提交 99ca0219 编写于 作者: B Blue Swirl

Sparc: fix coding style

Before the next patches, fix coding style of the areas affected.
Reviewed-by: NRichard Henderson <rth@twiddle.net>
Signed-off-by: NBlue Swirl <blauwirbel@gmail.com>
上级 bc265319
......@@ -34,14 +34,14 @@
#endif
#ifdef DEBUG_PSTATE
#define DPRINTF_PSTATE(fmt, ...) \
#define DPRINTF_PSTATE(fmt, ...) \
do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_PSTATE(fmt, ...) do {} while (0)
#endif
#ifdef DEBUG_CACHE_CONTROL
#define DPRINTF_CACHE_CONTROL(fmt, ...) \
#define DPRINTF_CACHE_CONTROL(fmt, ...) \
do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
......@@ -92,7 +92,7 @@ static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
#endif
#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
// Calculates TSB pointer value for fault page size 8k or 64k
/* Calculates TSB pointer value for fault page size 8k or 64k */
static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
uint64_t tag_access_register,
int page_size)
......@@ -101,14 +101,14 @@ static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
int tsb_size = tsb_register & 0xf;
// discard lower 13 bits which hold tag access context
/* discard lower 13 bits which hold tag access context */
uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
// now reorder bits
/* now reorder bits */
uint64_t tsb_base_mask = ~0x1fffULL;
uint64_t va = tag_access_va;
// move va bits to correct position
/* move va bits to correct position */
if (page_size == 8*1024) {
va >>= 9;
} else if (page_size == 64*1024) {
......@@ -119,7 +119,7 @@ static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
tsb_base_mask <<= tsb_size;
}
// calculate tsb_base mask and adjust va if split is in use
/* calculate tsb_base mask and adjust va if split is in use */
if (tsb_split) {
if (page_size == 8*1024) {
va &= ~(1ULL << (13 + tsb_size));
......@@ -132,8 +132,8 @@ static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
}
// Calculates tag target register value by reordering bits
// in tag access register
/* Calculates tag target register value by reordering bits
in tag access register */
static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
{
return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
......@@ -145,7 +145,7 @@ static void replace_tlb_entry(SparcTLBEntry *tlb,
{
target_ulong mask, size, va, offset;
// flush page range if translation is valid
/* flush page range if translation is valid */
if (TTE_IS_VALID(tlb->tte)) {
mask = 0xffffffffffffe000ULL;
......@@ -164,7 +164,7 @@ static void replace_tlb_entry(SparcTLBEntry *tlb,
}
static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
const char* strmmu, CPUState *env1)
const char *strmmu, CPUState *env1)
{
unsigned int i;
target_ulong mask;
......@@ -172,18 +172,18 @@ static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
int is_demap_context = (demap_addr >> 6) & 1;
// demap context
/* demap context */
switch ((demap_addr >> 4) & 3) {
case 0: // primary
case 0: /* primary */
context = env1->dmmu.mmu_primary_context;
break;
case 1: // secondary
case 1: /* secondary */
context = env1->dmmu.mmu_secondary_context;
break;
case 2: // nucleus
case 2: /* nucleus */
context = 0;
break;
case 3: // reserved
case 3: /* reserved */
default:
return;
}
......@@ -192,14 +192,14 @@ static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
if (TTE_IS_VALID(tlb[i].tte)) {
if (is_demap_context) {
// will remove non-global entries matching context value
/* will remove non-global entries matching context value */
if (TTE_IS_GLOBAL(tlb[i].tte) ||
!tlb_compare_context(&tlb[i], context)) {
continue;
}
} else {
// demap page
// will remove any entry matching VA
/* demap page
will remove any entry matching VA */
mask = 0xffffffffffffe000ULL;
mask <<= 3 * ((tlb[i].tte >> 61) & 3);
......@@ -207,7 +207,7 @@ static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
continue;
}
// entry should be global or matching context value
/* entry should be global or matching context value */
if (!TTE_IS_GLOBAL(tlb[i].tte) &&
!tlb_compare_context(&tlb[i], context)) {
continue;
......@@ -225,11 +225,11 @@ static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
uint64_t tlb_tag, uint64_t tlb_tte,
const char* strmmu, CPUState *env1)
const char *strmmu, CPUState *env1)
{
unsigned int i, replace_used;
// Try replacing invalid entry
/* Try replacing invalid entry */
for (i = 0; i < 64; i++) {
if (!TTE_IS_VALID(tlb[i].tte)) {
replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
......@@ -241,11 +241,11 @@ static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
}
}
// All entries are valid, try replacing unlocked entry
/* All entries are valid, try replacing unlocked entry */
for (replace_used = 0; replace_used < 2; ++replace_used) {
// Used entries are not replaced on first pass
/* Used entries are not replaced on first pass */
for (i = 0; i < 64; i++) {
if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
......@@ -253,14 +253,14 @@ static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
#ifdef DEBUG_MMU
DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
strmmu, (replace_used?"used":"unused"), i);
strmmu, (replace_used ? "used" : "unused"), i);
dump_mmu(stdout, fprintf, env1);
#endif
return;
}
}
// Now reset used bit and search for unused entries again
/* Now reset used bit and search for unused entries again */
for (i = 0; i < 64; i++) {
TTE_SET_UNUSED(tlb[i].tte);
......@@ -270,7 +270,7 @@ static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
#ifdef DEBUG_MMU
DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
#endif
// error state?
/* error state? */
}
#endif
......@@ -278,8 +278,9 @@ static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
static inline target_ulong address_mask(CPUState *env1, target_ulong addr)
{
#ifdef TARGET_SPARC64
if (AM_CHECK(env1))
if (AM_CHECK(env1)) {
addr &= 0xffffffffULL;
}
#endif
return addr;
}
......@@ -291,7 +292,7 @@ static inline int is_translating_asi(int asi)
#ifdef TARGET_SPARC64
/* Ultrasparc IIi translating asi
- note this list is defined by cpu implementation
*/
*/
switch (asi) {
case 0x04 ... 0x11:
case 0x16 ... 0x19:
......@@ -325,8 +326,8 @@ void helper_check_align(target_ulong addr, uint32_t align)
{
if (addr & align) {
#ifdef DEBUG_UNALIGNED
printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
"\n", addr, env->pc);
printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
"\n", addr, env->pc);
#endif
helper_raise_exception(env, TT_UNALIGNED);
}
......@@ -517,23 +518,23 @@ typedef union {
uint32_t l[2];
uint64_t ll;
float64 d;
} vis64;
} VIS64;
typedef union {
uint8_t b[4];
uint16_t w[2];
uint32_t l;
float32 f;
} vis32;
} VIS32;
void helper_fpmerge(void)
{
vis64 s, d;
VIS64 s, d;
s.d = DT0;
d.d = DT1;
// Reverse calculation order to handle overlap
/* Reverse calculation order to handle overlap */
d.VIS_B64(7) = s.VIS_B64(3);
d.VIS_B64(6) = d.VIS_B64(3);
d.VIS_B64(5) = s.VIS_B64(2);
......@@ -541,14 +542,14 @@ void helper_fpmerge(void)
d.VIS_B64(3) = s.VIS_B64(1);
d.VIS_B64(2) = d.VIS_B64(1);
d.VIS_B64(1) = s.VIS_B64(0);
//d.VIS_B64(0) = d.VIS_B64(0);
/* d.VIS_B64(0) = d.VIS_B64(0); */
DT0 = d.d;
}
void helper_fmul8x16(void)
{
vis64 s, d;
VIS64 s, d;
uint32_t tmp;
s.d = DT0;
......@@ -556,8 +557,9 @@ void helper_fmul8x16(void)
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
if ((tmp & 0xff) > 0x7f) \
