提交 6ea83fed 编写于 作者: B bellard

MIPS FPU support (Marius Goeger)


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1964 c046a42c-6fe2-441c-8c8c-71466251a162
上级 180b700d
......@@ -819,6 +819,8 @@ elif test "$target_cpu" = "mips" -o "$target_cpu" = "mipsel" ; then
echo "TARGET_ARCH=mips" >> $config_mak
echo "#define TARGET_ARCH \"mips\"" >> $config_h
echo "#define TARGET_MIPS 1" >> $config_h
echo "CONFIG_SOFTFLOAT=yes" >> $config_mak
echo "#define CONFIG_SOFTFLOAT 1" >> $config_h
elif test "$target_cpu" = "sh4" ; then
echo "TARGET_ARCH=sh4" >> $config_mak
echo "#define TARGET_ARCH \"sh4\"" >> $config_h
......
......@@ -10,10 +10,19 @@
typedef union fpr_t fpr_t;
union fpr_t {
double d;
float f;
uint32_t u[2];
float64 fd; /* ieee double precision */
float32 fs[2];/* ieee single precision */
uint64_t d; /* binary single fixed-point */
uint32_t w[2]; /* binary single fixed-point */
};
/* define FP_ENDIAN_IDX to access the same location
* in the fpr_t union regardless of the host endianess
*/
#if defined(WORDS_BIGENDIAN)
# define FP_ENDIAN_IDX 1
#else
# define FP_ENDIAN_IDX 0
#endif
#if defined(MIPS_USES_R4K_TLB)
typedef struct tlb_t tlb_t;
......@@ -44,12 +53,38 @@ struct CPUMIPSState {
#if defined(MIPS_USES_FPU)
/* Floating point registers */
fpr_t fpr[16];
/* Floating point special purpose registers */
#define FPR(cpu, n) ((fpr_t*)&(cpu)->fpr[(n) / 2])
#define FPR_FD(cpu, n) (FPR(cpu, n)->fd)
#define FPR_FS(cpu, n) (FPR(cpu, n)->fs[((n) & 1) ^ FP_ENDIAN_IDX])
#define FPR_D(cpu, n) (FPR(cpu, n)->d)
#define FPR_W(cpu, n) (FPR(cpu, n)->w[((n) & 1) ^ FP_ENDIAN_IDX])
#ifndef USE_HOST_FLOAT_REGS
fpr_t ft0;
fpr_t ft1;
fpr_t ft2;
#endif
float_status fp_status;
/* fpu implementation/revision register */
uint32_t fcr0;
uint32_t fcr25;
uint32_t fcr26;
uint32_t fcr28;
uint32_t fcsr;
/* fcsr */
uint32_t fcr31;
#define SET_FP_COND(reg) do { (reg) |= (1<<23); } while(0)
#define CLEAR_FP_COND(reg) do { (reg) &= ~(1<<23); } while(0)
#define IS_FP_COND_SET(reg) (((reg) & (1<<23)) != 0)
#define GET_FP_CAUSE(reg) (((reg) >> 12) & 0x3f)
#define GET_FP_ENABLE(reg) (((reg) >> 7) & 0x1f)
#define GET_FP_FLAGS(reg) (((reg) >> 2) & 0x1f)
#define SET_FP_CAUSE(reg,v) do { (reg) = ((reg) & ~(0x3f << 12)) | ((v) << 12); } while(0)
#define SET_FP_ENABLE(reg,v) do { (reg) = ((reg) & ~(0x1f << 7)) | ((v) << 7); } while(0)
#define SET_FP_FLAGS(reg,v) do { (reg) = ((reg) & ~(0x1f << 2)) | ((v) << 2); } while(0)
#define FP_INEXACT 1
#define FP_UNDERFLOW 2
#define FP_OVERFLOW 4
#define FP_DIV0 8
#define FP_INVALID 16
#define FP_UNIMPLEMENTED 32
#endif
#if defined(MIPS_USES_R4K_TLB)
tlb_t tlb[16];
......@@ -71,6 +106,7 @@ struct CPUMIPSState {
#define CP0St_CU1 29
#define CP0St_CU0 28
#define CP0St_RP 27
#define CP0St_FR 26
#define CP0St_RE 25
#define CP0St_BEV 22
#define CP0St_TS 21
......@@ -138,9 +174,6 @@ struct CPUMIPSState {
uint32_t CP0_ErrorEPC;
uint32_t CP0_DESAVE;
/* Qemu */
#if defined (USE_HOST_FLOAT_REGS) && defined(MIPS_USES_FPU)
double ft0, ft1, ft2;
#endif
struct QEMUTimer *timer; /* Internal timer */
int interrupt_request;
jmp_buf jmp_env;
......
