kvm32.c 16.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * ARM implementation of KVM hooks, 32 bit specific code.
 *
 * Copyright Christoffer Dall 2009-2010
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include <stdio.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>

#include <linux/kvm.h>

#include "qemu-common.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "kvm_arm.h"
#include "cpu.h"
24
#include "internals.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
#include "hw/arm/arm.h"

static inline void set_feature(uint64_t *features, int feature)
{
    *features |= 1ULL << feature;
}

bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
{
    /* Identify the feature bits corresponding to the host CPU, and
     * fill out the ARMHostCPUClass fields accordingly. To do this
     * we have to create a scratch VM, create a single CPU inside it,
     * and then query that CPU for the relevant ID registers.
     */
    int i, ret, fdarray[3];
    uint32_t midr, id_pfr0, id_isar0, mvfr1;
    uint64_t features = 0;
    /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
     * we know these will only support creating one kind of guest CPU,
     * which is its preferred CPU type.
     */
    static const uint32_t cpus_to_try[] = {
        QEMU_KVM_ARM_TARGET_CORTEX_A15,
        QEMU_KVM_ARM_TARGET_NONE
    };
    struct kvm_vcpu_init init;
    struct kvm_one_reg idregs[] = {
        {
            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
            | ENCODE_CP_REG(15, 0, 0, 0, 0, 0),
            .addr = (uintptr_t)&midr,
        },
        {
            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
            | ENCODE_CP_REG(15, 0, 0, 1, 0, 0),
            .addr = (uintptr_t)&id_pfr0,
        },
        {
            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
            | ENCODE_CP_REG(15, 0, 0, 2, 0, 0),
            .addr = (uintptr_t)&id_isar0,
        },
        {
            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
            | KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1,
            .addr = (uintptr_t)&mvfr1,
        },
    };

    if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
        return false;
    }

    ahcc->target = init.target;

    /* This is not strictly blessed by the device tree binding docs yet,
     * but in practice the kernel does not care about this string so
     * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
     */
    ahcc->dtb_compatible = "arm,arm-v7";

    for (i = 0; i < ARRAY_SIZE(idregs); i++) {
        ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &idregs[i]);
        if (ret) {
            break;
        }
    }

    kvm_arm_destroy_scratch_host_vcpu(fdarray);

    if (ret) {
        return false;
    }

    /* Now we've retrieved all the register information we can
     * set the feature bits based on the ID register fields.
     * We can assume any KVM supporting CPU is at least a v7
     * with VFPv3, LPAE and the generic timers; this in turn implies
     * most of the other feature bits, but a few must be tested.
     */
    set_feature(&features, ARM_FEATURE_V7);
    set_feature(&features, ARM_FEATURE_VFP3);
    set_feature(&features, ARM_FEATURE_LPAE);
    set_feature(&features, ARM_FEATURE_GENERIC_TIMER);

    switch (extract32(id_isar0, 24, 4)) {
    case 1:
        set_feature(&features, ARM_FEATURE_THUMB_DIV);
        break;
    case 2:
        set_feature(&features, ARM_FEATURE_ARM_DIV);
        set_feature(&features, ARM_FEATURE_THUMB_DIV);
        break;
    default:
        break;
    }

    if (extract32(id_pfr0, 12, 4) == 1) {
        set_feature(&features, ARM_FEATURE_THUMB2EE);
    }
    if (extract32(mvfr1, 20, 4) == 1) {
        set_feature(&features, ARM_FEATURE_VFP_FP16);
    }
    if (extract32(mvfr1, 12, 4) == 1) {
        set_feature(&features, ARM_FEATURE_NEON);
    }
    if (extract32(mvfr1, 28, 4) == 1) {
        /* FMAC support implies VFPv4 */
        set_feature(&features, ARM_FEATURE_VFP4);
    }

    ahcc->features = features;