if ((tmp & 0xff) > 0x7f) { \
tmp += 0x100; \
} \
d.VIS_W64(r) = tmp >> 8;
PMUL(0);
......@@ -571,7 +573,7 @@ void helper_fmul8x16(void)
void helper_fmul8x16al(void)
{
vis64 s, d;
VIS64 s, d;
uint32_t tmp;
s.d = DT0;
......@@ -579,8 +581,9 @@ void helper_fmul8x16al(void)
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
if ((tmp & 0xff) > 0x7f) \
if ((tmp & 0xff) > 0x7f) { \
tmp += 0x100; \
} \
d.VIS_W64(r) = tmp >> 8;
PMUL(0);
......@@ -594,7 +597,7 @@ void helper_fmul8x16al(void)
void helper_fmul8x16au(void)
{
vis64 s, d;
VIS64 s, d;
uint32_t tmp;
s.d = DT0;
......@@ -602,8 +605,9 @@ void helper_fmul8x16au(void)
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
if ((tmp & 0xff) > 0x7f) \
if ((tmp & 0xff) > 0x7f) { \
tmp += 0x100; \
} \
d.VIS_W64(r) = tmp >> 8;
PMUL(0);
......@@ -617,7 +621,7 @@ void helper_fmul8x16au(void)
void helper_fmul8sux16(void)
{
vis64 s, d;
VIS64 s, d;
uint32_t tmp;
s.d = DT0;
......@@ -625,8 +629,9 @@ void helper_fmul8sux16(void)
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
if ((tmp & 0xff) > 0x7f) \
if ((tmp & 0xff) > 0x7f) { \
tmp += 0x100; \
} \
d.VIS_W64(r) = tmp >> 8;
PMUL(0);
......@@ -640,7 +645,7 @@ void helper_fmul8sux16(void)
void helper_fmul8ulx16(void)
{
vis64 s, d;
VIS64 s, d;
uint32_t tmp;
s.d = DT0;
......@@ -648,8 +653,9 @@ void helper_fmul8ulx16(void)
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
if ((tmp & 0xff) > 0x7f) \
if ((tmp & 0xff) > 0x7f) { \
tmp += 0x100; \
} \
d.VIS_W64(r) = tmp >> 8;
PMUL(0);
......@@ -663,7 +669,7 @@ void helper_fmul8ulx16(void)
void helper_fmuld8sux16(void)
{
vis64 s, d;
VIS64 s, d;
uint32_t tmp;
s.d = DT0;
......@@ -671,11 +677,12 @@ void helper_fmuld8sux16(void)
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
if ((tmp & 0xff) > 0x7f) \
if ((tmp & 0xff) > 0x7f) { \
tmp += 0x100; \
} \
d.VIS_L64(r) = tmp;
// Reverse calculation order to handle overlap
/* Reverse calculation order to handle overlap */
PMUL(1);
PMUL(0);
#undef PMUL
......@@ -685,7 +692,7 @@ void helper_fmuld8sux16(void)
void helper_fmuld8ulx16(void)
{
vis64 s, d;
VIS64 s, d;
uint32_t tmp;
s.d = DT0;
......@@ -693,11 +700,12 @@ void helper_fmuld8ulx16(void)
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
if ((tmp & 0xff) > 0x7f) \
if ((tmp & 0xff) > 0x7f) { \
tmp += 0x100; \
} \
d.VIS_L64(r) = tmp;
// Reverse calculation order to handle overlap
/* Reverse calculation order to handle overlap */
PMUL(1);
PMUL(0);
#undef PMUL
......@@ -707,8 +715,8 @@ void helper_fmuld8ulx16(void)
void helper_fexpand(void)
{
vis32 s;
vis64 d;
VIS32 s;
VIS64 d;
s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
d.d = DT1;
......@@ -723,7 +731,7 @@ void helper_fexpand(void)
#define VIS_HELPER(name, F) \
void name##16(void) \
{ \
vis64 s, d; \
VIS64 s, d; \
\
s.d = DT0; \
d.d = DT1; \
......@@ -738,7 +746,7 @@ void helper_fexpand(void)
\
uint32_t name##16s(uint32_t src1, uint32_t src2) \
{ \
vis32 s, d; \
VIS32 s, d; \
\
s.l = src1; \
d.l = src2; \
......@@ -751,7 +759,7 @@ void helper_fexpand(void)
\
void name##32(void) \
{ \
vis64 s, d; \
VIS64 s, d; \
\
s.d = DT0; \
d.d = DT1; \
......@@ -764,7 +772,7 @@ void helper_fexpand(void)
\
uint32_t name##32s(uint32_t src1, uint32_t src2) \
{ \
vis32 s, d; \
VIS32 s, d; \
\
s.l = src1; \
d.l = src2; \
......@@ -779,10 +787,10 @@ void helper_fexpand(void)
VIS_HELPER(helper_fpadd, FADD)
VIS_HELPER(helper_fpsub, FSUB)
#define VIS_CMPHELPER(name, F) \
#define VIS_CMPHELPER(name, F) \
uint64_t name##16(void) \
{ \
vis64 s, d; \
VIS64 s, d; \
\
s.d = DT0; \
d.d = DT1; \
......@@ -798,7 +806,7 @@ VIS_HELPER(helper_fpsub, FSUB)
\
uint64_t name##32(void) \
{ \
vis64 s, d; \
VIS64 s, d; \
\
s.d = DT0; \
d.d = DT1; \
......@@ -828,16 +836,21 @@ void helper_check_ieee_exceptions(void)
status = get_float_exception_flags(&env->fp_status);
if (status) {
/* Copy IEEE 754 flags into FSR */
if (status & float_flag_invalid)
if (status & float_flag_invalid) {
env->fsr |= FSR_NVC;
if (status & float_flag_overflow)
}
if (status & float_flag_overflow) {
env->fsr |= FSR_OFC;
if (status & float_flag_underflow)
}
if (status & float_flag_underflow) {
env->fsr |= FSR_UFC;
if (status & float_flag_divbyzero)
}
if (status & float_flag_divbyzero) {
env->fsr |= FSR_DZC;
if (status & float_flag_inexact)
}
if (status & float_flag_inexact) {
env->fsr |= FSR_NXC;
}
if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
/* Unmasked exception, generate a trap */
......@@ -892,7 +905,7 @@ void helper_fsqrtq(void)
{ \
env->fsr &= FSR_FTT_NMASK; \
if (E && (glue(size, _is_any_nan)(reg1) || \
glue(size, _is_any_nan)(reg2)) && \
glue(size, _is_any_nan)(reg2)) && \
(env->fsr & FSR_NVM)) { \
env->fsr |= FSR_NVC; \
env->fsr |= FSR_FTT_IEEE_EXCP; \
......@@ -928,7 +941,7 @@ void helper_fsqrtq(void)
{ \
env->fsr &= FSR_FTT_NMASK; \
if (E && (glue(size, _is_any_nan)(src1) || \
glue(size, _is_any_nan)(src2)) && \
glue(size, _is_any_nan)(src2)) && \
(env->fsr & FSR_NVM)) { \
env->fsr |= FSR_NVC; \
env->fsr |= FSR_FTT_IEEE_EXCP; \
......@@ -1094,7 +1107,7 @@ static inline uint32_t get_C_addx_xcc(target_ulong dst, target_ulong src1,
}
static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
target_ulong src2)
target_ulong src2)
{
uint32_t ret = 0;
......@@ -1476,11 +1489,11 @@ static target_ulong get_psr(void)
#if !defined (TARGET_SPARC64)
return env->version | (env->psr & PSR_ICC) |
(env->psref? PSR_EF : 0) |
(env->psref ? PSR_EF : 0) |
(env->psrpil << 8) |
(env->psrs? PSR_S : 0) |
(env->psrps? PSR_PS : 0) |
(env->psret? PSR_ET : 0) | env->cwp;
(env->psrs ? PSR_S : 0) |
(env->psrps ? PSR_PS : 0) |
(env->psret ? PSR_ET : 0) | env->cwp;
#else
return env->psr & PSR_ICC;
#endif
......@@ -1502,16 +1515,16 @@ static void put_psr(target_ulong val)
{
env->psr = val & PSR_ICC;
#if !defined (TARGET_SPARC64)
env->psref = (val & PSR_EF)? 1 : 0;
env->psref = (val & PSR_EF) ? 1 : 0;
env->psrpil = (val & PSR_PIL) >> 8;
#endif
#if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY))
cpu_check_irqs(env);
#endif
#if !defined (TARGET_SPARC64)
env->psrs = (val & PSR_S)? 1 : 0;
env->psrps = (val & PSR_PS)? 1 : 0;
env->psret = (val & PSR_ET)? 1 : 0;
env->psrs = (val & PSR_S) ? 1 : 0;
env->psrps = (val & PSR_PS) ? 1 : 0;
env->psret = (val & PSR_ET) ? 1 : 0;
set_cwp(val & PSR_CWP);
#endif
env->cc_op = CC_OP_FLAGS;
......@@ -1594,7 +1607,7 @@ GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
#endif
#undef GEN_FCMPS
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
defined(DEBUG_MXCC)
static void dump_mxcc(CPUState *env)
{
......@@ -1613,13 +1626,12 @@ static void dump_mxcc(CPUState *env)
}
#endif
#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
&& defined(DEBUG_ASI)
static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
uint64_t r1)
{
switch (size)
{
switch (size) {
case 1:
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
addr, asi, r1 & 0xff);
......@@ -1764,33 +1776,37 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
}
break;
case 0x01c00a00: /* MXCC control register */
if (size == 8)
if (size == 8) {
ret = env->mxccregs[3];
else
} else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00a04: /* MXCC control register */
if (size == 4)
if (size == 4) {
ret = env->mxccregs[3];
else
} else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00c00: /* Module reset register */
if (size == 8) {
ret = env->mxccregs[5];
// should we do something here?
