exec.c 108.8 KB
Newer Older
B
bellard 已提交
1
/*
B
bellard 已提交
2
 *  virtual page mapping and translated block handling
3
 *
B
bellard 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
B
bellard 已提交
19
 */
B
bellard 已提交
20
#include "config.h"
B
bellard 已提交
21 22 23
#ifdef _WIN32
#include <windows.h>
#else
B
bellard 已提交
24
#include <sys/types.h>
B
bellard 已提交
25 26
#include <sys/mman.h>
#endif
B
bellard 已提交
27 28 29 30 31 32 33 34
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <inttypes.h>

B
bellard 已提交
35 36
#include "cpu.h"
#include "exec-all.h"
37
#include "qemu-common.h"
B
bellard 已提交
38
#include "tcg.h"
39
#include "hw/hw.h"
A
aliguori 已提交
40
#include "osdep.h"
A
aliguori 已提交
41
#include "kvm.h"
42 43 44
#if defined(CONFIG_USER_ONLY)
#include <qemu.h>
#endif
B
bellard 已提交
45

B
bellard 已提交
46
//#define DEBUG_TB_INVALIDATE
B
bellard 已提交
47
//#define DEBUG_FLUSH
48
//#define DEBUG_TLB
P
pbrook 已提交
49
//#define DEBUG_UNASSIGNED
B
bellard 已提交
50 51

/* make various TB consistency checks */
52 53
//#define DEBUG_TB_CHECK
//#define DEBUG_TLB_CHECK
B
bellard 已提交
54

T
ths 已提交
55
//#define DEBUG_IOPORT
56
//#define DEBUG_SUBPAGE
T
ths 已提交
57

58 59 60 61 62
#if !defined(CONFIG_USER_ONLY)
/* TB consistency checks only implemented for usermode emulation.  */
#undef DEBUG_TB_CHECK
#endif

63 64
#define SMC_BITMAP_USE_THRESHOLD 10

65 66
#if defined(TARGET_SPARC64)
#define TARGET_PHYS_ADDR_SPACE_BITS 41
67 68
#elif defined(TARGET_SPARC)
#define TARGET_PHYS_ADDR_SPACE_BITS 36
69 70 71
#elif defined(TARGET_ALPHA)
#define TARGET_PHYS_ADDR_SPACE_BITS 42
#define TARGET_VIRT_ADDR_SPACE_BITS 42
72 73
#elif defined(TARGET_PPC64)
#define TARGET_PHYS_ADDR_SPACE_BITS 42
74 75 76 77
#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
#define TARGET_PHYS_ADDR_SPACE_BITS 42
#elif defined(TARGET_I386) && !defined(USE_KQEMU)
#define TARGET_PHYS_ADDR_SPACE_BITS 36
78 79 80 81 82
#else
/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
#define TARGET_PHYS_ADDR_SPACE_BITS 32
#endif

B
blueswir1 已提交
83
static TranslationBlock *tbs;
84
int code_gen_max_blocks;
85
TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
B
blueswir1 已提交
86
static int nb_tbs;
B
bellard 已提交
87 88
/* any access to the tbs or the page table must use this lock */
spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
B
bellard 已提交
89

B
blueswir1 已提交
90 91 92
#if defined(__arm__) || defined(__sparc_v9__)
/* The prologue must be reachable with a direct jump. ARM and Sparc64
 have limited branch ranges (possibly also PPC) so place it in a
93 94 95 96 97 98 99 100 101 102
 section close to code segment. */
#define code_gen_section                                \
    __attribute__((__section__(".gen_code")))           \
    __attribute__((aligned (32)))
#else
#define code_gen_section                                \
    __attribute__((aligned (32)))
#endif

uint8_t code_gen_prologue[1024] code_gen_section;
B
blueswir1 已提交
103 104
static uint8_t *code_gen_buffer;
static unsigned long code_gen_buffer_size;
105
/* threshold to flush the translated code buffer */
B
blueswir1 已提交
106
static unsigned long code_gen_buffer_max_size;
B
bellard 已提交
107 108
uint8_t *code_gen_ptr;

109
#if !defined(CONFIG_USER_ONLY)
110
ram_addr_t phys_ram_size;
111 112
int phys_ram_fd;
uint8_t *phys_ram_base;
113
uint8_t *phys_ram_dirty;
A
aliguori 已提交
114
static int in_migration;
B
bellard 已提交
115
static ram_addr_t phys_ram_alloc_offset = 0;
116
#endif
117

B
bellard 已提交
118 119 120
CPUState *first_cpu;
/* current CPU in the current thread. It is only valid inside
   cpu_exec() */
121
CPUState *cpu_single_env;
P
pbrook 已提交
122
/* 0 = Do not count executed instructions.
T
ths 已提交
123
   1 = Precise instruction counting.
P
pbrook 已提交
124 125 126 127 128
   2 = Adaptive rate instruction counting.  */
int use_icount = 0;
/* Current instruction counter.  While executing translated code this may
   include some instructions that have not yet been executed.  */
int64_t qemu_icount;
B
bellard 已提交
129

B
bellard 已提交
130
typedef struct PageDesc {
B
bellard 已提交
131
    /* list of TBs intersecting this ram page */
B
bellard 已提交
132
    TranslationBlock *first_tb;
133 134 135 136 137 138 139
    /* in order to optimize self modifying code, we count the number
       of lookups we do to a given page to use a bitmap */
    unsigned int code_write_count;
    uint8_t *code_bitmap;
#if defined(CONFIG_USER_ONLY)
    unsigned long flags;
#endif
B
bellard 已提交
140 141
} PageDesc;

B
bellard 已提交
142
typedef struct PhysPageDesc {
P
pbrook 已提交
143
    /* offset in host memory of the page + io_index in the low bits */
144
    ram_addr_t phys_offset;
145
    ram_addr_t region_offset;
B
bellard 已提交
146 147
} PhysPageDesc;

B
bellard 已提交
148
#define L2_BITS 10
149 150 151 152 153 154 155
#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
/* XXX: this is a temporary hack for alpha target.
 *      In the future, this is to be replaced by a multi-level table
 *      to actually be able to handle the complete 64 bits address space.
 */
#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
#else
156
#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
157
#endif
B
bellard 已提交
158 159 160 161

#define L1_SIZE (1 << L1_BITS)
#define L2_SIZE (1 << L2_BITS)

162 163 164 165
unsigned long qemu_real_host_page_size;
unsigned long qemu_host_page_bits;
unsigned long qemu_host_page_size;
unsigned long qemu_host_page_mask;
B
bellard 已提交
166

B
bellard 已提交
167
/* XXX: for system emulation, it could just be an array */
B
bellard 已提交
168
static PageDesc *l1_map[L1_SIZE];
B
blueswir1 已提交
169
static PhysPageDesc **l1_phys_map;
B
bellard 已提交
170

171 172 173
#if !defined(CONFIG_USER_ONLY)
static void io_mem_init(void);

174 175 176
/* io memory support */
CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
B
bellard 已提交
177
void *io_mem_opaque[IO_MEM_NB_ENTRIES];
178
static char io_mem_used[IO_MEM_NB_ENTRIES];
179 180
static int io_mem_watch;
#endif
181

182
/* log support */
183
static const char *logfilename = "/tmp/qemu.log";
184 185
FILE *logfile;
int loglevel;
P
pbrook 已提交
186
static int log_append = 0;
187

B
bellard 已提交
188 189 190 191 192
/* statistics */
static int tlb_flush_count;
static int tb_flush_count;
static int tb_phys_invalidate_count;

193 194 195
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
    target_phys_addr_t base;
196 197 198
    CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
    CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
    void *opaque[TARGET_PAGE_SIZE][2][4];
199
    ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
200 201
} subpage_t;

202 203 204 205 206 207 208 209 210 211 212
#ifdef _WIN32
static void map_exec(void *addr, long size)
{
    DWORD old_protect;
    VirtualProtect(addr, size,
                   PAGE_EXECUTE_READWRITE, &old_protect);
    
}
#else
static void map_exec(void *addr, long size)
{
213
    unsigned long start, end, page_size;
214
    
215
    page_size = getpagesize();
216
    start = (unsigned long)addr;
217
    start &= ~(page_size - 1);
218 219
    
    end = (unsigned long)addr + size;
220 221
    end += page_size - 1;
    end &= ~(page_size - 1);
222 223 224 225 226 227
    
    mprotect((void *)start, end - start,
             PROT_READ | PROT_WRITE | PROT_EXEC);
}
#endif

B
bellard 已提交
228
static void page_init(void)
B
bellard 已提交
229
{
230
    /* NOTE: we can always suppose that qemu_host_page_size >=
B
bellard 已提交
231
       TARGET_PAGE_SIZE */
232 233 234 235 236 237 238 239 240 241
#ifdef _WIN32
    {
        SYSTEM_INFO system_info;

        GetSystemInfo(&system_info);
        qemu_real_host_page_size = system_info.dwPageSize;
    }
#else
    qemu_real_host_page_size = getpagesize();
#endif
242 243 244 245 246 247 248 249
    if (qemu_host_page_size == 0)
        qemu_host_page_size = qemu_real_host_page_size;
    if (qemu_host_page_size < TARGET_PAGE_SIZE)
        qemu_host_page_size = TARGET_PAGE_SIZE;
    qemu_host_page_bits = 0;
    while ((1 << qemu_host_page_bits) < qemu_host_page_size)
        qemu_host_page_bits++;
    qemu_host_page_mask = ~(qemu_host_page_size - 1);
250 251
    l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
    memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
252 253 254 255 256 257 258