......@@ -21,13 +21,20 @@ register host_uint_t T1 asm(AREG2);
register host_uint_t T2 asm(AREG3);
#if defined (USE_HOST_FLOAT_REGS)
register double FT0 asm(FREG0);
register double FT1 asm(FREG1);
register double FT2 asm(FREG2);
#error "implement me."
#else
#define FT0 (env->ft0.d)
#define FT1 (env->ft1.d)
#define FT2 (env->ft2.d)
#define FDT0 (env->ft0.fd)
#define FDT1 (env->ft1.fd)
#define FDT2 (env->ft2.fd)
#define FST0 (env->ft0.fs[FP_ENDIAN_IDX])
#define FST1 (env->ft1.fs[FP_ENDIAN_IDX])
#define FST2 (env->ft2.fs[FP_ENDIAN_IDX])
#define DT0 (env->ft0.d)
#define DT1 (env->ft1.d)
#define DT2 (env->ft2.d)
#define WT0 (env->ft0.w[FP_ENDIAN_IDX])
#define WT1 (env->ft1.w[FP_ENDIAN_IDX])
#define WT2 (env->ft2.w[FP_ENDIAN_IDX])
#endif
#if defined (DEBUG_OP)
......@@ -65,6 +72,13 @@ void do_tlbwi (void);
void do_tlbwr (void);
void do_tlbp (void);
void do_tlbr (void);
#ifdef MIPS_USES_FPU
void dump_fpu(CPUState *env);
void fpu_dump_state(CPUState *env, FILE *f,
int (*fpu_fprintf)(FILE *f, const char *fmt, ...),
int flags);
#endif
void dump_sc (void);
void do_lwl_raw (uint32_t);
void do_lwr_raw (uint32_t);
uint32_t do_swl_raw (uint32_t);
......
/*
* MIPS emulation micro-operations templates for floating point reg
* load & store for qemu.
*
* Copyright (c) 2006 Marius Groeger
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#if defined(SFREG)
#define OP_WLOAD_FREG(treg, tregname, SFREG) \
void glue(glue(op_load_fpr_,tregname), SFREG) (void) \
{ \
treg = FPR_W(env, SFREG); \
RETURN(); \
}
#define OP_WSTORE_FREG(treg, tregname, SFREG) \
void glue(glue(op_store_fpr_,tregname), SFREG) (void)\
{ \
FPR_W(env, SFREG) = treg; \
RETURN(); \
}
/* WT0 = SFREG.w: op_load_fpr_WT0_fprSFREG */
OP_WLOAD_FREG(WT0, WT0_fpr, SFREG)
/* SFREG.w = WT0: op_store_fpr_WT0_fprSFREG */
OP_WSTORE_FREG(WT0, WT0_fpr, SFREG)
OP_WLOAD_FREG(WT1, WT1_fpr, SFREG)
OP_WSTORE_FREG(WT1, WT1_fpr, SFREG)
OP_WLOAD_FREG(WT2, WT2_fpr, SFREG)
OP_WSTORE_FREG(WT2, WT2_fpr, SFREG)
#endif
#if defined(DFREG)
#define OP_DLOAD_FREG(treg, tregname, DFREG) \
void glue(glue(op_load_fpr_,tregname), DFREG) (void) \
{ \
treg = FPR_D(env, DFREG); \
RETURN(); \
}