} else
/* should we do something here? */
} else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00f00: /* MBus port address register */
if (size == 8)
if (size == 8) {
ret = env->mxccregs[7];
else
} else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
}
break;
default:
DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
......@@ -1809,10 +1825,11 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
int mmulev;
mmulev = (addr >> 8) & 15;
if (mmulev > 4)
if (mmulev > 4) {
ret = 0;
else
} else {
ret = mmu_probe(env, addr, mmulev);
}
DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
addr, mmulev, ret);
}
......@@ -1822,21 +1839,22 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
int reg = (addr >> 8) & 0x1f;
ret = env->mmuregs[reg];
if (reg == 3) /* Fault status cleared on read */
if (reg == 3) { /* Fault status cleared on read */
env->mmuregs[3] = 0;
else if (reg == 0x13) /* Fault status read */
} else if (reg == 0x13) { /* Fault status read */
ret = env->mmuregs[3];
else if (reg == 0x14) /* Fault address read */
} else if (reg == 0x14) { /* Fault address read */
ret = env->mmuregs[4];
}
DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
}
break;
case 5: // Turbosparc ITLB Diagnostic
case 6: // Turbosparc DTLB Diagnostic
case 7: // Turbosparc IOTLB Diagnostic
case 5: /* Turbosparc ITLB Diagnostic */
case 6: /* Turbosparc DTLB Diagnostic */
case 7: /* Turbosparc IOTLB Diagnostic */
break;
case 9: /* Supervisor code access */
switch(size) {
switch (size) {
case 1:
ret = ldub_code(addr);
break;
......@@ -1853,7 +1871,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
}
break;
case 0xa: /* User data access */
switch(size) {
switch (size) {
case 1:
ret = ldub_user(addr);
break;
......@@ -1870,7 +1888,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
}
break;
case 0xb: /* Supervisor data access */
switch(size) {
switch (size) {
case 1:
ret = ldub_kernel(addr);
break;
......@@ -1892,7 +1910,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
case 0xf: /* D-cache data */
break;
case 0x20: /* MMU passthrough */
switch(size) {
switch (size) {
case 1:
ret = ldub_phys(addr);
break;
......@@ -1909,7 +1927,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
}
break;
case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
switch(size) {
switch (size) {
case 1:
ret = ldub_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32));
......@@ -1929,9 +1947,9 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
break;
}
break;
case 0x30: // Turbosparc secondary cache diagnostic
case 0x31: // Turbosparc RAM snoop
case 0x32: // Turbosparc page table descriptor diagnostic
case 0x30: /* Turbosparc secondary cache diagnostic */
case 0x31: /* Turbosparc RAM snoop */
case 0x32: /* Turbosparc page table descriptor diagnostic */
case 0x39: /* data cache diagnostic register */
ret = 0;
break;
......@@ -1939,7 +1957,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
{
int reg = (addr >> 8) & 3;
switch(reg) {
switch (reg) {
case 0: /* Breakpoint Value (Addr) */
ret = env->mmubpregs[reg];
break;
......@@ -1977,7 +1995,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
break;
}
if (sign) {
switch(size) {
switch (size) {
case 1:
ret = (int8_t) ret;
break;
......@@ -2000,7 +2018,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
{
helper_check_align(addr, size - 1);
switch(asi) {
switch (asi) {
case 2: /* SuperSparc MXCC registers and Leon3 cache control */
switch (addr) {
case 0x00: /* Leon3 Cache Control */
......@@ -2012,39 +2030,44 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
break;
case 0x01c00000: /* MXCC stream data register 0 */
if (size == 8)
if (size == 8) {
env->mxccdata[0] = val;
else
} else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00008: /* MXCC stream data register 1 */
if (size == 8)
if (size == 8) {
env->mxccdata[1] = val;
else
} else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00010: /* MXCC stream data register 2 */
if (size == 8)
if (size == 8) {
env->mxccdata[2] = val;
else
} else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00018: /* MXCC stream data register 3 */
if (size == 8)
if (size == 8) {
env->mxccdata[3] = val;
else
} else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00100: /* MXCC stream source */
if (size == 8)
if (size == 8) {
env->mxccregs[0] = val;
else
} else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
}
env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
0);
env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
......@@ -2055,11 +2078,12 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
24);
break;
case 0x01c00200: /* MXCC stream destination */
if (size == 8)
if (size == 8) {
env->mxccregs[1] = val;
else
} else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
}
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
env->mxccdata[0]);
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
......@@ -2070,34 +2094,38 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
env->mxccdata[3]);
break;
case 0x01c00a00: /* MXCC control register */
if (size == 8)
if (size == 8) {
env->mxccregs[3] = val;
else
} else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00a04: /* MXCC control register */
if (size == 4)
if (size == 4) {
env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
| val;
else
} else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00e00: /* MXCC error register */
// writing a 1 bit clears the error
if (size == 8)
/* writing a 1 bit clears the error */
if (size == 8) {
env->mxccregs[6] &= ~val;
else
} else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
}
break;
case 0x01c00f00: /* MBus port address register */
if (size == 8)
if (size == 8) {
env->mxccregs[7] = val;
else
} else {
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
}
break;
default:
DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
......@@ -2117,13 +2145,13 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
mmulev = (addr >> 8) & 15;
DPRINTF_MMU("mmu flush level %d\n", mmulev);
switch (mmulev) {
case 0: // flush page
case 0: /* flush page */
tlb_flush_page(env, addr & 0xfffff000);
break;
case 1: // flush segment (256k)
case 2: // flush region (16M)
case 3: // flush context (4G)
case 4: // flush entire
case 1: /* flush segment (256k) */
case 2: /* flush region (16M) */
case 3: /* flush context (4G) */
case 4: /* flush entire */
tlb_flush(env, 1);
break;
default:
......@@ -2140,20 +2168,21 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
uint32_t oldreg;
oldreg = env->mmuregs[reg];
switch(reg) {
case 0: // Control Register
switch (reg) {
case 0: /* Control Register */
env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
(val & 0x00ffffff);
// Mappings generated during no-fault mode or MMU
// disabled mode are invalid in normal mode
(val & 0x00ffffff);
/* Mappings generated during no-fault mode or MMU