#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
    {
        long long startaddr, endaddr;
        FILE *f;
        int n;

P
pbrook 已提交
259
        mmap_lock();
P
pbrook 已提交
260
        last_brk = (unsigned long)sbrk(0);
261 262 263 264 265
        f = fopen("/proc/self/maps", "r");
        if (f) {
            do {
                n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
                if (n == 2) {
266 267 268 269
                    startaddr = MIN(startaddr,
                                    (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
                    endaddr = MIN(endaddr,
                                    (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
P
pbrook 已提交
270
                    page_set_flags(startaddr & TARGET_PAGE_MASK,
271 272 273 274 275 276
                                   TARGET_PAGE_ALIGN(endaddr),
                                   PAGE_RESERVED); 
                }
            } while (!feof(f));
            fclose(f);
        }
P
pbrook 已提交
277
        mmap_unlock();
278 279
    }
#endif
B
bellard 已提交
280 281
}

282
static inline PageDesc **page_l1_map(target_ulong index)
B
bellard 已提交
283
{
284 285 286
#if TARGET_LONG_BITS > 32
    /* Host memory outside guest VM.  For 32-bit targets we have already
       excluded high addresses.  */
T
ths 已提交
287
    if (index > ((target_ulong)L2_SIZE * L1_SIZE))
288 289
        return NULL;
#endif
290 291 292 293 294 295 296 297 298 299
    return &l1_map[index >> L2_BITS];
}

static inline PageDesc *page_find_alloc(target_ulong index)
{
    PageDesc **lp, *p;
    lp = page_l1_map(index);
    if (!lp)
        return NULL;

B
bellard 已提交
300 301 302
    p = *lp;
    if (!p) {
        /* allocate if not found */
303 304 305 306 307
#if defined(CONFIG_USER_ONLY)
        size_t len = sizeof(PageDesc) * L2_SIZE;
        /* Don't use qemu_malloc because it may recurse.  */
        p = mmap(0, len, PROT_READ | PROT_WRITE,
                 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
B
bellard 已提交
308
        *lp = p;
309 310
        if (h2g_valid(p)) {
            unsigned long addr = h2g(p);
311 312 313 314 315 316 317 318
            page_set_flags(addr & TARGET_PAGE_MASK,
                           TARGET_PAGE_ALIGN(addr + len),
                           PAGE_RESERVED); 
        }
#else
        p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
        *lp = p;
#endif
B
bellard 已提交
319 320 321 322
    }
    return p + (index & (L2_SIZE - 1));
}

323
static inline PageDesc *page_find(target_ulong index)
B
bellard 已提交
324
{
325 326 327 328
    PageDesc **lp, *p;
    lp = page_l1_map(index);
    if (!lp)
        return NULL;
B
bellard 已提交
329

330
    p = *lp;
B
bellard 已提交
331 332
    if (!p)
        return 0;
B
bellard 已提交
333 334 335
    return p + (index & (L2_SIZE - 1));
}

336
static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
B
bellard 已提交
337
{
338
    void **lp, **p;
339
    PhysPageDesc *pd;
B
bellard 已提交
340

341 342 343 344 345 346 347
    p = (void **)l1_phys_map;
#if TARGET_PHYS_ADDR_SPACE_BITS > 32

#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
#endif
    lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
B
bellard 已提交
348 349 350
    p = *lp;
    if (!p) {
        /* allocate if not found */
351 352 353 354 355 356 357 358
        if (!alloc)
            return NULL;
        p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
        memset(p, 0, sizeof(void *) * L1_SIZE);
        *lp = p;
    }
#endif
    lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
359 360 361
    pd = *lp;
    if (!pd) {
        int i;
362 363 364
        /* allocate if not found */
        if (!alloc)
            return NULL;
365 366
        pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
        *lp = pd;
P
pbrook 已提交
367
        for (i = 0; i < L2_SIZE; i++) {
368
          pd[i].phys_offset = IO_MEM_UNASSIGNED;
P
pbrook 已提交
369 370
          pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
        }
B
bellard 已提交
371
    }
372
    return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
B
bellard 已提交
373 374
}

375
static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
B
bellard 已提交
376
{
377
    return phys_page_find_alloc(index, 0);
B
bellard 已提交
378 379
}

380
#if !defined(CONFIG_USER_ONLY)
B
bellard 已提交
381
static void tlb_protect_code(ram_addr_t ram_addr);
382
static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
383
                                    target_ulong vaddr);
P
pbrook 已提交
384 385
#define mmap_lock() do { } while(0)
#define mmap_unlock() do { } while(0)
386
#endif
B
bellard 已提交
387

388 389 390 391 392 393 394 395 396 397 398 399
#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)

#if defined(CONFIG_USER_ONLY)
/* Currently it is not recommanded to allocate big chunks of data in
   user mode. It will change when a dedicated libc will be used */
#define USE_STATIC_CODE_GEN_BUFFER
#endif

#ifdef USE_STATIC_CODE_GEN_BUFFER
static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
#endif

400
static void code_gen_alloc(unsigned long tb_size)
401
{
402 403 404 405 406
#ifdef USE_STATIC_CODE_GEN_BUFFER
    code_gen_buffer = static_code_gen_buffer;
    code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
    map_exec(code_gen_buffer, code_gen_buffer_size);
#else
407 408
    code_gen_buffer_size = tb_size;
    if (code_gen_buffer_size == 0) {
409 410 411 412
#if defined(CONFIG_USER_ONLY)
        /* in user mode, phys_ram_size is not meaningful */
        code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
#else
413
        /* XXX: needs ajustments */
414
        code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
415
#endif
416 417 418 419 420 421 422 423
    }
    if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
        code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
    /* The code gen buffer location may have constraints depending on
       the host cpu and OS */
#if defined(__linux__) 
    {
        int flags;
B
blueswir1 已提交
424 425
        void *start = NULL;

426 427 428 429 430 431
        flags = MAP_PRIVATE | MAP_ANONYMOUS;
#if defined(__x86_64__)
        flags |= MAP_32BIT;
        /* Cannot map more than that */
        if (code_gen_buffer_size > (800 * 1024 * 1024))
            code_gen_buffer_size = (800 * 1024 * 1024);
B
blueswir1 已提交
432 433 434 435 436 437
#elif defined(__sparc_v9__)
        // Map the buffer below 2G, so we can use direct calls and branches
        flags |= MAP_FIXED;
        start = (void *) 0x60000000UL;
        if (code_gen_buffer_size > (512 * 1024 * 1024))
            code_gen_buffer_size = (512 * 1024 * 1024);
438
#elif defined(__arm__)
B
balrog 已提交
439
        /* Map the buffer below 32M, so we can use direct calls and branches */
440 441 442 443
        flags |= MAP_FIXED;
        start = (void *) 0x01000000UL;
        if (code_gen_buffer_size > 16 * 1024 * 1024)
            code_gen_buffer_size = 16 * 1024 * 1024;
444
#endif
B
blueswir1 已提交
445 446
        code_gen_buffer = mmap(start, code_gen_buffer_size,
                               PROT_WRITE | PROT_READ | PROT_EXEC,
447 448 449 450 451 452
                               flags, -1, 0);
        if (code_gen_buffer == MAP_FAILED) {
            fprintf(stderr, "Could not allocate dynamic translator buffer\n");
            exit(1);
        }
    }
453
#elif defined(__FreeBSD__) || defined(__DragonFly__)
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
    {
        int flags;
        void *addr = NULL;
        flags = MAP_PRIVATE | MAP_ANONYMOUS;
#if defined(__x86_64__)
        /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
         * 0x40000000 is free */
        flags |= MAP_FIXED;
        addr = (void *)0x40000000;
        /* Cannot map more than that */
        if (code_gen_buffer_size > (800 * 1024 * 1024))
            code_gen_buffer_size = (800 * 1024 * 1024);
#endif
        code_gen_buffer = mmap(addr, code_gen_buffer_size,
                               PROT_WRITE | PROT_READ | PROT_EXEC, 
                               flags, -1, 0);
        if (code_gen_buffer == MAP_FAILED) {
            fprintf(stderr, "Could not allocate dynamic translator buffer\n");
            exit(1);
        }
    }
475 476 477 478
#else
    code_gen_buffer = qemu_malloc(code_gen_buffer_size);
    map_exec(code_gen_buffer, code_gen_buffer_size);
#endif
479
#endif /* !USE_STATIC_CODE_GEN_BUFFER */
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
    map_exec(code_gen_prologue, sizeof(code_gen_prologue));
    code_gen_buffer_max_size = code_gen_buffer_size - 
        code_gen_max_block_size();
    code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
    tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
}

/* Must be called before using the QEMU cpus. 'tb_size' is the size
   (in bytes) allocated to the translation buffer. Zero means default
   size. */
void cpu_exec_init_all(unsigned long tb_size)
{
    cpu_gen_init();
    code_gen_alloc(tb_size);
    code_gen_ptr = code_gen_buffer;
495
    page_init();
496
#if !defined(CONFIG_USER_ONLY)
497
    io_mem_init();
498
#endif
499 500
}

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)

#define CPU_COMMON_SAVE_VERSION 1

static void cpu_common_save(QEMUFile *f, void *opaque)
{
    CPUState *env = opaque;

    qemu_put_be32s(f, &env->halted);
    qemu_put_be32s(f, &env->interrupt_request);
}

static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
{
    CPUState *env = opaque;

    if (version_id != CPU_COMMON_SAVE_VERSION)
        return -EINVAL;

    qemu_get_be32s(f, &env->halted);
P
pbrook 已提交
521
    qemu_get_be32s(f, &env->interrupt_request);
522 523 524
    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
       version_id is increased. */
    env->interrupt_request &= ~0x01;
525 526 527 528 529 530
    tlb_flush(env, 1);

    return 0;
}
#endif

B
bellard 已提交
531
void cpu_exec_init(CPUState *env)
B
bellard 已提交
532
{
B
bellard 已提交
533 534 535
    CPUState **penv;
    int cpu_index;