#define OP_DSTORE_FREG(treg, tregname, DFREG) \
void glue(glue(op_store_fpr_,tregname), DFREG) (void)\
{ \
FPR_D(env, DFREG) = treg; \
RETURN(); \
}
OP_DLOAD_FREG(DT0, DT0_fpr, DFREG)
OP_DSTORE_FREG(DT0, DT0_fpr, DFREG)
OP_DLOAD_FREG(DT1, DT1_fpr, DFREG)
OP_DSTORE_FREG(DT1, DT1_fpr, DFREG)
OP_DLOAD_FREG(DT2, DT2_fpr, DFREG)
OP_DSTORE_FREG(DT2, DT2_fpr, DFREG)
#endif
#if defined (FTN)
#define SET_RESET(treg, tregname) \
void glue(op_set, tregname)(void) \
{ \
treg = PARAM1; \
RETURN(); \
} \
void glue(op_reset, tregname)(void) \
{ \
treg = 0; \
RETURN(); \
} \
SET_RESET(WT0, _WT0)
SET_RESET(WT1, _WT1)
SET_RESET(WT2, _WT2)
SET_RESET(DT0, _DT0)
SET_RESET(DT1, _DT1)
SET_RESET(DT2, _DT2)
#endif
......@@ -24,6 +24,12 @@ enum {
/* Uses MIPS R4Kc TLB model */
#define MIPS_USES_R4K_TLB
#define MIPS_TLB_NB 16
/* basic FPU register support */
#define MIPS_USES_FPU 1
/* Define a implementation number of 1.
* Define a major version 1, minor version 0.
*/
#define MIPS_FCR0 ((0 << 16) | (1 << 8) | (1 << 4) | 0)
/* Have config1, runs in big-endian mode, uses TLB */
#define MIPS_CONFIG0 \
((1 << CP0C0_M) | (0x000 << CP0C0_K23) | (0x000 << CP0C0_KU) | \
......@@ -31,14 +37,14 @@ enum {
/* 16 TLBs, 64 sets Icache, 16 bytes Icache line, 2-way Icache,
* 64 sets Dcache, 16 bytes Dcache line, 2-way Dcache,
* no performance counters, watch registers present, no code compression,
* EJTAG present, no FPU
* EJTAG present, FPU enable bit depending on MIPS_USES_FPU
*/
#define MIPS_CONFIG1 \
((15 << CP0C1_MMU) | \
(0x000 << CP0C1_IS) | (0x3 << CP0C1_IL) | (0x01 << CP0C1_IA) | \
(0x000 << CP0C1_DS) | (0x3 << CP0C1_DL) | (0x01 << CP0C1_DA) | \
(0 << CP0C1_PC) | (1 << CP0C1_WR) | (0 << CP0C1_CA) | \
(1 << CP0C1_EP) | (0 << CP0C1_FP))
(1 << CP0C1_EP) | (MIPS_USES_FPU << CP0C1_FP))
#elif defined (MIPS_CPU == MIPS_R4Kp)
/* 32 bits target */
#define TARGET_LONG_BITS 32
......@@ -52,7 +58,7 @@ enum {
#error "MIPS CPU not defined"
/* Remainder for other flags */
//#define TARGET_MIPS64
//define MIPS_USES_FPU
//#define MIPS_USES_FPU
#endif
#endif /* !defined (__QEMU_MIPS_DEFS_H__) */
......@@ -2,6 +2,7 @@
* MIPS emulation micro-operations for qemu.