disabled mode are invalid in normal mode */
if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
(env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
(env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) {
tlb_flush(env, 1);
}
break;
case 1: // Context Table Pointer Register
case 1: /* Context Table Pointer Register */
env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
break;
case 2: // Context Register
case 2: /* Context Register */
env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
if (oldreg != env->mmuregs[reg]) {
/* we flush when the MMU context changes because
......@@ -2161,16 +2190,17 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
tlb_flush(env, 1);
}
break;
case 3: // Synchronous Fault Status Register with Clear
case 4: // Synchronous Fault Address Register
case 3: /* Synchronous Fault Status Register with Clear */
case 4: /* Synchronous Fault Address Register */
break;
case 0x10: // TLB Replacement Control Register
case 0x10: /* TLB Replacement Control Register */
env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
break;
case 0x13: // Synchronous Fault Status Register with Read and Clear
case 0x13: /* Synchronous Fault Status Register with Read
and Clear */
env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
break;
case 0x14: // Synchronous Fault Address Register
case 0x14: /* Synchronous Fault Address Register */
env->mmuregs[4] = val;
break;
default:
......@@ -2186,12 +2216,12 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
#endif
}
break;
case 5: // Turbosparc ITLB Diagnostic
case 6: // Turbosparc DTLB Diagnostic
case 7: // Turbosparc IOTLB Diagnostic
case 5: /* Turbosparc ITLB Diagnostic */
case 6: /* Turbosparc DTLB Diagnostic */
case 7: /* Turbosparc IOTLB Diagnostic */
break;
case 0xa: /* User data access */
switch(size) {
switch (size) {
case 1:
stb_user(addr, val);
break;
......@@ -2208,7 +2238,7 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
}
break;
case 0xb: /* Supervisor data access */
switch(size) {
switch (size) {
case 1:
stb_kernel(addr, val);
break;
......@@ -2236,9 +2266,9 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
break;
case 0x17: /* Block copy, sta access */
{
// val = src
// addr = dst
// copy 32 bytes
/* val = src
addr = dst
copy 32 bytes */
unsigned int i;
uint32_t src = val & ~3, dst = addr & ~3, temp;
......@@ -2250,18 +2280,19 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
break;
case 0x1f: /* Block fill, stda access */
{
// addr = dst
// fill 32 bytes with val
/* addr = dst
fill 32 bytes with val */
unsigned int i;
uint32_t dst = addr & 7;
for (i = 0; i < 32; i += 8, dst += 8)
for (i = 0; i < 32; i += 8, dst += 8) {
stq_kernel(dst, val);
}
}
break;
case 0x20: /* MMU passthrough */
{
switch(size) {
switch (size) {
case 1:
stb_phys(addr, val);
break;
......@@ -2280,7 +2311,7 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
break;
case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
{
switch(size) {
switch (size) {
case 1:
stb_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32), val);
......@@ -2301,11 +2332,11 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
}
}
break;
case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
case 0x31: // store buffer data, Ross RT620 I-cache flush or
// Turbosparc snoop RAM
case 0x32: // store buffer control or Turbosparc page table
// descriptor diagnostic
case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
case 0x31: /* store buffer data, Ross RT620 I-cache flush or
Turbosparc snoop RAM */
case 0x32: /* store buffer control or Turbosparc page table
descriptor diagnostic */
case 0x36: /* I-cache flash clear */
case 0x37: /* D-cache flash clear */
break;
......@@ -2313,7 +2344,7 @@ void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
{
int reg = (addr >> 8) & 3;
switch(reg) {
switch (reg) {
case 0: /* Breakpoint Value (Addr) */
env->mmubpregs[reg] = (val & 0xfffffffffULL);
break;
......@@ -2365,26 +2396,27 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
target_ulong last_addr = addr;
#endif
if (asi < 0x80)
if (asi < 0x80) {
helper_raise_exception(env, TT_PRIV_ACT);
}
helper_check_align(addr, size - 1);
addr = asi_address_mask(env, asi, addr);
switch (asi) {
case 0x82: // Primary no-fault
case 0x8a: // Primary no-fault LE
case 0x82: /* Primary no-fault */
case 0x8a: /* Primary no-fault LE */
if (page_check_range(addr, size, PAGE_READ) == -1) {
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
return 0;
}
// Fall through
case 0x80: // Primary
case 0x88: // Primary LE
/* Fall through */
case 0x80: /* Primary */
case 0x88: /* Primary LE */
{
switch(size) {
switch (size) {
case 1:
ret = ldub_raw(addr);
break;
......@@ -2401,18 +2433,18 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
}
}
break;
case 0x83: // Secondary no-fault
case 0x8b: // Secondary no-fault LE
case 0x83: /* Secondary no-fault */
case 0x8b: /* Secondary no-fault LE */
if (page_check_range(addr, size, PAGE_READ) == -1) {
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
return 0;
}
// Fall through
case 0x81: // Secondary
case 0x89: // Secondary LE
// XXX
/* Fall through */
case 0x81: /* Secondary */
case 0x89: /* Secondary LE */
/* XXX */
break;
default:
break;
......@@ -2420,11 +2452,11 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
/* Convert from little endian */
switch (asi) {
case 0x88: // Primary LE
case 0x89: // Secondary LE
case 0x8a: // Primary no-fault LE
case 0x8b: // Secondary no-fault LE
switch(size) {
case 0x88: /* Primary LE */
case 0x89: /* Secondary LE */
case 0x8a: /* Primary no-fault LE */
case 0x8b: /* Secondary no-fault LE */
switch (size) {
case 2:
ret = bswap16(ret);
break;
......@@ -2443,7 +2475,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
/* Convert to signed number */
if (sign) {
switch(size) {
switch (size) {
case 1:
ret = (int8_t) ret;
break;
......@@ -2468,17 +2500,18 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
#ifdef DEBUG_ASI
dump_asi("write", addr, asi, size, val);
#endif
if (asi < 0x80)
if (asi < 0x80) {
helper_raise_exception(env, TT_PRIV_ACT);
}
helper_check_align(addr, size - 1);
addr = asi_address_mask(env, asi, addr);
/* Convert to little endian */
switch (asi) {
case 0x88: // Primary LE
case 0x89: // Secondary LE
switch(size) {
case 0x88: /* Primary LE */
case 0x89: /* Secondary LE */
switch (size) {
case 2:
val = bswap16(val);
break;
......@@ -2495,11 +2528,11 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
break;
}
switch(asi) {
case 0x80: // Primary
case 0x88: // Primary LE
switch (asi) {
case 0x80: /* Primary */
case 0x88: /* Primary LE */
{
switch(size) {
switch (size) {
case 1:
stb_raw(addr, val);
break;
......@@ -2516,15 +2549,15 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
}
}
break;
case 0x81: // Secondary
case 0x89: // Secondary LE
// XXX
case 0x81: /* Secondary */
case 0x89: /* Secondary LE */