536 537 538
#if defined(CONFIG_USER_ONLY)
    cpu_list_lock();
#endif
B
bellard 已提交
539 540 541 542 543 544 545 546
    env->next_cpu = NULL;
    penv = &first_cpu;
    cpu_index = 0;
    while (*penv != NULL) {
        penv = (CPUState **)&(*penv)->next_cpu;
        cpu_index++;
    }
    env->cpu_index = cpu_index;
547 548
    TAILQ_INIT(&env->breakpoints);
    TAILQ_INIT(&env->watchpoints);
B
bellard 已提交
549
    *penv = env;
550 551 552
#if defined(CONFIG_USER_ONLY)
    cpu_list_unlock();
#endif
553
#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
554 555
    register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
                    cpu_common_save, cpu_common_load, env);
556 557 558
    register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
                    cpu_save, cpu_load, env);
#endif
B
bellard 已提交
559 560
}

561 562 563
static inline void invalidate_page_bitmap(PageDesc *p)
{
    if (p->code_bitmap) {
564
        qemu_free(p->code_bitmap);
565 566 567 568 569
        p->code_bitmap = NULL;
    }
    p->code_write_count = 0;
}

B
bellard 已提交
570 571 572 573 574 575 576 577 578
/* set to NULL all the 'first_tb' fields in all PageDescs */
static void page_flush_tb(void)
{
    int i, j;
    PageDesc *p;

    for(i = 0; i < L1_SIZE; i++) {
        p = l1_map[i];
        if (p) {
579 580 581 582 583
            for(j = 0; j < L2_SIZE; j++) {
                p->first_tb = NULL;
                invalidate_page_bitmap(p);
                p++;
            }
B
bellard 已提交
584 585 586 587 588
        }
    }
}

/* flush all the translation blocks */
B
bellard 已提交
589
/* XXX: tb_flush is currently not thread safe */
B
bellard 已提交
590
void tb_flush(CPUState *env1)
B
bellard 已提交
591
{
B
bellard 已提交
592
    CPUState *env;
593
#if defined(DEBUG_FLUSH)
B
blueswir1 已提交
594 595 596 597
    printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
           (unsigned long)(code_gen_ptr - code_gen_buffer),
           nb_tbs, nb_tbs > 0 ?
           ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
B
bellard 已提交
598
#endif
599
    if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
P
pbrook 已提交
600 601
        cpu_abort(env1, "Internal error: code buffer overflow\n");

B
bellard 已提交
602
    nb_tbs = 0;
603

B
bellard 已提交
604 605 606
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
        memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
    }
607

B
bellard 已提交
608
    memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
B
bellard 已提交
609
    page_flush_tb();
610

B
bellard 已提交
611
    code_gen_ptr = code_gen_buffer;
B
bellard 已提交
612 613
    /* XXX: flush processor icache at this point if cache flush is
       expensive */
B
bellard 已提交
614
    tb_flush_count++;
B
bellard 已提交
615 616 617 618
}

#ifdef DEBUG_TB_CHECK

J
j_mayer 已提交
619
static void tb_invalidate_check(target_ulong address)
B
bellard 已提交
620 621 622 623
{
    TranslationBlock *tb;
    int i;
    address &= TARGET_PAGE_MASK;
624 625
    for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
        for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
B
bellard 已提交
626 627 628
            if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
                  address >= tb->pc + tb->size)) {
                printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
629
                       address, (long)tb->pc, tb->size);
B
bellard 已提交
630 631 632 633 634 635 636 637 638 639
            }
        }
    }
}

/* verify that all the pages have correct rights for code */
static void tb_page_check(void)
{
    TranslationBlock *tb;
    int i, flags1, flags2;
640

641 642
    for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
        for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
B
bellard 已提交
643 644 645 646
            flags1 = page_get_flags(tb->pc);
            flags2 = page_get_flags(tb->pc + tb->size - 1);
            if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
                printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
647
                       (long)tb->pc, tb->size, flags1, flags2);
B
bellard 已提交
648 649 650 651 652
            }
        }
    }
}

B
blueswir1 已提交
653
static void tb_jmp_check(TranslationBlock *tb)
B
bellard 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
{
    TranslationBlock *tb1;
    unsigned int n1;

    /* suppress any remaining jumps to this TB */
    tb1 = tb->jmp_first;
    for(;;) {
        n1 = (long)tb1 & 3;
        tb1 = (TranslationBlock *)((long)tb1 & ~3);
        if (n1 == 2)
            break;
        tb1 = tb1->jmp_next[n1];
    }
    /* check end of list */
    if (tb1 != tb) {
        printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
    }
}

B
bellard 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
#endif

/* invalidate one TB */
static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
                             int next_offset)
{
    TranslationBlock *tb1;
    for(;;) {
        tb1 = *ptb;
        if (tb1 == tb) {
            *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
            break;
        }
        ptb = (TranslationBlock **)((char *)tb1 + next_offset);
    }
}

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
{
    TranslationBlock *tb1;
    unsigned int n1;

    for(;;) {
        tb1 = *ptb;
        n1 = (long)tb1 & 3;
        tb1 = (TranslationBlock *)((long)tb1 & ~3);
        if (tb1 == tb) {
            *ptb = tb1->page_next[n1];
            break;
        }
        ptb = &tb1->page_next[n1];
    }
}

B
bellard 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
static inline void tb_jmp_remove(TranslationBlock *tb, int n)
{
    TranslationBlock *tb1, **ptb;
    unsigned int n1;

    ptb = &tb->jmp_next[n];
    tb1 = *ptb;
    if (tb1) {
        /* find tb(n) in circular list */
        for(;;) {
            tb1 = *ptb;
            n1 = (long)tb1 & 3;
            tb1 = (TranslationBlock *)((long)tb1 & ~3);
            if (n1 == n && tb1 == tb)
                break;
            if (n1 == 2) {
                ptb = &tb1->jmp_first;
            } else {
                ptb = &tb1->jmp_next[n1];
            }
        }
        /* now we can suppress tb(n) from the list */
        *ptb = tb->jmp_next[n];

        tb->jmp_next[n] = NULL;
    }
}

/* reset the jump entry 'n' of a TB so that it is not chained to
   another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
    tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
}

P
pbrook 已提交
742
void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
B
bellard 已提交
743
{
B
bellard 已提交
744
    CPUState *env;
745
    PageDesc *p;
B
bellard 已提交
746
    unsigned int h, n1;
747
    target_phys_addr_t phys_pc;
748
    TranslationBlock *tb1, *tb2;
749

750 751 752
    /* remove the TB from the hash list */
    phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
    h = tb_phys_hash_func(phys_pc);
753
    tb_remove(&tb_phys_hash[h], tb,
754 755 756 757 758 759 760 761 762 763 764 765 766 767
              offsetof(TranslationBlock, phys_hash_next));

    /* remove the TB from the page list */
    if (tb->page_addr[0] != page_addr) {
        p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }
    if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
        p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
        tb_page_remove(&p->first_tb, tb);
        invalidate_page_bitmap(p);
    }

768
    tb_invalidated_flag = 1;
769

B
bellard 已提交
770
    /* remove the TB from the hash list */
771
    h = tb_jmp_cache_hash_func(tb->pc);
B
bellard 已提交
772 773 774 775
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
        if (env->tb_jmp_cache[h] == tb)
            env->tb_jmp_cache[h] = NULL;
    }
B
bellard 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

    /* suppress this TB from the two jump lists */
    tb_jmp_remove(tb, 0);
    tb_jmp_remove(tb, 1);

    /* suppress any remaining jumps to this TB */
    tb1 = tb->jmp_first;
    for(;;) {
        n1 = (long)tb1 & 3;
        if (n1 == 2)
            break;
        tb1 = (TranslationBlock *)((long)tb1 & ~3);
        tb2 = tb1->jmp_next[n1];
        tb_reset_jump(tb1, n1);
        tb1->jmp_next[n1] = NULL;
        tb1 = tb2;
    }
    tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
794

B
bellard 已提交
795
    tb_phys_invalidate_count++;
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
}

static inline void set_bits(uint8_t *tab, int start, int len)
{
    int end, mask, end1;

    end = start + len;
    tab += start >> 3;
    mask = 0xff << (start & 7);
    if ((start & ~7) == (end & ~7)) {
        if (start < end) {
            mask &= ~(0xff << (end & 7));
            *tab |= mask;
        }
    } else {
        *tab++ |= mask;
        start = (start + 8) & ~7;
        end1 = end & ~7;
        while (start < end1) {
            *tab++ = 0xff;
            start += 8;
        }
        if (start < end) {
            mask = ~(0xff << (end & 7));
            *tab |= mask;
        }
    }
}

static void build_page_bitmap(PageDesc *p)
{
    int n, tb_start, tb_end;
    TranslationBlock *tb;
829

P
pbrook 已提交
830
    p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

    tb = p->first_tb;
    while (tb != NULL) {
        n = (long)tb & 3;
        tb = (TranslationBlock *)((long)tb & ~3);
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->pc & ~TARGET_PAGE_MASK;
            tb_end = tb_start + tb->size;
            if (tb_end > TARGET_PAGE_SIZE)
                tb_end = TARGET_PAGE_SIZE;
        } else {
            tb_start = 0;
            tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
        set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
        tb = tb->page_next[n];
    }
}