    return true;
}

static bool reg_syncs_via_tuple_list(uint64_t regidx)
{
    /* Return true if the regidx is a register we should synchronize
     * via the cpreg_tuples array (ie is not a core reg we sync by
     * hand in kvm_arch_get/put_registers())
     */
    switch (regidx & KVM_REG_ARM_COPROC_MASK) {
    case KVM_REG_ARM_CORE:
    case KVM_REG_ARM_VFP:
        return false;
    default:
        return true;
    }
}

static int compare_u64(const void *a, const void *b)
{
    if (*(uint64_t *)a > *(uint64_t *)b) {
        return 1;
    }
    if (*(uint64_t *)a < *(uint64_t *)b) {
        return -1;
    }
    return 0;
}

int kvm_arch_init_vcpu(CPUState *cs)
{
    struct kvm_vcpu_init init;
    int i, ret, arraylen;
    uint64_t v;
    struct kvm_one_reg r;
    struct kvm_reg_list rl;
    struct kvm_reg_list *rlp;
    ARMCPU *cpu = ARM_CPU(cs);

    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
        fprintf(stderr, "KVM is not supported for this guest CPU type\n");
        return -EINVAL;
    }

    init.target = cpu->kvm_target;
    memset(init.features, 0, sizeof(init.features));
    if (cpu->start_powered_off) {
        init.features[0] = 1 << KVM_ARM_VCPU_POWER_OFF;
    }
    ret = kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
    if (ret) {
        return ret;
    }
    /* Query the kernel to make sure it supports 32 VFP
     * registers: QEMU's "cortex-a15" CPU is always a
     * VFP-D32 core. The simplest way to do this is just
     * to attempt to read register d31.
     */
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
    r.addr = (uintptr_t)(&v);
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
    if (ret == -ENOENT) {
        return -EINVAL;
    }

    /* Populate the cpreg list based on the kernel's idea
     * of what registers exist (and throw away the TCG-created list).
     */
    rl.n = 0;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
    if (ret != -E2BIG) {
        return ret;
    }
    rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
    rlp->n = rl.n;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
    if (ret) {
        goto out;
    }
    /* Sort the list we get back from the kernel, since cpreg_tuples
     * must be in strictly ascending order.
     */
    qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);

    for (i = 0, arraylen = 0; i < rlp->n; i++) {
        if (!reg_syncs_via_tuple_list(rlp->reg[i])) {
            continue;
        }
        switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
        case KVM_REG_SIZE_U32:
        case KVM_REG_SIZE_U64:
            break;
        default:
            fprintf(stderr, "Can't handle size of register in kernel list\n");
            ret = -EINVAL;
            goto out;
        }

        arraylen++;
    }

    cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
    cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
    cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
                                         arraylen);
    cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
                                        arraylen);
    cpu->cpreg_array_len = arraylen;
    cpu->cpreg_vmstate_array_len = arraylen;

    for (i = 0, arraylen = 0; i < rlp->n; i++) {
        uint64_t regidx = rlp->reg[i];
        if (!reg_syncs_via_tuple_list(regidx)) {
            continue;
        }
        cpu->cpreg_indexes[arraylen] = regidx;
        arraylen++;
    }
    assert(cpu->cpreg_array_len == arraylen);

    if (!write_kvmstate_to_list(cpu)) {
        /* Shouldn't happen unless kernel is inconsistent about
         * what registers exist.
         */
        fprintf(stderr, "Initial read of kernel register state failed\n");
        ret = -EINVAL;
        goto out;
    }

    /* Save a copy of the initial register values so that we can
     * feed it back to the kernel on VCPU reset.
     */
    cpu->cpreg_reset_values = g_memdup(cpu->cpreg_values,
                                       cpu->cpreg_array_len *
                                       sizeof(cpu->cpreg_values[0]));

out:
    g_free(rlp);
    return ret;
}

typedef struct Reg {
    uint64_t id;
    int offset;
} Reg;

#define COREREG(KERNELNAME, QEMUFIELD)                       \
    {                                                        \
        KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \
        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
        offsetof(CPUARMState, QEMUFIELD)                     \
    }