/* XXX */
return;
case 0x82: // Primary no-fault, RO
case 0x83: // Secondary no-fault, RO
case 0x8a: // Primary no-fault LE, RO
case 0x8b: // Secondary no-fault LE, RO
case 0x82: /* Primary no-fault, RO */
case 0x83: /* Secondary no-fault, RO */
case 0x8a: /* Primary no-fault LE, RO */
case 0x8b: /* Secondary no-fault LE, RO */
default:
do_unassigned_access(addr, 1, 0, 1, size);
return;
......@@ -2545,8 +2578,9 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|| (cpu_has_hypervisor(env)
&& asi >= 0x30 && asi < 0x80
&& !(env->hpstate & HS_PRIV)))
&& !(env->hpstate & HS_PRIV))) {
helper_raise_exception(env, TT_PRIV_ACT);
}
helper_check_align(addr, size - 1);
addr = asi_address_mask(env, asi, addr);
......@@ -2575,19 +2609,19 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
}
switch (asi) {
case 0x10: // As if user primary
case 0x11: // As if user secondary
case 0x18: // As if user primary LE
case 0x19: // As if user secondary LE
case 0x80: // Primary
case 0x81: // Secondary
case 0x88: // Primary LE
case 0x89: // Secondary LE
case 0xe2: // UA2007 Primary block init
case 0xe3: // UA2007 Secondary block init
case 0x10: /* As if user primary */
case 0x11: /* As if user secondary */
case 0x18: /* As if user primary LE */
case 0x19: /* As if user secondary LE */
case 0x80: /* Primary */
case 0x81: /* Secondary */
case 0x88: /* Primary LE */
case 0x89: /* Secondary LE */
case 0xe2: /* UA2007 Primary block init */
case 0xe3: /* UA2007 Secondary block init */
if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
if (cpu_hypervisor_mode(env)) {
switch(size) {
switch (size) {
case 1:
ret = ldub_hypv(addr);
break;
......@@ -2605,7 +2639,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
} else {
/* secondary space access has lowest asi bit equal to 1 */
if (asi & 1) {
switch(size) {
switch (size) {
case 1:
ret = ldub_kernel_secondary(addr);
break;
......@@ -2621,7 +2655,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
break;
}
} else {
switch(size) {
switch (size) {
case 1:
ret = ldub_kernel(addr);
break;
......@@ -2641,7 +2675,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
} else {
/* secondary space access has lowest asi bit equal to 1 */
if (asi & 1) {
switch(size) {
switch (size) {
case 1:
ret = ldub_user_secondary(addr);
break;
......@@ -2657,7 +2691,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
break;
}
} else {
switch(size) {
switch (size) {
case 1:
ret = ldub_user(addr);
break;
......@@ -2675,12 +2709,12 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
}
}
break;
case 0x14: // Bypass
case 0x15: // Bypass, non-cacheable
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
case 0x14: /* Bypass */
case 0x15: /* Bypass, non-cacheable */
case 0x1c: /* Bypass LE */
case 0x1d: /* Bypass, non-cacheable LE */
{
switch(size) {
switch (size) {
case 1:
ret = ldub_phys(addr);
break;
......@@ -2697,43 +2731,43 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
}
break;
}
case 0x24: // Nucleus quad LDD 128 bit atomic
case 0x2c: // Nucleus quad LDD 128 bit atomic LE
// Only ldda allowed
case 0x24: /* Nucleus quad LDD 128 bit atomic */
case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
Only ldda allowed */
helper_raise_exception(env, TT_ILL_INSN);
return 0;
case 0x04: // Nucleus
case 0x0c: // Nucleus Little Endian (LE)
{
switch(size) {
case 1:
ret = ldub_nucleus(addr);
break;
case 2:
ret = lduw_nucleus(addr);
break;
case 4:
ret = ldl_nucleus(addr);
break;
default:
case 8:
ret = ldq_nucleus(addr);
case 0x04: /* Nucleus */
case 0x0c: /* Nucleus Little Endian (LE) */
{
switch (size) {
case 1:
ret = ldub_nucleus(addr);
break;
case 2:
ret = lduw_nucleus(addr);
break;
case 4:
ret = ldl_nucleus(addr);
break;
default:
case 8:
ret = ldq_nucleus(addr);
break;
}
break;
}
case 0x4a: /* UPA config */
/* XXX */
break;
}
case 0x4a: // UPA config
// XXX
break;
case 0x45: // LSU
case 0x45: /* LSU */
ret = env->lsu;
break;
case 0x50: // I-MMU regs
case 0x50: /* I-MMU regs */
{
int reg = (addr >> 3) & 0xf;
if (reg == 0) {
// I-TSB Tag Target register
/* I-TSB Tag Target register */
ret = ultrasparc_tag_target(env->immu.tag_access);
} else {
ret = env->immuregs[reg];
......@@ -2741,102 +2775,102 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
break;
}
case 0x51: // I-MMU 8k TSB pointer
case 0x51: /* I-MMU 8k TSB pointer */
{
// env->immuregs[5] holds I-MMU TSB register value
// env->immuregs[6] holds I-MMU Tag Access register value
/* env->immuregs[5] holds I-MMU TSB register value
env->immuregs[6] holds I-MMU Tag Access register value */
ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
8*1024);
break;
}
case 0x52: // I-MMU 64k TSB pointer
case 0x52: /* I-MMU 64k TSB pointer */
{
// env->immuregs[5] holds I-MMU TSB register value
// env->immuregs[6] holds I-MMU Tag Access register value
/* env->immuregs[5] holds I-MMU TSB register value
env->immuregs[6] holds I-MMU Tag Access register value */
ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
64*1024);
break;
}
case 0x55: // I-MMU data access
case 0x55: /* I-MMU data access */
{
int reg = (addr >> 3) & 0x3f;
ret = env->itlb[reg].tte;
break;
}
case 0x56: // I-MMU tag read
case 0x56: /* I-MMU tag read */
{
int reg = (addr >> 3) & 0x3f;
ret = env->itlb[reg].tag;
break;
}
case 0x58: // D-MMU regs
case 0x58: /* D-MMU regs */
{
int reg = (addr >> 3) & 0xf;
if (reg == 0) {
// D-TSB Tag Target register
/* D-TSB Tag Target register */
ret = ultrasparc_tag_target(env->dmmu.tag_access);
} else {
ret = env->dmmuregs[reg];
}
break;
}
case 0x59: // D-MMU 8k TSB pointer
case 0x59: /* D-MMU 8k TSB pointer */
{
// env->dmmuregs[5] holds D-MMU TSB register value
// env->dmmuregs[6] holds D-MMU Tag Access register value
/* env->dmmuregs[5] holds D-MMU TSB register value
env->dmmuregs[6] holds D-MMU Tag Access register value */
ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
8*1024);
break;
}
case 0x5a: // D-MMU 64k TSB pointer
case 0x5a: /* D-MMU 64k TSB pointer */
{
// env->dmmuregs[5] holds D-MMU TSB register value
// env->dmmuregs[6] holds D-MMU Tag Access register value
/* env->dmmuregs[5] holds D-MMU TSB register value
env->dmmuregs[6] holds D-MMU Tag Access register value */
ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
64*1024);
break;
}
case 0x5d: // D-MMU data access
case 0x5d: /* D-MMU data access */
{
int reg = (addr >> 3) & 0x3f;
ret = env->dtlb[reg].tte;
break;
}
case 0x5e: // D-MMU tag read
case 0x5e: /* D-MMU tag read */
{
int reg = (addr >> 3) & 0x3f;
ret = env->dtlb[reg].tag;
break;
}
case 0x46: // D-cache data
case 0x47: // D-cache tag access
case 0x4b: // E-cache error enable
case 0x4c: // E-cache asynchronous fault status
case 0x4d: // E-cache asynchronous fault address
case 0x4e: // E-cache tag data
case 0x66: // I-cache instruction access
case 0x67: // I-cache tag access
case 0x6e: // I-cache predecode
case 0x6f: // I-cache LRU etc.