P
pbrook 已提交
853 854 855
TranslationBlock *tb_gen_code(CPUState *env,
                              target_ulong pc, target_ulong cs_base,
                              int flags, int cflags)
B
bellard 已提交
856 857 858 859 860 861
{
    TranslationBlock *tb;
    uint8_t *tc_ptr;
    target_ulong phys_pc, phys_page2, virt_page2;
    int code_gen_size;

B
bellard 已提交
862 863
    phys_pc = get_phys_addr_code(env, pc);
    tb = tb_alloc(pc);
B
bellard 已提交
864 865 866 867
    if (!tb) {
        /* flush must be done */
        tb_flush(env);
        /* cannot fail at this point */
B
bellard 已提交
868
        tb = tb_alloc(pc);
P
pbrook 已提交
869 870
        /* Don't forget to invalidate previous TB info.  */
        tb_invalidated_flag = 1;
B
bellard 已提交
871 872 873 874 875 876
    }
    tc_ptr = code_gen_ptr;
    tb->tc_ptr = tc_ptr;
    tb->cs_base = cs_base;
    tb->flags = flags;
    tb->cflags = cflags;
877
    cpu_gen_code(env, tb, &code_gen_size);
B
bellard 已提交
878
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
879

B
bellard 已提交
880
    /* check next page if needed */
B
bellard 已提交
881
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
B
bellard 已提交
882
    phys_page2 = -1;
B
bellard 已提交
883
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
B
bellard 已提交
884 885 886
        phys_page2 = get_phys_addr_code(env, virt_page2);
    }
    tb_link_phys(tb, phys_pc, phys_page2);
P
pbrook 已提交
887
    return tb;
B
bellard 已提交
888
}
889

890 891
/* invalidate all TBs which intersect with the target physical page
   starting in range [start;end[. NOTE: start and end must refer to
B
bellard 已提交
892 893 894
   the same physical page. 'is_cpu_write_access' should be true if called
   from a real cpu write access: the virtual CPU will exit the current
   TB if code is modified inside this TB. */
895
void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
B
bellard 已提交
896 897
                                   int is_cpu_write_access)
{
898
    TranslationBlock *tb, *tb_next, *saved_tb;
B
bellard 已提交
899
    CPUState *env = cpu_single_env;
900
    target_ulong tb_start, tb_end;
901 902 903 904 905 906 907 908 909 910
    PageDesc *p;
    int n;
#ifdef TARGET_HAS_PRECISE_SMC
    int current_tb_not_found = is_cpu_write_access;
    TranslationBlock *current_tb = NULL;
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
    int current_flags = 0;
#endif /* TARGET_HAS_PRECISE_SMC */
911 912

    p = page_find(start >> TARGET_PAGE_BITS);
913
    if (!p)
914
        return;
915
    if (!p->code_bitmap &&
B
bellard 已提交
916 917
        ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
        is_cpu_write_access) {
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
        /* build code bitmap */
        build_page_bitmap(p);
    }

    /* we remove all the TBs in the range [start, end[ */
    /* XXX: see if in some cases it could be faster to invalidate all the code */
    tb = p->first_tb;
    while (tb != NULL) {
        n = (long)tb & 3;
        tb = (TranslationBlock *)((long)tb & ~3);
        tb_next = tb->page_next[n];
        /* NOTE: this is subtle as a TB may span two physical pages */
        if (n == 0) {
            /* NOTE: tb_end may be after the end of the page, but
               it is not a problem */
            tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
            tb_end = tb_start + tb->size;
        } else {
            tb_start = tb->page_addr[1];
            tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
        }
        if (!(tb_end <= start || tb_start >= end)) {
B
bellard 已提交
940 941 942 943
#ifdef TARGET_HAS_PRECISE_SMC
            if (current_tb_not_found) {
                current_tb_not_found = 0;
                current_tb = NULL;
P
pbrook 已提交
944
                if (env->mem_io_pc) {
B
bellard 已提交
945
                    /* now we have a real cpu fault */
P
pbrook 已提交
946
                    current_tb = tb_find_pc(env->mem_io_pc);
B
bellard 已提交
947 948 949
                }
            }
            if (current_tb == tb &&
P
pbrook 已提交
950
                (current_tb->cflags & CF_COUNT_MASK) != 1) {
B
bellard 已提交
951 952 953 954 955
                /* If we are modifying the current TB, we must stop
                its execution. We could be more precise by checking
                that the modification is after the current PC, but it
                would require a specialized function to partially
                restore the CPU state */
956

B
bellard 已提交
957
                current_tb_modified = 1;
958
                cpu_restore_state(current_tb, env,
P
pbrook 已提交
959
                                  env->mem_io_pc, NULL);
960 961
                cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                     &current_flags);
B
bellard 已提交
962 963
            }
#endif /* TARGET_HAS_PRECISE_SMC */
964 965 966 967 968 969 970
            /* we need to do that to handle the case where a signal
               occurs while doing tb_phys_invalidate() */
            saved_tb = NULL;
            if (env) {
                saved_tb = env->current_tb;
                env->current_tb = NULL;
            }
971
            tb_phys_invalidate(tb, -1);
972 973 974 975 976
            if (env) {
                env->current_tb = saved_tb;
                if (env->interrupt_request && env->current_tb)
                    cpu_interrupt(env, env->interrupt_request);
            }
977 978 979 980 981 982 983
        }
        tb = tb_next;
    }
#if !defined(CONFIG_USER_ONLY)
    /* if no code remaining, no need to continue to use slow writes */
    if (!p->first_tb) {
        invalidate_page_bitmap(p);
B
bellard 已提交
984
        if (is_cpu_write_access) {
P
pbrook 已提交
985
            tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
B
bellard 已提交
986 987 988 989 990 991 992 993
        }
    }
#endif
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
994
        env->current_tb = NULL;
P
pbrook 已提交
995
        tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
B
bellard 已提交
996
        cpu_resume_from_signal(env, NULL);
997
    }
B
bellard 已提交
998
#endif
999
}
B
bellard 已提交
1000

1001
/* len must be <= 8 and start must be a multiple of len */
1002
static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1003 1004 1005
{
    PageDesc *p;
    int offset, b;
1006
#if 0
B
bellard 已提交
1007
    if (1) {
1008 1009 1010 1011
        qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
                  cpu_single_env->mem_io_vaddr, len,
                  cpu_single_env->eip,
                  cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1012 1013
    }
#endif
1014
    p = page_find(start >> TARGET_PAGE_BITS);
1015
    if (!p)
1016 1017 1018 1019 1020 1021 1022 1023
        return;
    if (p->code_bitmap) {
        offset = start & ~TARGET_PAGE_MASK;
        b = p->code_bitmap[offset >> 3] >> (offset & 7);
        if (b & ((1 << len) - 1))
            goto do_invalidate;
    } else {
    do_invalidate:
B
bellard 已提交
1024
        tb_invalidate_phys_page_range(start, start + len, 1);
1025 1026 1027 1028
    }
}

#if !defined(CONFIG_SOFTMMU)
1029
static void tb_invalidate_phys_page(target_phys_addr_t addr,
B
bellard 已提交
1030
                                    unsigned long pc, void *puc)
1031
{
1032
    TranslationBlock *tb;
1033
    PageDesc *p;
1034
    int n;
B
bellard 已提交
1035
#ifdef TARGET_HAS_PRECISE_SMC
1036
    TranslationBlock *current_tb = NULL;
B
bellard 已提交
1037
    CPUState *env = cpu_single_env;
1038 1039 1040 1041
    int current_tb_modified = 0;
    target_ulong current_pc = 0;
    target_ulong current_cs_base = 0;
    int current_flags = 0;
B
bellard 已提交
1042
#endif
1043 1044 1045

    addr &= TARGET_PAGE_MASK;
    p = page_find(addr >> TARGET_PAGE_BITS);
1046
    if (!p)
1047 1048
        return;
    tb = p->first_tb;
B
bellard 已提交
1049 1050 1051 1052 1053
#ifdef TARGET_HAS_PRECISE_SMC
    if (tb && pc != 0) {
        current_tb = tb_find_pc(pc);
    }
#endif
1054 1055 1056
    while (tb != NULL) {
        n = (long)tb & 3;
        tb = (TranslationBlock *)((long)tb & ~3);
B
bellard 已提交
1057 1058
#ifdef TARGET_HAS_PRECISE_SMC
        if (current_tb == tb &&
P
pbrook 已提交
1059
            (current_tb->cflags & CF_COUNT_MASK) != 1) {
B
bellard 已提交
1060 1061 1062 1063 1064
                /* If we are modifying the current TB, we must stop
                   its execution. We could be more precise by checking
                   that the modification is after the current PC, but it
                   would require a specialized function to partially
                   restore the CPU state */
1065

B
bellard 已提交
1066 1067
            current_tb_modified = 1;
            cpu_restore_state(current_tb, env, pc, puc);
1068 1069
            cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
                                 &current_flags);
B
bellard 已提交
1070 1071
        }
#endif /* TARGET_HAS_PRECISE_SMC */
1072 1073 1074
        tb_phys_invalidate(tb, addr);
        tb = tb->page_next[n];
    }
B
bellard 已提交
1075
    p->first_tb = NULL;
B
bellard 已提交
1076 1077 1078 1079 1080
#ifdef TARGET_HAS_PRECISE_SMC
    if (current_tb_modified) {
        /* we generate a block containing just the instruction
           modifying the memory. It will ensure that it cannot modify
           itself */
1081
        env->current_tb = NULL;
P
pbrook 已提交
1082
        tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
B
bellard 已提交
1083 1084 1085
        cpu_resume_from_signal(env, puc);
    }
#endif
B
bellard 已提交
1086
}
1087
#endif
B
bellard 已提交
1088 1089