#define VFPSYSREG(R)                                       \
    {                                                      \
        KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
        KVM_REG_ARM_VFP_##R,                               \
        offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R])      \
    }

298 299 300 301 302 303 304 305
/* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
#define COREREG64(KERNELNAME, QEMUFIELD)                     \
    {                                                        \
        KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \
        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
        offsetoflow32(CPUARMState, QEMUFIELD)                \
    }

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
static const Reg regs[] = {
    /* R0_usr .. R14_usr */
    COREREG(usr_regs.uregs[0], regs[0]),
    COREREG(usr_regs.uregs[1], regs[1]),
    COREREG(usr_regs.uregs[2], regs[2]),
    COREREG(usr_regs.uregs[3], regs[3]),
    COREREG(usr_regs.uregs[4], regs[4]),
    COREREG(usr_regs.uregs[5], regs[5]),
    COREREG(usr_regs.uregs[6], regs[6]),
    COREREG(usr_regs.uregs[7], regs[7]),
    COREREG(usr_regs.uregs[8], usr_regs[0]),
    COREREG(usr_regs.uregs[9], usr_regs[1]),
    COREREG(usr_regs.uregs[10], usr_regs[2]),
    COREREG(usr_regs.uregs[11], usr_regs[3]),
    COREREG(usr_regs.uregs[12], usr_regs[4]),
    COREREG(usr_regs.uregs[13], banked_r13[0]),
    COREREG(usr_regs.uregs[14], banked_r14[0]),
    /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
    COREREG(svc_regs[0], banked_r13[1]),
    COREREG(svc_regs[1], banked_r14[1]),
326
    COREREG64(svc_regs[2], banked_spsr[1]),
327 328
    COREREG(abt_regs[0], banked_r13[2]),
    COREREG(abt_regs[1], banked_r14[2]),
329
    COREREG64(abt_regs[2], banked_spsr[2]),
330 331
    COREREG(und_regs[0], banked_r13[3]),
    COREREG(und_regs[1], banked_r14[3]),
332
    COREREG64(und_regs[2], banked_spsr[3]),
333 334
    COREREG(irq_regs[0], banked_r13[4]),
    COREREG(irq_regs[1], banked_r14[4]),
335
    COREREG64(irq_regs[2], banked_spsr[4]),
336 337 338 339 340 341 342 343
    /* R8_fiq .. R14_fiq and SPSR_fiq */
    COREREG(fiq_regs[0], fiq_regs[0]),
    COREREG(fiq_regs[1], fiq_regs[1]),
    COREREG(fiq_regs[2], fiq_regs[2]),
    COREREG(fiq_regs[3], fiq_regs[3]),
    COREREG(fiq_regs[4], fiq_regs[4]),
    COREREG(fiq_regs[5], banked_r13[5]),
    COREREG(fiq_regs[6], banked_r14[5]),
344
    COREREG64(fiq_regs[7], banked_spsr[5]),
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
    /* R15 */
    COREREG(usr_regs.uregs[15], regs[15]),
    /* VFP system registers */
    VFPSYSREG(FPSID),
    VFPSYSREG(MVFR1),
    VFPSYSREG(MVFR0),
    VFPSYSREG(FPEXC),
    VFPSYSREG(FPINST),
    VFPSYSREG(FPINST2),
};

int kvm_arch_put_registers(CPUState *cs, int level)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    struct kvm_one_reg r;
    int mode, bn;
    int ret, i;
    uint32_t cpsr, fpscr;

    /* Make sure the banked regs are properly set */
    mode = env->uncached_cpsr & CPSR_M;
    bn = bank_number(mode);
    if (mode == ARM_CPU_MODE_FIQ) {
        memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
    } else {
        memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
    }
    env->banked_r13[bn] = env->regs[13];
    env->banked_r14[bn] = env->regs[14];
    env->banked_spsr[bn] = env->spsr;