*
* Copyright (c) 2004-2005 Jocelyn Mayer
* Copyright (c) 2006 Marius Groeger (FPU operations)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
......@@ -149,6 +150,143 @@ CALL_FROM_TB2(func, arg0, arg1);
#include "op_template.c"
#undef TN
#ifdef MIPS_USES_FPU
#define SFREG 0
#define DFREG 0
#include "fop_template.c"
#undef SFREG
#undef DFREG
#define SFREG 1
#include "fop_template.c"
#undef SFREG
#define SFREG 2
#define DFREG 2
#include "fop_template.c"
#undef SFREG
#undef DFREG
#define SFREG 3
#include "fop_template.c"
#undef SFREG
#define SFREG 4
#define DFREG 4
#include "fop_template.c"
#undef SFREG
#undef DFREG
#define SFREG 5
#include "fop_template.c"
#undef SFREG
#define SFREG 6
#define DFREG 6
#include "fop_template.c"
#undef SFREG
#undef DFREG
#define SFREG 7
#include "fop_template.c"
#undef SFREG
#define SFREG 8
#define DFREG 8
#include "fop_template.c"
#undef SFREG
#undef DFREG
#define SFREG 9
#include "fop_template.c"
#undef SFREG
#define SFREG 10
#define DFREG 10
#include "fop_template.c"
#undef SFREG
#undef DFREG
#define SFREG 11
#include "fop_template.c"
#undef SFREG
#define SFREG 12
#define DFREG 12
#include "fop_template.c"
#undef SFREG
#undef DFREG
#define SFREG 13
#include "fop_template.c"
#undef SFREG
#define SFREG 14
#define DFREG 14
#include "fop_template.c"
#undef SFREG
#undef DFREG
#define SFREG 15
#include "fop_template.c"
#undef SFREG
#define SFREG 16
#define DFREG 16
#include "fop_template.c"
#undef SFREG
#undef DFREG
#define SFREG 17
#include "fop_template.c"
#undef SFREG
#define SFREG 18
#define DFREG 18
#include "fop_template.c"
#undef SFREG
#undef DFREG
#define SFREG 19
#include "fop_template.c"
#undef SFREG
#define SFREG 20
#define DFREG 20
#include "fop_template.c"
#undef SFREG
#undef DFREG
#define SFREG 21
#include "fop_template.c"
#undef SFREG
#define SFREG 22
#define DFREG 22
#include "fop_template.c"
#undef SFREG
#undef DFREG
#define SFREG 23
#include "fop_template.c"
#undef SFREG
#define SFREG 24
#define DFREG 24
#include "fop_template.c"
#undef SFREG
#undef DFREG
#define SFREG 25
#include "fop_template.c"
#undef SFREG
#define SFREG 26
#define DFREG 26
#include "fop_template.c"
#undef SFREG
#undef DFREG
#define SFREG 27
#include "fop_template.c"
#undef SFREG
#define SFREG 28
#define DFREG 28
#include "fop_template.c"
#undef SFREG
#undef DFREG
#define SFREG 29
#include "fop_template.c"
#undef SFREG
#define SFREG 30
#define DFREG 30
#include "fop_template.c"
#undef SFREG
#undef DFREG
#define SFREG 31
#include "fop_template.c"
#undef SFREG
#define FTN
#include "fop_template.c"
#undef FTN
#endif
void op_dup_T0 (void)
{
T2 = T0;
......@@ -562,6 +700,353 @@ void op_mtc0 (void)
RETURN();
}
#ifdef MIPS_USES_FPU
#if 0
# define DEBUG_FPU_STATE() CALL_FROM_TB1(dump_fpu, env)
#else
# define DEBUG_FPU_STATE() do { } while(0)
#endif
void op_cp1_enabled(void)
{
if (!(env->CP0_Status & (1 << CP0St_CU1))) {
CALL_FROM_TB2(do_raise_exception_err, EXCP_CpU, 1);
}
RETURN();
}
/* CP1 functions */
void op_cfc1 (void)
{
if (T1 == 0) {
T0 = env->fcr0;
}
else {
/* fetch fcr31, masking unused bits */
T0 = env->fcr31 & 0x0183FFFF;
}
DEBUG_FPU_STATE();
RETURN();
}
/* convert MIPS rounding mode in FCR31 to IEEE library */
unsigned int ieee_rm[] = {
float_round_nearest_even,
float_round_to_zero,
float_round_up,
float_round_down
};
#define RESTORE_ROUNDING_MODE \
set_float_rounding_mode(ieee_rm[env->fcr31 & 3], &env->fp_status)
void op_ctc1 (void)
{
if (T1 == 0) {
/* XXX should this throw an exception?