/* add the tb in the target page and protect it if necessary */
1090
static inline void tb_alloc_page(TranslationBlock *tb,
1091
                                 unsigned int n, target_ulong page_addr)
B
bellard 已提交
1092 1093
{
    PageDesc *p;
1094 1095 1096
    TranslationBlock *last_first_tb;

    tb->page_addr[n] = page_addr;
1097
    p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1098 1099 1100 1101
    tb->page_next[n] = p->first_tb;
    last_first_tb = p->first_tb;
    p->first_tb = (TranslationBlock *)((long)tb | n);
    invalidate_page_bitmap(p);
B
bellard 已提交
1102

1103
#if defined(TARGET_HAS_SMC) || 1
B
bellard 已提交
1104

1105
#if defined(CONFIG_USER_ONLY)
B
bellard 已提交
1106
    if (p->flags & PAGE_WRITE) {
1107 1108
        target_ulong addr;
        PageDesc *p2;
1109 1110
        int prot;

B
bellard 已提交
1111 1112
        /* force the host page as non writable (writes will have a
           page fault + mprotect overhead) */
1113
        page_addr &= qemu_host_page_mask;
B
bellard 已提交
1114
        prot = 0;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
        for(addr = page_addr; addr < page_addr + qemu_host_page_size;
            addr += TARGET_PAGE_SIZE) {

            p2 = page_find (addr >> TARGET_PAGE_BITS);
            if (!p2)
                continue;
            prot |= p2->flags;
            p2->flags &= ~PAGE_WRITE;
            page_get_flags(addr);
          }
1125
        mprotect(g2h(page_addr), qemu_host_page_size,
B
bellard 已提交
1126 1127
                 (prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
B
blueswir1 已提交
1128
        printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1129
               page_addr);
B
bellard 已提交
1130 1131
#endif
    }
1132 1133 1134 1135 1136
#else
    /* if some code is already present, then the pages are already
       protected. So we handle the case where only the first TB is
       allocated in a physical page */
    if (!last_first_tb) {
B
bellard 已提交
1137
        tlb_protect_code(page_addr);
1138 1139
    }
#endif
B
bellard 已提交
1140 1141

#endif /* TARGET_HAS_SMC */
B
bellard 已提交
1142 1143 1144 1145
}

/* Allocate a new translation block. Flush the translation buffer if
   too many translation blocks or too much generated code. */
B
bellard 已提交
1146
TranslationBlock *tb_alloc(target_ulong pc)
B
bellard 已提交
1147 1148 1149
{
    TranslationBlock *tb;

1150 1151
    if (nb_tbs >= code_gen_max_blocks ||
        (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
B
bellard 已提交
1152
        return NULL;
B
bellard 已提交
1153 1154
    tb = &tbs[nb_tbs++];
    tb->pc = pc;
1155
    tb->cflags = 0;
B
bellard 已提交
1156 1157 1158
    return tb;
}

P
pbrook 已提交
1159 1160
void tb_free(TranslationBlock *tb)
{
T
ths 已提交
1161
    /* In practice this is mostly used for single use temporary TB
P
pbrook 已提交
1162 1163 1164 1165 1166 1167 1168 1169
       Ignore the hard cases and just back up if this TB happens to
       be the last one generated.  */
    if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
        code_gen_ptr = tb->tc_ptr;
        nb_tbs--;
    }
}

1170 1171
/* add a new TB and link it to the physical page tables. phys_page2 is
   (-1) to indicate that only one page contains the TB. */
1172
void tb_link_phys(TranslationBlock *tb,
1173
                  target_ulong phys_pc, target_ulong phys_page2)
B
bellard 已提交
1174
{
1175 1176 1177
    unsigned int h;
    TranslationBlock **ptb;

P
pbrook 已提交
1178 1179 1180
    /* Grab the mmap lock to stop another thread invalidating this TB
       before we are done.  */
    mmap_lock();
1181 1182 1183 1184 1185
    /* add in the physical hash table */
    h = tb_phys_hash_func(phys_pc);
    ptb = &tb_phys_hash[h];
    tb->phys_hash_next = *ptb;
    *ptb = tb;
B
bellard 已提交
1186 1187

    /* add in the page list */
1188 1189 1190 1191 1192 1193
    tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
    if (phys_page2 != -1)
        tb_alloc_page(tb, 1, phys_page2);
    else
        tb->page_addr[1] = -1;

B
bellard 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202
    tb->jmp_first = (TranslationBlock *)((long)tb | 2);
    tb->jmp_next[0] = NULL;
    tb->jmp_next[1] = NULL;

    /* init original jump addresses */
    if (tb->tb_next_offset[0] != 0xffff)
        tb_reset_jump(tb, 0);
    if (tb->tb_next_offset[1] != 0xffff)
        tb_reset_jump(tb, 1);
1203 1204 1205 1206

#ifdef DEBUG_TB_CHECK
    tb_page_check();
#endif
P
pbrook 已提交
1207
    mmap_unlock();
B
bellard 已提交
1208 1209
}

1210 1211 1212
/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
   tb[1].tc_ptr. Return NULL if not found */
TranslationBlock *tb_find_pc(unsigned long tc_ptr)
B
bellard 已提交
1213
{
1214 1215 1216
    int m_min, m_max, m;
    unsigned long v;
    TranslationBlock *tb;
B
bellard 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

    if (nb_tbs <= 0)
        return NULL;
    if (tc_ptr < (unsigned long)code_gen_buffer ||
        tc_ptr >= (unsigned long)code_gen_ptr)
        return NULL;
    /* binary search (cf Knuth) */
    m_min = 0;
    m_max = nb_tbs - 1;
    while (m_min <= m_max) {
        m = (m_min + m_max) >> 1;
        tb = &tbs[m];
        v = (unsigned long)tb->tc_ptr;
        if (v == tc_ptr)
            return tb;
        else if (tc_ptr < v) {
            m_max = m - 1;
        } else {
            m_min = m + 1;
        }
1237
    }
B
bellard 已提交
1238 1239
    return &tbs[m_max];
}
B
bellard 已提交
1240

B
bellard 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
static void tb_reset_jump_recursive(TranslationBlock *tb);

static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
{
    TranslationBlock *tb1, *tb_next, **ptb;
    unsigned int n1;

    tb1 = tb->jmp_next[n];
    if (tb1 != NULL) {
        /* find head of list */
        for(;;) {
            n1 = (long)tb1 & 3;
            tb1 = (TranslationBlock *)((long)tb1 & ~3);
            if (n1 == 2)
                break;
            tb1 = tb1->jmp_next[n1];
        }
        /* we are now sure now that tb jumps to tb1 */
        tb_next = tb1;

        /* remove tb from the jmp_first list */
        ptb = &tb_next->jmp_first;
        for(;;) {
            tb1 = *ptb;
            n1 = (long)tb1 & 3;
            tb1 = (TranslationBlock *)((long)tb1 & ~3);
            if (n1 == n && tb1 == tb)
                break;
            ptb = &tb1->jmp_next[n1];
        }
        *ptb = tb->jmp_next[n];
        tb->jmp_next[n] = NULL;
1273

B
bellard 已提交
1274 1275 1276
        /* suppress the jump to next tb in generated code */
        tb_reset_jump(tb, n);

1277
        /* suppress jumps in the tb on which we could have jumped */
B
bellard 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
        tb_reset_jump_recursive(tb_next);
    }
}

static void tb_reset_jump_recursive(TranslationBlock *tb)
{
    tb_reset_jump_recursive2(tb, 0);
    tb_reset_jump_recursive2(tb, 1);
}

B
bellard 已提交
1288
#if defined(TARGET_HAS_ICE)
B
bellard 已提交
1289 1290
static void breakpoint_invalidate(CPUState *env, target_ulong pc)
{
1291 1292
    target_phys_addr_t addr;
    target_ulong pd;
P
pbrook 已提交
1293 1294
    ram_addr_t ram_addr;
    PhysPageDesc *p;
B
bellard 已提交
1295

P
pbrook 已提交
1296 1297 1298 1299 1300 1301 1302 1303
    addr = cpu_get_phys_page_debug(env, pc);
    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }
    ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
P
pbrook 已提交
1304
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
B
bellard 已提交
1305
}
B
bellard 已提交
1306
#endif
B
bellard 已提交
1307

1308
/* Add a watchpoint.  */
1309 1310
int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
                          int flags, CPUWatchpoint **watchpoint)
1311
{
1312
    target_ulong len_mask = ~(len - 1);
1313
    CPUWatchpoint *wp;
1314

1315 1316 1317 1318 1319 1320
    /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
    if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
        fprintf(stderr, "qemu: tried to set invalid watchpoint at "
                TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
        return -EINVAL;
    }
1321 1322 1323
    wp = qemu_malloc(sizeof(*wp));

    wp->vaddr = addr;
1324
    wp->len_mask = len_mask;
1325 1326
    wp->flags = flags;

1327
    /* keep all GDB-injected watchpoints in front */
1328 1329 1330 1331
    if (flags & BP_GDB)
        TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
    else
        TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1332 1333

    tlb_flush_page(env, addr);
1334 1335 1336 1337

    if (watchpoint)
        *watchpoint = wp;
    return 0;
1338 1339
}

1340 1341 1342
/* Remove a specific watchpoint.  */
int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
                          int flags)
1343
{
1344
    target_ulong len_mask = ~(len - 1);
1345
    CPUWatchpoint *wp;
1346