case 0x76: // E-cache tag
case 0x7e: // E-cache tag
case 0x46: /* D-cache data */
case 0x47: /* D-cache tag access */
case 0x4b: /* E-cache error enable */
case 0x4c: /* E-cache asynchronous fault status */
case 0x4d: /* E-cache asynchronous fault address */
case 0x4e: /* E-cache tag data */
case 0x66: /* I-cache instruction access */
case 0x67: /* I-cache tag access */
case 0x6e: /* I-cache predecode */
case 0x6f: /* I-cache LRU etc. */
case 0x76: /* E-cache tag */
case 0x7e: /* E-cache tag */
break;
case 0x5b: // D-MMU data pointer
case 0x48: // Interrupt dispatch, RO
case 0x49: // Interrupt data receive
case 0x7f: // Incoming interrupt vector, RO
// XXX
case 0x5b: /* D-MMU data pointer */
case 0x48: /* Interrupt dispatch, RO */
case 0x49: /* Interrupt data receive */
case 0x7f: /* Incoming interrupt vector, RO */
/* XXX */
break;
case 0x54: // I-MMU data in, WO
case 0x57: // I-MMU demap, WO
case 0x5c: // D-MMU data in, WO
case 0x5f: // D-MMU demap, WO
case 0x77: // Interrupt vector, WO
case 0x54: /* I-MMU data in, WO */
case 0x57: /* I-MMU demap, WO */
case 0x5c: /* D-MMU data in, WO */
case 0x5f: /* D-MMU demap, WO */
case 0x77: /* Interrupt vector, WO */
default:
do_unassigned_access(addr, 0, 0, 1, size);
ret = 0;
......@@ -2845,13 +2879,13 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
/* Convert from little endian */
switch (asi) {
case 0x0c: // Nucleus Little Endian (LE)
case 0x18: // As if user primary LE
case 0x19: // As if user secondary LE
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
case 0x88: // Primary LE
case 0x89: // Secondary LE
case 0x0c: /* Nucleus Little Endian (LE) */
case 0x18: /* As if user primary LE */
case 0x19: /* As if user secondary LE */
case 0x1c: /* Bypass LE */
case 0x1d: /* Bypass, non-cacheable LE */
case 0x88: /* Primary LE */
case 0x89: /* Secondary LE */
switch(size) {
case 2:
ret = bswap16(ret);
......@@ -2871,7 +2905,7 @@ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
/* Convert to signed number */
if (sign) {
switch(size) {
switch (size) {
case 1:
ret = (int8_t) ret;
break;
......@@ -2902,22 +2936,23 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|| (cpu_has_hypervisor(env)
&& asi >= 0x30 && asi < 0x80
&& !(env->hpstate & HS_PRIV)))
&& !(env->hpstate & HS_PRIV))) {
helper_raise_exception(env, TT_PRIV_ACT);
}
helper_check_align(addr, size - 1);
addr = asi_address_mask(env, asi, addr);
/* Convert to little endian */
switch (asi) {
case 0x0c: // Nucleus Little Endian (LE)
case 0x18: // As if user primary LE
case 0x19: // As if user secondary LE
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
case 0x88: // Primary LE
case 0x89: // Secondary LE
switch(size) {
case 0x0c: /* Nucleus Little Endian (LE) */
case 0x18: /* As if user primary LE */
case 0x19: /* As if user secondary LE */
case 0x1c: /* Bypass LE */
case 0x1d: /* Bypass, non-cacheable LE */
case 0x88: /* Primary LE */
case 0x89: /* Secondary LE */
switch (size) {
case 2:
val = bswap16(val);
break;
......@@ -2934,20 +2969,20 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
break;
}
switch(asi) {
case 0x10: // As if user primary
case 0x11: // As if user secondary
case 0x18: // As if user primary LE
case 0x19: // As if user secondary LE
case 0x80: // Primary
case 0x81: // Secondary
case 0x88: // Primary LE
case 0x89: // Secondary LE
case 0xe2: // UA2007 Primary block init
case 0xe3: // UA2007 Secondary block init
switch (asi) {
case 0x10: /* As if user primary */
case 0x11: /* As if user secondary */
case 0x18: /* As if user primary LE */
case 0x19: /* As if user secondary LE */
case 0x80: /* Primary */
case 0x81: /* Secondary */
case 0x88: /* Primary LE */
case 0x89: /* Secondary LE */
case 0xe2: /* UA2007 Primary block init */
case 0xe3: /* UA2007 Secondary block init */
if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
if (cpu_hypervisor_mode(env)) {
switch(size) {
switch (size) {
case 1:
stb_hypv(addr, val);
break;
......@@ -2965,7 +3000,7 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
} else {
/* secondary space access has lowest asi bit equal to 1 */
if (asi & 1) {
switch(size) {
switch (size) {
case 1:
stb_kernel_secondary(addr, val);
break;
......@@ -2981,7 +3016,7 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
break;
}
} else {
switch(size) {
switch (size) {
case 1:
stb_kernel(addr, val);
break;
......@@ -3001,7 +3036,7 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
} else {
/* secondary space access has lowest asi bit equal to 1 */
if (asi & 1) {
switch(size) {
switch (size) {
case 1:
stb_user_secondary(addr, val);
break;
......@@ -3017,7 +3052,7 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
break;
}
} else {
switch(size) {
switch (size) {
case 1:
stb_user(addr, val);
break;
......@@ -3035,12 +3070,12 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
}
}
break;
case 0x14: // Bypass
case 0x15: // Bypass, non-cacheable
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
case 0x14: /* Bypass */
case 0x15: /* Bypass, non-cacheable */
case 0x1c: /* Bypass LE */
case 0x1d: /* Bypass, non-cacheable LE */
{
switch(size) {
switch (size) {
case 1:
stb_phys(addr, val);
break;
......@@ -3057,43 +3092,43 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
}
}
return;
case 0x24: // Nucleus quad LDD 128 bit atomic
case 0x2c: // Nucleus quad LDD 128 bit atomic LE
// Only ldda allowed
case 0x24: /* Nucleus quad LDD 128 bit atomic */
case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
Only ldda allowed */
helper_raise_exception(env, TT_ILL_INSN);
return;
case 0x04: // Nucleus
case 0x0c: // Nucleus Little Endian (LE)
{
switch(size) {
case 1:
stb_nucleus(addr, val);
break;
case 2:
stw_nucleus(addr, val);
break;
case 4:
stl_nucleus(addr, val);
break;
default:
case 8:
stq_nucleus(addr, val);
case 0x04: /* Nucleus */
case 0x0c: /* Nucleus Little Endian (LE) */
{
switch (size) {
case 1:
stb_nucleus(addr, val);
break;
case 2:
stw_nucleus(addr, val);
break;
case 4:
stl_nucleus(addr, val);
break;
default:
case 8:
stq_nucleus(addr, val);
break;
}
break;
}
break;
}
case 0x4a: // UPA config
// XXX
case 0x4a: /* UPA config */
/* XXX */
return;
case 0x45: // LSU
case 0x45: /* LSU */
{
uint64_t oldreg;
oldreg = env->lsu;
env->lsu = val & (DMMU_E | IMMU_E);
// Mappings generated during D/I MMU disabled mode are
// invalid in normal mode
/* Mappings generated during D/I MMU disabled mode are
invalid in normal mode */
if (oldreg != env->lsu) {
DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
oldreg, env->lsu);
......@@ -3104,31 +3139,32 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
}
return;
}
case 0x50: // I-MMU regs
case 0x50: /* I-MMU regs */
{
int reg = (addr >> 3) & 0xf;
uint64_t oldreg;
oldreg = env->immuregs[reg];
switch(reg) {
case 0: // RO