* don't write to FCR0.
* env->fcr0 = T0;
*/
}
else {
/* store new fcr31, masking unused bits */
env->fcr31 = T0 & 0x0183FFFF;
/* set rounding mode */
RESTORE_ROUNDING_MODE;
#ifndef CONFIG_SOFTFLOAT
/* no floating point exception for native float */
SET_FP_ENABLE(env->fcr31, 0);
#endif
}
DEBUG_FPU_STATE();
RETURN();
}
void op_mfc1 (void)
{
T0 = WT0;
DEBUG_FPU_STATE();
RETURN();
}
void op_mtc1 (void)
{
WT0 = T0;
DEBUG_FPU_STATE();
RETURN();
}
/* Float support.
Single precition routines have a "s" suffix, double precision a
"d" suffix. */
#define FLOAT_OP(name, p) void OPPROTO op_float_##name##_##p(void)
FLOAT_OP(cvtd, w)
{
FDT2 = int32_to_float64(WT0, &env->fp_status);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(cvts, w)
{
FST2 = int32_to_float32(WT0, &env->fp_status);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(cvtw, s)
{
WT2 = float32_to_int32(FST0, &env->fp_status);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(cvtw, d)
{
WT2 = float64_to_int32(FDT0, &env->fp_status);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(roundw, d)
{
set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
WT2 = float64_round_to_int(FDT0, &env->fp_status);
RESTORE_ROUNDING_MODE;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(roundw, s)
{
set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
WT2 = float32_round_to_int(FST0, &env->fp_status);
RESTORE_ROUNDING_MODE;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(truncw, d)
{
WT2 = float64_to_int32_round_to_zero(FDT0, &env->fp_status);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(truncw, s)
{
WT2 = float32_to_int32_round_to_zero(FST0, &env->fp_status);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(ceilw, d)
{
set_float_rounding_mode(float_round_up, &env->fp_status);
WT2 = float64_round_to_int(FDT0, &env->fp_status);
RESTORE_ROUNDING_MODE;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(ceilw, s)
{
set_float_rounding_mode(float_round_up, &env->fp_status);
WT2 = float32_round_to_int(FST0, &env->fp_status);
RESTORE_ROUNDING_MODE;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(floorw, d)
{
set_float_rounding_mode(float_round_down, &env->fp_status);
WT2 = float64_round_to_int(FDT0, &env->fp_status);
RESTORE_ROUNDING_MODE;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(floorw, s)
{
set_float_rounding_mode(float_round_down, &env->fp_status);
WT2 = float32_round_to_int(FST0, &env->fp_status);
RESTORE_ROUNDING_MODE;
DEBUG_FPU_STATE();
RETURN();
}
/* binary operations */
#define FLOAT_BINOP(name) \
FLOAT_OP(name, d) \
{ \
FDT2 = float64_ ## name (FDT0, FDT1, &env->fp_status); \
DEBUG_FPU_STATE(); \
} \
FLOAT_OP(name, s) \
{ \
FST2 = float32_ ## name (FST0, FST1, &env->fp_status); \
DEBUG_FPU_STATE(); \
}
FLOAT_BINOP(add)
FLOAT_BINOP(sub)
FLOAT_BINOP(mul)
FLOAT_BINOP(div)
#undef FLOAT_BINOP
/* unary operations, modifying fp status */
#define FLOAT_UNOP(name) \
FLOAT_OP(name, d) \
{ \
FDT2 = float64_ ## name(FDT0, &env->fp_status); \
DEBUG_FPU_STATE(); \
} \