1347
    TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1348
        if (addr == wp->vaddr && len_mask == wp->len_mask
1349
                && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1350
            cpu_watchpoint_remove_by_ref(env, wp);
1351 1352 1353
            return 0;
        }
    }
1354
    return -ENOENT;
1355 1356
}

1357 1358 1359
/* Remove a specific watchpoint by reference.  */
void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
{
1360
    TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1361

1362 1363 1364 1365 1366 1367 1368 1369
    tlb_flush_page(env, watchpoint->vaddr);

    qemu_free(watchpoint);
}

/* Remove all matching watchpoints.  */
void cpu_watchpoint_remove_all(CPUState *env, int mask)
{
1370
    CPUWatchpoint *wp, *next;
1371

1372
    TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1373 1374
        if (wp->flags & mask)
            cpu_watchpoint_remove_by_ref(env, wp);
1375
    }
1376 1377
}

1378 1379 1380
/* Add a breakpoint.  */
int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
                          CPUBreakpoint **breakpoint)
B
bellard 已提交
1381
{
B
bellard 已提交
1382
#if defined(TARGET_HAS_ICE)
1383
    CPUBreakpoint *bp;
1384

1385
    bp = qemu_malloc(sizeof(*bp));
B
bellard 已提交
1386

1387 1388 1389
    bp->pc = pc;
    bp->flags = flags;

1390
    /* keep all GDB-injected breakpoints in front */
1391 1392 1393 1394
    if (flags & BP_GDB)
        TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
    else
        TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1395

B
bellard 已提交
1396
    breakpoint_invalidate(env, pc);
1397 1398 1399

    if (breakpoint)
        *breakpoint = bp;
B
bellard 已提交
1400 1401
    return 0;
#else
1402
    return -ENOSYS;
B
bellard 已提交
1403 1404 1405
#endif
}

1406 1407 1408
/* Remove a specific breakpoint.  */
int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
{
1409
#if defined(TARGET_HAS_ICE)
1410 1411
    CPUBreakpoint *bp;

1412
    TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1413 1414 1415 1416
        if (bp->pc == pc && bp->flags == flags) {
            cpu_breakpoint_remove_by_ref(env, bp);
            return 0;
        }
1417
    }
1418 1419 1420
    return -ENOENT;
#else
    return -ENOSYS;
1421 1422 1423
#endif
}

1424 1425
/* Remove a specific breakpoint by reference.  */
void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
B
bellard 已提交
1426
{
B
bellard 已提交
1427
#if defined(TARGET_HAS_ICE)
1428
    TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
B
bellard 已提交
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
    breakpoint_invalidate(env, breakpoint->pc);

    qemu_free(breakpoint);
#endif
}

/* Remove all matching breakpoints. */
void cpu_breakpoint_remove_all(CPUState *env, int mask)
{
#if defined(TARGET_HAS_ICE)
1440
    CPUBreakpoint *bp, *next;
1441

1442
    TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1443 1444
        if (bp->flags & mask)
            cpu_breakpoint_remove_by_ref(env, bp);
1445
    }
B
bellard 已提交
1446 1447 1448
#endif
}

B
bellard 已提交
1449 1450 1451 1452
/* enable or disable single step mode. EXCP_DEBUG is returned by the
   CPU loop after each instruction */
void cpu_single_step(CPUState *env, int enabled)
{
B
bellard 已提交
1453
#if defined(TARGET_HAS_ICE)
B
bellard 已提交
1454 1455
    if (env->singlestep_enabled != enabled) {
        env->singlestep_enabled = enabled;
1456 1457 1458 1459 1460 1461 1462
        if (kvm_enabled())
            kvm_update_guest_debug(env, 0);
        else {
            /* must flush all the translated code to avoid inconsistancies */
            /* XXX: only flush what is necessary */
            tb_flush(env);
        }
B
bellard 已提交
1463 1464 1465 1466
    }
#endif
}

1467 1468 1469 1470 1471
/* enable or disable low levels log */
void cpu_set_log(int log_flags)
{
    loglevel = log_flags;
    if (loglevel && !logfile) {
P
pbrook 已提交
1472
        logfile = fopen(logfilename, log_append ? "a" : "w");
1473 1474 1475 1476
        if (!logfile) {
            perror(logfilename);
            _exit(1);
        }
1477 1478 1479
#if !defined(CONFIG_SOFTMMU)
        /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
        {
1480
            static char logfile_buf[4096];
1481 1482 1483
            setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
        }
#else
1484
        setvbuf(logfile, NULL, _IOLBF, 0);
1485
#endif
P
pbrook 已提交
1486 1487 1488 1489 1490
        log_append = 1;
    }
    if (!loglevel && logfile) {
        fclose(logfile);
        logfile = NULL;
1491 1492 1493 1494 1495 1496
    }
}

void cpu_set_log_filename(const char *filename)
{
    logfilename = strdup(filename);
P
pbrook 已提交
1497 1498 1499 1500 1501
    if (logfile) {
        fclose(logfile);
        logfile = NULL;
    }
    cpu_set_log(loglevel);
1502
}
B
bellard 已提交
1503

1504
static void cpu_unlink_tb(CPUState *env)
B
bellard 已提交
1505
{
1506 1507 1508 1509 1510 1511
#if defined(USE_NPTL)
    /* FIXME: TB unchaining isn't SMP safe.  For now just ignore the
       problem and hope the cpu will stop of its own accord.  For userspace
       emulation this often isn't actually as bad as it sounds.  Often
       signals are used primarily to interrupt blocking syscalls.  */
#else
B
bellard 已提交
1512
    TranslationBlock *tb;
1513
    static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1514

1515 1516 1517 1518 1519 1520 1521
    tb = env->current_tb;
    /* if the cpu is currently executing code, we must unlink it and
       all the potentially executing TB */
    if (tb && !testandset(&interrupt_lock)) {
        env->current_tb = NULL;
        tb_reset_jump_recursive(tb);
        resetlock(&interrupt_lock);
1522
    }
1523 1524 1525 1526 1527 1528 1529
#endif
}

/* mask must never be zero, except for A20 change call */
void cpu_interrupt(CPUState *env, int mask)
{
    int old_mask;
1530

P
pbrook 已提交
1531
    old_mask = env->interrupt_request;
B
bellard 已提交
1532
    env->interrupt_request |= mask;
1533

P
pbrook 已提交
1534
    if (use_icount) {
P
pbrook 已提交
1535
        env->icount_decr.u16.high = 0xffff;
P
pbrook 已提交
1536 1537
#ifndef CONFIG_USER_ONLY
        if (!can_do_io(env)
1538
            && (mask & ~old_mask) != 0) {
P
pbrook 已提交
1539 1540 1541 1542
            cpu_abort(env, "Raised interrupt while not in I/O function");
        }
#endif
    } else {
1543
        cpu_unlink_tb(env);
B
bellard 已提交
1544 1545 1546
    }
}

1547 1548 1549 1550 1551
void cpu_reset_interrupt(CPUState *env, int mask)
{
    env->interrupt_request &= ~mask;
}

1552 1553 1554 1555 1556 1557
void cpu_exit(CPUState *env)
{
    env->exit_request = 1;
    cpu_unlink_tb(env);
}

B
blueswir1 已提交
1558
const CPULogItem cpu_log_items[] = {
1559
    { CPU_LOG_TB_OUT_ASM, "out_asm",
1560 1561 1562
      "show generated host assembly code for each compiled TB" },
    { CPU_LOG_TB_IN_ASM, "in_asm",
      "show target assembly code for each compiled TB" },
1563
    { CPU_LOG_TB_OP, "op",
B
bellard 已提交
1564
      "show micro ops for each compiled TB" },
1565
    { CPU_LOG_TB_OP_OPT, "op_opt",
B
blueswir1 已提交
1566 1567 1568
      "show micro ops "
#ifdef TARGET_I386
      "before eflags optimization and "
1569
#endif
B
blueswir1 已提交
1570
      "after liveness analysis" },
1571 1572 1573 1574
    { CPU_LOG_INT, "int",
      "show interrupts/exceptions in short format" },
    { CPU_LOG_EXEC, "exec",
      "show trace before each executed TB (lots of logs)" },
1575
    { CPU_LOG_TB_CPU, "cpu",
T
ths 已提交
1576
      "show CPU state before block translation" },
1577 1578 1579
#ifdef TARGET_I386
    { CPU_LOG_PCALL, "pcall",
      "show protected mode far calls/returns/exceptions" },
A
aliguori 已提交
1580 1581
    { CPU_LOG_RESET, "cpu_reset",
      "show CPU state before CPU resets" },
1582
#endif
B
bellard 已提交
1583
#ifdef DEBUG_IOPORT
1584 1585
    { CPU_LOG_IOPORT, "ioport",
      "show all i/o ports accesses" },
B
bellard 已提交
1586
#endif
1587 1588 1589 1590 1591 1592 1593 1594 1595
    { 0, NULL, NULL },
};

static int cmp1(const char *s1, int n, const char *s2)
{
    if (strlen(s2) != n)
        return 0;
    return memcmp(s1, s2, n) == 0;
}
1596