    /* Now we can safely copy stuff down to the kernel */
    for (i = 0; i < ARRAY_SIZE(regs); i++) {
        r.id = regs[i].id;
        r.addr = (uintptr_t)(env) + regs[i].offset;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
        if (ret) {
            return ret;
        }
    }

    /* Special cases which aren't a single CPUARMState field */
    cpsr = cpsr_read(env);
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
    r.addr = (uintptr_t)(&cpsr);
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
    if (ret) {
        return ret;
    }

    /* VFP registers */
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
    for (i = 0; i < 32; i++) {
        r.addr = (uintptr_t)(&env->vfp.regs[i]);
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
        if (ret) {
            return ret;
        }
        r.id++;
    }

    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
        KVM_REG_ARM_VFP_FPSCR;
    fpscr = vfp_get_fpscr(env);
    r.addr = (uintptr_t)&fpscr;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
    if (ret) {
        return ret;
    }

    /* Note that we do not call write_cpustate_to_list()
     * here, so we are only writing the tuple list back to
     * KVM. This is safe because nothing can change the
     * CPUARMState cp15 fields (in particular gdb accesses cannot)
     * and so there are no changes to sync. In fact syncing would
     * be wrong at this point: for a constant register where TCG and
     * KVM disagree about its value, the preceding write_list_to_cpustate()
     * would not have had any effect on the CPUARMState value (since the
     * register is read-only), and a write_cpustate_to_list() here would
     * then try to write the TCG value back into KVM -- this would either
     * fail or incorrectly change the value the guest sees.
     *
     * If we ever want to allow the user to modify cp15 registers via
     * the gdb stub, we would need to be more clever here (for instance
     * tracking the set of registers kvm_arch_get_registers() successfully
     * managed to update the CPUARMState with, and only allowing those
     * to be written back up into the kernel).
     */
    if (!write_list_to_kvmstate(cpu)) {
        return EINVAL;
    }

    return ret;
}

int kvm_arch_get_registers(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    struct kvm_one_reg r;
    int mode, bn;
    int ret, i;
    uint32_t cpsr, fpscr;

    for (i = 0; i < ARRAY_SIZE(regs); i++) {
        r.id = regs[i].id;
        r.addr = (uintptr_t)(env) + regs[i].offset;
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
        if (ret) {
            return ret;
        }
    }

    /* Special cases which aren't a single CPUARMState field */
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
    r.addr = (uintptr_t)(&cpsr);
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
    if (ret) {
        return ret;
    }
    cpsr_write(env, cpsr, 0xffffffff);

    /* Make sure the current mode regs are properly set */
    mode = env->uncached_cpsr & CPSR_M;
    bn = bank_number(mode);
    if (mode == ARM_CPU_MODE_FIQ) {
        memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
    } else {
        memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
    }
    env->regs[13] = env->banked_r13[bn];
    env->regs[14] = env->banked_r14[bn];
    env->spsr = env->banked_spsr[bn];

    /* VFP registers */
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
    for (i = 0; i < 32; i++) {
        r.addr = (uintptr_t)(&env->vfp.regs[i]);
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
        if (ret) {
            return ret;
        }
        r.id++;
    }

    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
        KVM_REG_ARM_VFP_FPSCR;
    r.addr = (uintptr_t)&fpscr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
    if (ret) {
        return ret;
    }
    vfp_set_fpscr(env, fpscr);

    if (!write_kvmstate_to_list(cpu)) {
        return EINVAL;
    }
    /* Note that it's OK to have registers which aren't in CPUState,
     * so we can ignore a failure return here.
     */
    write_list_to_cpustate(cpu);

    return 0;
}

513
void kvm_arm_reset_vcpu(ARMCPU *cpu)
514 515 516 517 518 519 520 521 522
{
    /* Feed the kernel back its initial register state */
    memmove(cpu->cpreg_values, cpu->cpreg_reset_values,
            cpu->cpreg_array_len * sizeof(cpu->cpreg_values[0]));

    if (!write_list_to_kvmstate(cpu)) {
        abort();
    }
}