FLOAT_OP(name, s) \
{ \
FST2 = float32_ ## name(FST0, &env->fp_status); \
DEBUG_FPU_STATE(); \
}
FLOAT_UNOP(sqrt)
#undef FLOAT_UNOP
/* unary operations, not modifying fp status */
#define FLOAT_UNOP(name) \
FLOAT_OP(name, d) \
{ \
FDT2 = float64_ ## name(FDT0); \
DEBUG_FPU_STATE(); \
} \
FLOAT_OP(name, s) \
{ \
FST2 = float32_ ## name(FST0); \
DEBUG_FPU_STATE(); \
}
FLOAT_UNOP(abs)
FLOAT_UNOP(chs)
#undef FLOAT_UNOP
FLOAT_OP(mov, d)
{
FDT2 = FDT0;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(mov, s)
{
FST2 = FST0;
DEBUG_FPU_STATE();
RETURN();
}
#ifdef CONFIG_SOFTFLOAT
#define clear_invalid() do { \
int flags = get_float_exception_flags(&env->fp_status); \
flags &= ~float_flag_invalid; \
set_float_exception_flags(flags, &env->fp_status); \
} while(0)
#else
#define clear_invalid() do { } while(0)
#endif
extern void dump_fpu_s(CPUState *env);
#define FOP_COND(fmt, op, sig, cond) \
void op_cmp_ ## fmt ## _ ## op (void) \
{ \
if (cond) \
SET_FP_COND(env->fcr31); \
else \
CLEAR_FP_COND(env->fcr31); \
if (!sig) \
clear_invalid(); \
/*CALL_FROM_TB1(dump_fpu_s, env);*/ \
DEBUG_FPU_STATE(); \
RETURN(); \
}
flag float64_is_unordered(float64 a, float64 b STATUS_PARAM)
{
extern flag float64_is_nan( float64 a );
if (float64_is_nan(a) || float64_is_nan(b)) {
float_raise(float_flag_invalid, status);
return 1;
}
else {
return 0;
}
}
FOP_COND(d, f, 0, 0)
FOP_COND(d, un, 0, float64_is_unordered(FDT1, FDT0, &env->fp_status))
FOP_COND(d, eq, 0, float64_eq(FDT0, FDT1, &env->fp_status))
FOP_COND(d, ueq, 0, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_eq(FDT0, FDT1, &env->fp_status))
FOP_COND(d, olt, 0, float64_lt(FDT0, FDT1, &env->fp_status))
FOP_COND(d, ult, 0, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_lt(FDT0, FDT1, &env->fp_status))
FOP_COND(d, ole, 0, float64_le(FDT0, FDT1, &env->fp_status))
FOP_COND(d, ule, 0, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_le(FDT0, FDT1, &env->fp_status))
/* NOTE: the comma operator will make "cond" to eval to false,
* but float*_is_unordered() is still called
*/
FOP_COND(d, sf, 1, (float64_is_unordered(FDT0, FDT1, &env->fp_status), 0))
FOP_COND(d, ngle,1, float64_is_unordered(FDT1, FDT0, &env->fp_status))
FOP_COND(d, seq, 1, float64_eq(FDT0, FDT1, &env->fp_status))
FOP_COND(d, ngl, 1, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_eq(FDT0, FDT1, &env->fp_status))
FOP_COND(d, lt, 1, float64_lt(FDT0, FDT1, &env->fp_status))
FOP_COND(d, nge, 1, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_lt(FDT0, FDT1, &env->fp_status))
FOP_COND(d, le, 1, float64_le(FDT0, FDT1, &env->fp_status))
FOP_COND(d, ngt, 1, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_le(FDT0, FDT1, &env->fp_status))
flag float32_is_unordered(float32 a, float32 b STATUS_PARAM)
{
extern flag float32_is_nan( float32 a );
if (float32_is_nan(a) || float32_is_nan(b)) {
float_raise(float_flag_invalid, status);
return 1;
}
else {
return 0;
}
}
/* NOTE: the comma operator will make "cond" to eval to false,
* but float*_is_unordered() is still called