1597 1598 1599
/* takes a comma separated list of log masks. Return 0 if error. */
int cpu_str_to_log_mask(const char *str)
{
B
blueswir1 已提交
1600
    const CPULogItem *item;
1601 1602 1603 1604 1605 1606 1607 1608 1609
    int mask;
    const char *p, *p1;

    p = str;
    mask = 0;
    for(;;) {
        p1 = strchr(p, ',');
        if (!p1)
            p1 = p + strlen(p);
B
bellard 已提交
1610 1611 1612 1613 1614
	if(cmp1(p,p1-p,"all")) {
		for(item = cpu_log_items; item->mask != 0; item++) {
			mask |= item->mask;
		}
	} else {
1615 1616 1617 1618 1619
        for(item = cpu_log_items; item->mask != 0; item++) {
            if (cmp1(p, p1 - p, item->name))
                goto found;
        }
        return 0;
B
bellard 已提交
1620
	}
1621 1622 1623 1624 1625 1626 1627 1628
    found:
        mask |= item->mask;
        if (*p1 != ',')
            break;
        p = p1 + 1;
    }
    return mask;
}
B
bellard 已提交
1629

B
bellard 已提交
1630 1631 1632
void cpu_abort(CPUState *env, const char *fmt, ...)
{
    va_list ap;
P
pbrook 已提交
1633
    va_list ap2;
B
bellard 已提交
1634 1635

    va_start(ap, fmt);
P
pbrook 已提交
1636
    va_copy(ap2, ap);
B
bellard 已提交
1637 1638 1639 1640
    fprintf(stderr, "qemu: fatal: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
#ifdef TARGET_I386
B
bellard 已提交
1641 1642 1643
    cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
#else
    cpu_dump_state(env, stderr, fprintf, 0);
B
bellard 已提交
1644
#endif
1645 1646 1647 1648
    if (qemu_log_enabled()) {
        qemu_log("qemu: fatal: ");
        qemu_log_vprintf(fmt, ap2);
        qemu_log("\n");
1649
#ifdef TARGET_I386
1650
        log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1651
#else
1652
        log_cpu_state(env, 0);
1653
#endif
1654
        qemu_log_flush();
1655
        qemu_log_close();
1656
    }
P
pbrook 已提交
1657
    va_end(ap2);
1658
    va_end(ap);
B
bellard 已提交
1659 1660 1661
    abort();
}

1662 1663
CPUState *cpu_copy(CPUState *env)
{
1664
    CPUState *new_env = cpu_init(env->cpu_model_str);
1665 1666
    CPUState *next_cpu = new_env->next_cpu;
    int cpu_index = new_env->cpu_index;
1667 1668 1669 1670 1671
#if defined(TARGET_HAS_ICE)
    CPUBreakpoint *bp;
    CPUWatchpoint *wp;
#endif

1672
    memcpy(new_env, env, sizeof(CPUState));
1673 1674

    /* Preserve chaining and index. */
1675 1676
    new_env->next_cpu = next_cpu;
    new_env->cpu_index = cpu_index;
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

    /* Clone all break/watchpoints.
       Note: Once we support ptrace with hw-debug register access, make sure
       BP_CPU break/watchpoints are handled correctly on clone. */
    TAILQ_INIT(&env->breakpoints);
    TAILQ_INIT(&env->watchpoints);
#if defined(TARGET_HAS_ICE)
    TAILQ_FOREACH(bp, &env->breakpoints, entry) {
        cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
    }
    TAILQ_FOREACH(wp, &env->watchpoints, entry) {
        cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
                              wp->flags, NULL);
    }
#endif

1693 1694 1695
    return new_env;
}

1696 1697
#if !defined(CONFIG_USER_ONLY)

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
{
    unsigned int i;

    /* Discard jump cache entries for any tb which might potentially
       overlap the flushed page.  */
    i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
    memset (&env->tb_jmp_cache[i], 0, 
	    TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));

    i = tb_jmp_cache_hash_page(addr);
    memset (&env->tb_jmp_cache[i], 0, 
	    TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
}

1713 1714 1715
/* NOTE: if flush_global is true, also flush global entries (not
   implemented yet) */
void tlb_flush(CPUState *env, int flush_global)
1716 1717
{
    int i;
1718

1719 1720 1721
#if defined(DEBUG_TLB)
    printf("tlb_flush:\n");
#endif
1722 1723 1724 1725
    /* must reset current TB so that interrupts cannot modify the
       links while we are modifying them */
    env->current_tb = NULL;

1726
    for(i = 0; i < CPU_TLB_SIZE; i++) {
B
bellard 已提交
1727 1728 1729 1730 1731 1732
        env->tlb_table[0][i].addr_read = -1;
        env->tlb_table[0][i].addr_write = -1;
        env->tlb_table[0][i].addr_code = -1;
        env->tlb_table[1][i].addr_read = -1;
        env->tlb_table[1][i].addr_write = -1;
        env->tlb_table[1][i].addr_code = -1;
1733 1734 1735 1736
#if (NB_MMU_MODES >= 3)
        env->tlb_table[2][i].addr_read = -1;
        env->tlb_table[2][i].addr_write = -1;
        env->tlb_table[2][i].addr_code = -1;
A
aurel32 已提交
1737 1738
#endif
#if (NB_MMU_MODES >= 4)
1739 1740 1741 1742
        env->tlb_table[3][i].addr_read = -1;
        env->tlb_table[3][i].addr_write = -1;
        env->tlb_table[3][i].addr_code = -1;
#endif
A
aurel32 已提交
1743 1744 1745 1746
#if (NB_MMU_MODES >= 5)
        env->tlb_table[4][i].addr_read = -1;
        env->tlb_table[4][i].addr_write = -1;
        env->tlb_table[4][i].addr_code = -1;
1747
#endif
A
aurel32 已提交
1748

1749
    }
1750

1751
    memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1752

B
bellard 已提交
1753 1754 1755 1756
#ifdef USE_KQEMU
    if (env->kqemu_enabled) {
        kqemu_flush(env, flush_global);
    }
1757
#endif
B
bellard 已提交
1758
    tlb_flush_count++;
1759 1760
}

B
bellard 已提交
1761
static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
B
bellard 已提交
1762
{
1763
    if (addr == (tlb_entry->addr_read &
B
bellard 已提交
1764
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1765
        addr == (tlb_entry->addr_write &
B
bellard 已提交
1766
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1767
        addr == (tlb_entry->addr_code &
B
bellard 已提交
1768 1769 1770 1771 1772
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
        tlb_entry->addr_read = -1;
        tlb_entry->addr_write = -1;
        tlb_entry->addr_code = -1;
    }
B
bellard 已提交
1773 1774
}

1775
void tlb_flush_page(CPUState *env, target_ulong addr)
1776
{
1777
    int i;
1778

1779
#if defined(DEBUG_TLB)
1780
    printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1781
#endif
1782 1783 1784
    /* must reset current TB so that interrupts cannot modify the
       links while we are modifying them */
    env->current_tb = NULL;
B
bellard 已提交
1785 1786 1787

    addr &= TARGET_PAGE_MASK;
    i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
B
bellard 已提交
1788 1789
    tlb_flush_entry(&env->tlb_table[0][i], addr);
    tlb_flush_entry(&env->tlb_table[1][i], addr);
1790 1791
#if (NB_MMU_MODES >= 3)
    tlb_flush_entry(&env->tlb_table[2][i], addr);
A
aurel32 已提交
1792 1793
#endif
#if (NB_MMU_MODES >= 4)
1794 1795
    tlb_flush_entry(&env->tlb_table[3][i], addr);
#endif
A
aurel32 已提交
1796 1797
#if (NB_MMU_MODES >= 5)
    tlb_flush_entry(&env->tlb_table[4][i], addr);
1798
#endif
1799

1800
    tlb_flush_jmp_cache(env, addr);
1801

B
bellard 已提交
1802 1803 1804 1805 1806
#ifdef USE_KQEMU
    if (env->kqemu_enabled) {
        kqemu_flush_page(env, addr);
    }
#endif
1807 1808 1809 1810
}

/* update the TLBs so that writes to code in the virtual page 'addr'
   can be detected */
B
bellard 已提交
1811
static void tlb_protect_code(ram_addr_t ram_addr)
1812
{
1813
    cpu_physical_memory_reset_dirty(ram_addr,
B
bellard 已提交
1814 1815
                                    ram_addr + TARGET_PAGE_SIZE,
                                    CODE_DIRTY_FLAG);
1816 1817 1818
}

/* update the TLB so that writes in physical page 'phys_addr' are no longer
1819
   tested for self modifying code */
1820
static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1821
                                    target_ulong vaddr)
1822
{
1823
    phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1824 1825
}

1826
static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1827 1828 1829
                                         unsigned long start, unsigned long length)
{
    unsigned long addr;
B
bellard 已提交
1830 1831
    if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
        addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1832
        if ((addr - start) < length) {
P
pbrook 已提交
1833
            tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1834 1835 1836 1837
        }
    }
}

1838
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
B
bellard 已提交
1839
                                     int dirty_flags)
1840 1841
{
    CPUState *env;
B
bellard 已提交
1842
    unsigned long length, start1;
B
bellard 已提交
1843 1844
    int i, mask, len;
    uint8_t *p;
1845 1846 1847 1848 1849 1850 1851

    start &= TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);

    length = end - start;
    if (length == 0)
        return;
B
bellard 已提交
1852
    len = length >> TARGET_PAGE_BITS;
1853
#ifdef USE_KQEMU
B
bellard 已提交
1854 1855
    /* XXX: should not depend on cpu context */
    env = first_cpu;
1856
    if (env->kqemu_enabled) {
B
bellard 已提交
1857 1858 1859 1860 1861 1862
        ram_addr_t addr;
        addr = start;
        for(i = 0; i < len; i++) {
            kqemu_set_notdirty(env, addr);
            addr += TARGET_PAGE_SIZE;
        }
1863 1864
    }
#endif
B
bellard 已提交
1865 1866 1867 1868 1869
    mask = ~dirty_flags;
    p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
    for(i = 0; i < len; i++)
        p[i] &= mask;

