_tsptr(env); trap_state *tsptr = cpu_tsptr(env);
env->pc = tsptr->tpc; env->pc = tsptr->tpc;
env->npc = tsptr->tnpc; env->npc = tsptr->tnpc;
...@@ -4107,7 +4150,7 @@ void helper_retry(void) ...@@ -4107,7 +4150,7 @@ void helper_retry(void)
#endif #endif
} }
static void do_modify_softint(const char* operation, uint32_t value) static void do_modify_softint(const char *operation, uint32_t value)
{ {
if (env->softint != value) { if (env->softint != value) {
env->softint = value; env->softint = value;
...@@ -4216,29 +4259,34 @@ static void do_unassigned_access(target_phys_addr_t addr, int is_write, ...@@ -4216,29 +4259,34 @@ static void do_unassigned_access(target_phys_addr_t addr, int is_write,
int fault_type; int fault_type;
#ifdef DEBUG_UNASSIGNED #ifdef DEBUG_UNASSIGNED
if (is_asi) if (is_asi) {
printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
" asi 0x%02x from " TARGET_FMT_lx "\n", " asi 0x%02x from " TARGET_FMT_lx "\n",
is_exec ? "exec" : is_write ? "write" : "read", size, is_exec ? "exec" : is_write ? "write" : "read", size,
size == 1 ? "" : "s", addr, is_asi, env->pc); size == 1 ? "" : "s", addr, is_asi, env->pc);
else } else {
printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
" from " TARGET_FMT_lx "\n", " from " TARGET_FMT_lx "\n",
is_exec ? "exec" : is_write ? "write" : "read", size, is_exec ? "exec" : is_write ? "write" : "read", size,
size == 1 ? "" : "s", addr, env->pc); size == 1 ? "" : "s", addr, env->pc);
}
#endif #endif
/* Don't overwrite translation and access faults */ /* Don't overwrite translation and access faults */
fault_type = (env->mmuregs[3] & 0x1c) >> 2; fault_type = (env->mmuregs[3] & 0x1c) >> 2;
if ((fault_type > 4) || (fault_type == 0)) { if ((fault_type > 4) || (fault_type == 0)) {
env->mmuregs[3] = 0; /* Fault status register */ env->mmuregs[3] = 0; /* Fault status register */
if (is_asi) if (is_asi) {
env->mmuregs[3] |= 1 << 16; env->mmuregs[3] |= 1 << 16;
if (env->psrs) }
if (env->psrs) {
env->mmuregs[3] |= 1 << 5; env->mmuregs[3] |= 1 << 5;
if (is_exec) }
if (is_exec) {
env->mmuregs[3] |= 1 << 6; env->mmuregs[3] |= 1 << 6;
if (is_write) }
if (is_write) {
env->mmuregs[3] |= 1 << 7; env->mmuregs[3] |= 1 << 7;
}
env->mmuregs[3] |= (5 << 2) | 2; env->mmuregs[3] |= (5 << 2) | 2;
/* SuperSPARC will never place instruction fault addresses in the FAR */ /* SuperSPARC will never place instruction fault addresses in the FAR */
if (!is_exec) { if (!is_exec) {
...@@ -4251,11 +4299,12 @@ static void do_unassigned_access(target_phys_addr_t addr, int is_write, ...@@ -4251,11 +4299,12 @@ static void do_unassigned_access(target_phys_addr_t addr, int is_write,
} }
if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) { if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
if (is_exec) if (is_exec) {
helper_raise_exception(env, TT_CODE_ACCESS); helper_raise_exception(env, TT_CODE_ACCESS);
else } else {
helper_raise_exception(env, TT_DATA_ACCESS); helper_raise_exception(env, TT_DATA_ACCESS);
} }
}
/* flush neverland mappings created during no-fault mode, /* flush neverland mappings created during no-fault mode,
so the sequential MMU faults report proper fault types */ so the sequential MMU faults report proper fault types */
...@@ -4278,10 +4327,11 @@ static void do_unassigned_access(target_phys_addr_t addr, int is_write, ...@@ -4278,10 +4327,11 @@ static void do_unassigned_access(target_phys_addr_t addr, int is_write,
"\n", addr, env->pc); "\n", addr, env->pc);
#endif #endif
if (is_exec) if (is_exec) {
helper_raise_exception(env, TT_CODE_ACCESS); helper_raise_exception(env, TT_CODE_ACCESS);
else } else {
helper_raise_exception(env, TT_DATA_ACCESS); helper_raise_exception(env, TT_DATA_ACCESS);
}
} }
#endif #endif
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册