*/
FOP_COND(s, f, 0, 0)
FOP_COND(s, un, 0, float32_is_unordered(FST1, FST0, &env->fp_status))
FOP_COND(s, eq, 0, float32_eq(FST0, FST1, &env->fp_status))
FOP_COND(s, ueq, 0, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status))
FOP_COND(s, olt, 0, float32_lt(FST0, FST1, &env->fp_status))
FOP_COND(s, ult, 0, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status))
FOP_COND(s, ole, 0, float32_le(FST0, FST1, &env->fp_status))
FOP_COND(s, ule, 0, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status))
/* NOTE: the comma operator will make "cond" to eval to false,
* but float*_is_unordered() is still called
*/
FOP_COND(s, sf, 1, (float32_is_unordered(FST0, FST1, &env->fp_status), 0))
FOP_COND(s, ngle,1, float32_is_unordered(FST1, FST0, &env->fp_status))
FOP_COND(s, seq, 1, float32_eq(FST0, FST1, &env->fp_status))
FOP_COND(s, ngl, 1, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status))
FOP_COND(s, lt, 1, float32_lt(FST0, FST1, &env->fp_status))
FOP_COND(s, nge, 1, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status))
FOP_COND(s, le, 1, float32_le(FST0, FST1, &env->fp_status))
FOP_COND(s, ngt, 1, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status))
void op_bc1f (void)
{
T0 = ! IS_FP_COND_SET(env->fcr31);
DEBUG_FPU_STATE();
RETURN();
}
void op_bc1t (void)
{
T0 = IS_FP_COND_SET(env->fcr31);
DEBUG_FPU_STATE();
RETURN();
}
#endif /* MIPS_USES_FPU */
#if defined(MIPS_USES_R4K_TLB)
void op_tlbwi (void)
{
......
......@@ -529,6 +529,47 @@ void do_mtc0 (int reg, int sel)
return;
}
#ifdef MIPS_USES_FPU
#include "softfloat.h"
void fpu_handle_exception(void)
{
#ifdef CONFIG_SOFTFLOAT
int flags = get_float_exception_flags(&env->fp_status);
unsigned int cpuflags = 0, enable, cause = 0;
enable = GET_FP_ENABLE(env->fcr31);
/* determine current flags */
if (flags & float_flag_invalid) {
cpuflags |= FP_INVALID;
cause |= FP_INVALID & enable;
}
if (flags & float_flag_divbyzero) {
cpuflags |= FP_DIV0;
cause |= FP_DIV0 & enable;
}
if (flags & float_flag_overflow) {
cpuflags |= FP_OVERFLOW;
cause |= FP_OVERFLOW & enable;
}
if (flags & float_flag_underflow) {
cpuflags |= FP_UNDERFLOW;
cause |= FP_UNDERFLOW & enable;
}
if (flags & float_flag_inexact) {
cpuflags |= FP_INEXACT;
cause |= FP_INEXACT & enable;
}
SET_FP_FLAGS(env->fcr31, cpuflags);
SET_FP_CAUSE(env->fcr31, cause);
#else
SET_FP_FLAGS(env->fcr31, 0);
SET_FP_CAUSE(env->fcr31, 0);
#endif
}
#endif /* MIPS_USES_FPU */
/* TLB management */
#if defined(MIPS_USES_R4K_TLB)
static void invalidate_tlb (int idx)
......
......@@ -118,3 +118,26 @@ void glue(op_sc, MEMSUFFIX) (void)
}
RETURN();
}
#ifdef MIPS_USES_FPU
void glue(op_lwc1, MEMSUFFIX) (void)
{
WT0 = glue(ldl, MEMSUFFIX)(T0);
RETURN();
}
void glue(op_swc1, MEMSUFFIX) (void)
{
glue(stl, MEMSUFFIX)(T0, WT0);
RETURN();
}
void glue(op_ldc1, MEMSUFFIX) (void)
{
DT0 = glue(ldq, MEMSUFFIX)(T0);
RETURN();
}
void glue(op_sdc1, MEMSUFFIX) (void)
{
glue(stq, MEMSUFFIX)(T0, DT0);
RETURN();
}
#endif
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册