switch (reg) {
case 0: /* RO */
return;
case 1: // Not in I-MMU
case 1: /* Not in I-MMU */
case 2:
return;
case 3: // SFSR
if ((val & 1) == 0)
val = 0; // Clear SFSR
case 3: /* SFSR */
if ((val & 1) == 0) {
val = 0; /* Clear SFSR */
}
env->immu.sfsr = val;
break;
case 4: // RO
case 4: /* RO */
return;
case 5: // TSB access
case 5: /* TSB access */
DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
PRIx64 "\n", env->immu.tsb, val);
env->immu.tsb = val;
break;
case 6: // Tag access
case 6: /* Tag access */
env->immu.tag_access = val;
break;
case 7:
......@@ -3147,12 +3183,12 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
#endif
return;
}
case 0x54: // I-MMU data in
case 0x54: /* I-MMU data in */
replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
return;
case 0x55: // I-MMU data access
case 0x55: /* I-MMU data access */
{
// TODO: auto demap
/* TODO: auto demap */
unsigned int i = (addr >> 3) & 0x3f;
......@@ -3164,48 +3200,48 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
#endif
return;
}
case 0x57: // I-MMU demap
case 0x57: /* I-MMU demap */
demap_tlb(env->itlb, addr, "immu", env);
return;
case 0x58: // D-MMU regs
case 0x58: /* D-MMU regs */
{
int reg = (addr >> 3) & 0xf;
uint64_t oldreg;
oldreg = env->dmmuregs[reg];
switch(reg) {
case 0: // RO
switch (reg) {
case 0: /* RO */
case 4:
return;
case 3: // SFSR
case 3: /* SFSR */
if ((val & 1) == 0) {
val = 0; // Clear SFSR, Fault address
val = 0; /* Clear SFSR, Fault address */
env->dmmu.sfar = 0;
}
env->dmmu.sfsr = val;
break;
case 1: // Primary context
case 1: /* Primary context */
env->dmmu.mmu_primary_context = val;
/* can be optimized to only flush MMU_USER_IDX
and MMU_KERNEL_IDX entries */
tlb_flush(env, 1);
break;
case 2: // Secondary context
case 2: /* Secondary context */
env->dmmu.mmu_secondary_context = val;
/* can be optimized to only flush MMU_USER_SECONDARY_IDX
and MMU_KERNEL_SECONDARY_IDX entries */
tlb_flush(env, 1);
break;
case 5: // TSB access
case 5: /* TSB access */
DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
PRIx64 "\n", env->dmmu.tsb, val);
env->dmmu.tsb = val;
break;
case 6: // Tag access
case 6: /* Tag access */
env->dmmu.tag_access = val;
break;
case 7: // Virtual Watchpoint
case 8: // Physical Watchpoint
case 7: /* Virtual Watchpoint */
case 8: /* Physical Watchpoint */
default:
env->dmmuregs[reg] = val;
break;
......@@ -3220,10 +3256,10 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
#endif
return;
}
case 0x5c: // D-MMU data in
case 0x5c: /* D-MMU data in */
replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
return;
case 0x5d: // D-MMU data access
case 0x5d: /* D-MMU data access */
{
unsigned int i = (addr >> 3) & 0x3f;
......@@ -3235,38 +3271,38 @@ void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
#endif
return;
}
case 0x5f: // D-MMU demap
case 0x5f: /* D-MMU demap */
demap_tlb(env->dtlb, addr, "dmmu", env);
return;
case 0x49: // Interrupt data receive
// XXX
case 0x49: /* Interrupt data receive */
/* XXX */
return;
case 0x46: // D-cache data
case 0x47: // D-cache tag access
case 0x4b: // E-cache error enable
case 0x4c: // E-cache asynchronous fault status
case 0x4d: // E-cache asynchronous fault address
case 0x4e: // E-cache tag data
case 0x66: // I-cache instruction access
case 0x67: // I-cache tag access
case 0x6e: // I-cache predecode
case 0x6f: // I-cache LRU etc.
case 0x76: // E-cache tag
case 0x7e: // E-cache tag
case 0x46: /* D-cache data */
case 0x47: /* D-cache tag access */
case 0x4b: /* E-cache error enable */
case 0x4c: /* E-cache asynchronous fault status */
case 0x4d: /* E-cache asynchronous fault address */
case 0x4e: /* E-cache tag data */
case 0x66: /* I-cache instruction access */
case 0x67: /* I-cache tag access */
case 0x6e: /* I-cache predecode */
case 0x6f: /* I-cache LRU etc. */
case 0x76: /* E-cache tag */
case 0x7e: /* E-cache tag */
return;
case 0x51: // I-MMU 8k TSB pointer, RO
case 0x52: // I-MMU 64k TSB pointer, RO
case 0x56: // I-MMU tag read, RO
case 0x59: // D-MMU 8k TSB pointer, RO
case 0x5a: // D-MMU 64k TSB pointer, RO
case 0x5b: // D-MMU data pointer, RO
case 0x5e: // D-MMU tag read, RO
case 0x48: // Interrupt dispatch, RO
case 0x7f: // Incoming interrupt vector, RO
case 0x82: // Primary no-fault, RO
case 0x83: // Secondary no-fault, RO
case 0x8a: // Primary no-fault LE, RO
case 0x8b: // Secondary no-fault LE, RO
case 0x51: /* I-MMU 8k TSB pointer, RO */
case 0x52: /* I-MMU 64k TSB pointer, RO */
case 0x56: /* I-MMU tag read, RO */
case 0x59: /* D-MMU 8k TSB pointer, RO */
case 0x5a: /* D-MMU 64k TSB pointer, RO */
case 0x5b: /* D-MMU data pointer, RO */
case 0x5e: /* D-MMU tag read, RO */
case 0x48: /* Interrupt dispatch, RO */
case 0x7f: /* Incoming interrupt vector, RO */
case 0x82: /* Primary no-fault, RO */
case 0x83: /* Secondary no-fault, RO */
case 0x8a: /* Primary no-fault LE, RO */
case 0x8b: /* Secondary no-fault LE, RO */
default:
do_unassigned_access(addr, 1, 0, 1, size);
return;
......@@ -3279,20 +3315,22 @@ void helper_ldda_asi(target_ulong addr, int asi, int rd)
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|| (cpu_has_hypervisor(env)
&& asi >= 0x30 && asi < 0x80
&& !(env->hpstate & HS_PRIV)))
&& !(env->hpstate & HS_PRIV))) {
helper_raise_exception(env, TT_PRIV_ACT);
}
addr = asi_address_mask(env, asi, addr);
switch (asi) {
#if !defined(CONFIG_USER_ONLY)
case 0x24: // Nucleus quad LDD 128 bit atomic
case 0x2c: // Nucleus quad LDD 128 bit atomic LE
case 0x24: /* Nucleus quad LDD 128 bit atomic */
case 0x2c: /* Nucleus quad LDD 128 bit atomic LE */
helper_check_align(addr, 0xf);
if (rd == 0) {
env->gregs[1] = ldq_nucleus(addr + 8);
if (asi == 0x2c)
if (asi == 0x2c) {
bswap64s(&env->gregs[1]);
}
} else if (rd < 8) {
env->gregs[rd] = ldq_nucleus(addr);
env->gregs[rd + 1] = ldq_nucleus(addr + 8);
......@@ -3312,9 +3350,9 @@ void helper_ldda_asi(target_ulong addr, int asi, int rd)
#endif
default:
helper_check_align(addr, 0x3);
if (rd == 0)
if (rd == 0) {
env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
else if (rd < 8) {
} else if (rd < 8) {
env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
} else {
......@@ -3374,7 +3412,7 @@ void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
break;
}
switch(size) {
switch (size) {
default:
case 4:
*((uint32_t *)&env->fpr[rd]) = helper_ld_asi(addr, asi, size, 0);
......@@ -3447,7 +3485,7 @@ void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
break;
}
switch(size) {
switch (size) {
default:
case 4:
helper_st_asi(addr, *(uint32_t *)&env->fpr[rd], asi, size);
......@@ -3476,8 +3514,9 @@ target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
val2 &= 0xffffffffUL;
ret = helper_ld_asi(addr, asi, 4, 0);
ret &= 0xffffffffUL;
if (val2 == ret)
if (val2 == ret) {
helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
}
return ret;
}
......@@ -3487,8 +3526,9 @@ target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
target_ulong ret;
ret = helper_ld_asi(addr, asi, 8, 0);
if (val2 == ret)
if (val2 == ret) {
helper_st_asi(addr, val1, asi, 8);
}
return ret;
}
#endif /* TARGET_SPARC64 */
......@@ -3498,8 +3538,9 @@ void helper_rett(void)
{
unsigned int cwp;
if (env->psret == 1)
if (env->psret == 1) {
helper_raise_exception(env, TT_ILL_INSN);
}
env->psret = 1;
cwp = cwp_inc(env->cwp + 1) ;
......@@ -3563,7 +3604,7 @@ static target_ulong helper_sdiv_common(target_ulong a, target_ulong b, int cc)
x0 = x0 / x1;
if ((int32_t) x0 != x0) {
x0 = x0 < 0 ? 0x80000000: 0x7fffffff;
x0 = x0 < 0 ? 0x80000000 : 0x7fffffff;
overflow = 1;
}
......@@ -3637,7 +3678,7 @@ void helper_lddf(target_ulong addr, int mem_idx)
void helper_ldqf(target_ulong addr, int mem_idx)
{
// XXX add 128 bit load
/* XXX add 128 bit load */
CPU_QuadU u;
helper_check_align(addr, 7);
......@@ -3673,7 +3714,7 @@ void helper_ldqf(target_ulong addr, int mem_idx)
void helper_stqf(target_ulong addr, int mem_idx)
{
// XXX add 128 bit store
/* XXX add 128 bit store */
CPU_QuadU u;
helper_check_align(addr, 7);
......@@ -3797,7 +3838,7 @@ void helper_save(void)
((env->wstate & 0x7) << 2)));
} else {
if (env->cleanwin - env->canrestore == 0) {
// XXX Clean windows without trap
/* XXX Clean windows without trap */
helper_raise_exception(env, TT_CLRWIN);
} else {
env->cansave--;
......@@ -3837,21 +3878,24 @@ void helper_flushw(void)
void helper_saved(void)
{
env->cansave++;
if (env->otherwin == 0)
if (env->otherwin == 0) {
env->canrestore--;
else
} else {
env->otherwin--;
}
}
void helper_restored(void)
{
env->canrestore++;
if (env->cleanwin < env->nwindows - 1)
if (env->cleanwin < env->nwindows - 1) {
env->cleanwin++;
if (env->otherwin == 0)
}
if (env->otherwin == 0) {
env->cansave--;
else
} else {
env->otherwin--;
}
}
static target_ulong get_ccr(void)
......@@ -3937,8 +3981,8 @@ void helper_wrccr(target_ulong new_ccr)
put_ccr(new_ccr);
}
// CWP handling is reversed in V9, but we still use the V8 register
// order.
/* CWP handling is reversed in V9, but we still use the V8 register
order. */
target_ulong helper_rdcwp(void)
{
return get_cwp64();
......@@ -3949,11 +3993,11 @@ void helper_wrcwp(target_ulong new_cwp)
put_cwp64(new_cwp);
}
// This function uses non-native bit order
/* This function uses non-native bit order */
#define GET_FIELD(X, FROM, TO) \
((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
// This function uses the order in the manuals, i.e. bit 0 is 2^0
/* This function uses the order in the manuals, i.e. bit 0 is 2^0 */
#define GET_FIELD_SP(X, FROM, TO) \
GET_FIELD(X, 63 - (TO), 63 - (FROM))
......@@ -3985,10 +4029,10 @@ static inline uint64_t *get_gregset(uint32_t pstate)
switch (pstate) {
default:
DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n",
pstate,
(pstate & PS_IG) ? " IG" : "",
(pstate & PS_MG) ? " MG" : "",
(pstate & PS_AG) ? " AG" : "");
pstate,
(pstate & PS_IG) ? " IG" : "",
(pstate & PS_MG) ? " MG" : "",
(pstate & PS_AG) ? " AG" : "");
/* pass through to normal set of global registers */
case 0:
return env->bgregs;
......@@ -4007,7 +4051,7 @@ static inline void change_pstate(uint32_t new_pstate)
uint64_t *src, *dst;
if (env->def->features & CPU_FEATURE_GL) {
// PS_AG is not implemented in this case
/* PS_AG is not implemented in this case */
new_pstate &= ~PS_AG;
}
......@@ -4017,13 +4061,12 @@ static inline void change_pstate(uint32_t new_pstate)
if (new_pstate_regs != pstate_regs) {
DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n",
pstate_regs, new_pstate_regs);
// Switch global register bank
/* Switch global register bank */
src = get_gregset(new_pstate_regs);
dst = get_gregset(pstate_regs);
memcpy32(dst, env->gregs);
memcpy32(env->gregs, src);
}
else {
} else {
DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n",
new_pstate_regs);
}
......@@ -4067,7 +4110,7 @@ void helper_wrpil(target_ulong new_pil)
void helper_done(void)
{
trap_state* tsptr = cpu_tsptr(env);
trap_state *tsptr = cpu_tsptr(env);
env->pc = tsptr->tnpc;
env->npc = tsptr->tnpc + 4;
......@@ -4088,7 +4131,7 @@ void helper_done(void)
void helper_retry(void)
{
trap_state* tsptr = cpu_tsptr(env);
trap_state *tsptr = cpu_tsptr(env);
env->pc = tsptr->tpc;
env->npc = tsptr->tnpc;
......@@ -4107,7 +4150,7 @@ void helper_retry(void)
#endif
}
static void do_modify_softint(const char* operation, uint32_t value)
static void do_modify_softint(const char *operation, uint32_t value)
{
if (env->softint != value) {
env->softint = value;
......@@ -4216,29 +4259,34 @@ static void do_unassigned_access(target_phys_addr_t addr, int is_write,
int fault_type;
#ifdef DEBUG_UNASSIGNED
if (is_asi)
if (is_asi) {
printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
" asi 0x%02x from " TARGET_FMT_lx "\n",
is_exec ? "exec" : is_write ? "write" : "read", size,
size == 1 ? "" : "s", addr, is_asi, env->pc);
else
} else {
printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
" from " TARGET_FMT_lx "\n",
is_exec ? "exec" : is_write ? "write" : "read", size,
size == 1 ? "" : "s", addr, env->pc);
}
#endif
/* Don't overwrite translation and access faults */
fault_type = (env->mmuregs[3] & 0x1c) >> 2;
if ((fault_type > 4) || (fault_type == 0)) {
env->mmuregs[3] = 0; /* Fault status register */
if (is_asi)
if (is_asi) {
env->mmuregs[3] |= 1 << 16;
if (env->psrs)
}
if (env->psrs) {
env->mmuregs[3] |= 1 << 5;
if (is_exec)
}
if (is_exec) {
env->mmuregs[3] |= 1 << 6;
if (is_write)
}
if (is_write) {
env->mmuregs[3] |= 1 << 7;
}
env->mmuregs[3] |= (5 << 2) | 2;
/* SuperSPARC will never place instruction fault addresses in the FAR */
if (!is_exec) {
......@@ -4251,10 +4299,11 @@ static void do_unassigned_access(target_phys_addr_t addr, int is_write,
}
if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
if (is_exec)
if (is_exec) {
helper_raise_exception(env, TT_CODE_ACCESS);
else
} else {
helper_raise_exception(env, TT_DATA_ACCESS);
}
}
/* flush neverland mappings created during no-fault mode,
......@@ -4267,7 +4316,7 @@ static void do_unassigned_access(target_phys_addr_t addr, int is_write,
#else
#if defined(CONFIG_USER_ONLY)
static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
int is_asi, int size)
int is_asi, int size)
#else
static void do_unassigned_access(target_phys_addr_t addr, int is_write,
int is_exec, int is_asi, int size)
......@@ -4278,10 +4327,11 @@ static void do_unassigned_access(target_phys_addr_t addr, int is_write,
"\n", addr, env->pc);
#endif
if (is_exec)
if (is_exec) {
helper_raise_exception(env, TT_CODE_ACCESS);
else
} else {
helper_raise_exception(env, TT_DATA_ACCESS);
}
}
#endif
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册