1870 1871
    /* we modify the TLB cache so that the dirty bit will be set again
       when accessing the range */
1872
    start1 = start + (unsigned long)phys_ram_base;
B
bellard 已提交
1873 1874
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
        for(i = 0; i < CPU_TLB_SIZE; i++)
B
bellard 已提交
1875
            tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
B
bellard 已提交
1876
        for(i = 0; i < CPU_TLB_SIZE; i++)
B
bellard 已提交
1877
            tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1878 1879 1880
#if (NB_MMU_MODES >= 3)
        for(i = 0; i < CPU_TLB_SIZE; i++)
            tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
A
aurel32 已提交
1881 1882
#endif
#if (NB_MMU_MODES >= 4)
1883 1884 1885
        for(i = 0; i < CPU_TLB_SIZE; i++)
            tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
#endif
A
aurel32 已提交
1886 1887 1888
#if (NB_MMU_MODES >= 5)
        for(i = 0; i < CPU_TLB_SIZE; i++)
            tlb_reset_dirty_range(&env->tlb_table[4][i], start1, length);
1889
#endif
B
bellard 已提交
1890
    }
1891 1892
}

A
aliguori 已提交
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
int cpu_physical_memory_set_dirty_tracking(int enable)
{
    in_migration = enable;
    return 0;
}

int cpu_physical_memory_get_dirty_tracking(void)
{
    return in_migration;
}

A
aliguori 已提交
1904 1905 1906 1907 1908 1909
void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
{
    if (kvm_enabled())
        kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
}

1910 1911 1912 1913
static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
{
    ram_addr_t ram_addr;

B
bellard 已提交
1914
    if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1915
        ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1916 1917
            tlb_entry->addend - (unsigned long)phys_ram_base;
        if (!cpu_physical_memory_is_dirty(ram_addr)) {
P
pbrook 已提交
1918
            tlb_entry->addr_write |= TLB_NOTDIRTY;
1919 1920 1921 1922 1923 1924 1925 1926 1927
        }
    }
}

/* update the TLB according to the current state of the dirty bits */
void cpu_tlb_update_dirty(CPUState *env)
{
    int i;
    for(i = 0; i < CPU_TLB_SIZE; i++)
B
bellard 已提交
1928
        tlb_update_dirty(&env->tlb_table[0][i]);
1929
    for(i = 0; i < CPU_TLB_SIZE; i++)
B
bellard 已提交
1930
        tlb_update_dirty(&env->tlb_table[1][i]);
1931 1932 1933
#if (NB_MMU_MODES >= 3)
    for(i = 0; i < CPU_TLB_SIZE; i++)
        tlb_update_dirty(&env->tlb_table[2][i]);
A
aurel32 已提交
1934 1935
#endif
#if (NB_MMU_MODES >= 4)
1936 1937 1938
    for(i = 0; i < CPU_TLB_SIZE; i++)
        tlb_update_dirty(&env->tlb_table[3][i]);
#endif
A
aurel32 已提交
1939 1940 1941
#if (NB_MMU_MODES >= 5)
    for(i = 0; i < CPU_TLB_SIZE; i++)
        tlb_update_dirty(&env->tlb_table[4][i]);
1942
#endif
1943 1944
}

P
pbrook 已提交
1945
static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1946
{
P
pbrook 已提交
1947 1948
    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
        tlb_entry->addr_write = vaddr;
1949 1950
}

P
pbrook 已提交
1951 1952 1953
/* update the TLB corresponding to virtual page vaddr
   so that it is no longer dirty */
static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1954 1955 1956
{
    int i;

P
pbrook 已提交
1957
    vaddr &= TARGET_PAGE_MASK;
1958
    i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
P
pbrook 已提交
1959 1960
    tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
    tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
1961
#if (NB_MMU_MODES >= 3)
P
pbrook 已提交
1962
    tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
A
aurel32 已提交
1963 1964
#endif
#if (NB_MMU_MODES >= 4)
P
pbrook 已提交
1965
    tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
1966
#endif
A
aurel32 已提交
1967 1968
#if (NB_MMU_MODES >= 5)
    tlb_set_dirty1(&env->tlb_table[4][i], vaddr);
1969
#endif
1970 1971
}

1972 1973 1974 1975
/* add a new TLB entry. At most one entry for a given virtual address
   is permitted. Return 0 if OK or 2 if the page could not be mapped
   (can only happen in non SOFTMMU mode for I/O pages or pages
   conflicting with the host address space). */
1976 1977
int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
                      target_phys_addr_t paddr, int prot,
1978
                      int mmu_idx, int is_softmmu)
1979
{
B
bellard 已提交
1980
    PhysPageDesc *p;
B
bellard 已提交
1981
    unsigned long pd;
1982
    unsigned int index;
B
bellard 已提交
1983
    target_ulong address;
P
pbrook 已提交
1984
    target_ulong code_address;
1985
    target_phys_addr_t addend;
1986
    int ret;
B
bellard 已提交
1987
    CPUTLBEntry *te;
1988
    CPUWatchpoint *wp;
P
pbrook 已提交
1989
    target_phys_addr_t iotlb;
1990

B
bellard 已提交
1991
    p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1992 1993 1994 1995 1996 1997
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }
#if defined(DEBUG_TLB)
1998 1999
    printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
           vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2000 2001 2002
#endif

    ret = 0;
P
pbrook 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
    address = vaddr;
    if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
        /* IO memory case (romd handled later) */
        address |= TLB_MMIO;
    }
    addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
    if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
        /* Normal RAM.  */
        iotlb = pd & TARGET_PAGE_MASK;
        if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
            iotlb |= IO_MEM_NOTDIRTY;
        else
            iotlb |= IO_MEM_ROM;
    } else {
        /* IO handlers are currently passed a phsical address.
           It would be nice to pass an offset from the base address
           of that region.  This would avoid having to special case RAM,
           and avoid full address decoding in every device.
           We can't use the high bits of pd for this because
           IO_MEM_ROMD uses these as a ram address.  */
2023 2024 2025 2026 2027 2028
        iotlb = (pd & ~TARGET_PAGE_MASK);
        if (p) {
            iotlb += p->region_offset;
        } else {
            iotlb += paddr;
        }
P
pbrook 已提交
2029 2030 2031 2032 2033
    }

    code_address = address;
    /* Make accesses to pages with watchpoints go via the
       watchpoint trap routines.  */
2034
    TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2035
        if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
P
pbrook 已提交
2036 2037 2038 2039
            iotlb = io_mem_watch + paddr;
            /* TODO: The memory case can be optimized by not trapping
               reads of pages with a write breakpoint.  */
            address |= TLB_MMIO;
2040
        }
P
pbrook 已提交
2041
    }
2042

P
pbrook 已提交
2043 2044 2045 2046 2047 2048 2049 2050 2051
    index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    env->iotlb[mmu_idx][index] = iotlb - vaddr;
    te = &env->tlb_table[mmu_idx][index];
    te->addend = addend - vaddr;
    if (prot & PAGE_READ) {
        te->addr_read = address;
    } else {
        te->addr_read = -1;
    }
2052

P
pbrook 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
    if (prot & PAGE_EXEC) {
        te->addr_code = code_address;
    } else {
        te->addr_code = -1;
    }
    if (prot & PAGE_WRITE) {
        if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
            (pd & IO_MEM_ROMD)) {
            /* Write access calls the I/O callback.  */
            te->addr_write = address | TLB_MMIO;
        } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
                   !cpu_physical_memory_is_dirty(pd)) {
            te->addr_write = address | TLB_NOTDIRTY;
2066
        } else {
P
pbrook 已提交
2067
            te->addr_write = address;
2068
        }
P
pbrook 已提交
2069 2070
    } else {
        te->addr_write = -1;
2071 2072 2073 2074
    }
    return ret;
}

2075 2076
#else

2077
void tlb_flush(CPUState *env, int flush_global)
2078 2079 2080
{
}

2081
void tlb_flush_page(CPUState *env, target_ulong addr)
2082 2083 2084
{
}

2085 2086
int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
                      target_phys_addr_t paddr, int prot,
2087
                      int mmu_idx, int is_softmmu)
2088 2089 2090
{
    return 0;
}
2091

2092 2093
/* dump memory mappings */
void page_dump(FILE *f)
2094
{
2095 2096 2097
    unsigned long start, end;
    int i, j, prot, prot1;
    PageDesc *p;
2098

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
    fprintf(f, "%-8s %-8s %-8s %s\n",
            "start", "end", "size", "prot");
    start = -1;
    end = -1;
    prot = 0;
    for(i = 0; i <= L1_SIZE; i++) {
        if (i < L1_SIZE)
            p = l1_map[i];
        else
            p = NULL;
        for(j = 0;j < L2_SIZE; j++) {
            if (!p)
                prot1 = 0;
            else
                prot1 = p[j].flags;
            if (prot1 != prot) {
                end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
                if (start != -1) {
                    fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2118
                            start, end, end - start,
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
                            prot & PAGE_READ ? 'r' : '-',
                            prot & PAGE_WRITE ? 'w' : '-',
                            prot & PAGE_EXEC ? 'x' : '-');
                }
                if (prot1 != 0)
                    start = end;
                else
                    start = -1;
                prot = prot1;
            }
            if (!p)
                break;
        }
2132 2133 2134
    }
}

2135
int page_get_flags(target_ulong address)
2136
{
2137 2138 2139
    PageDesc *p;

    p = page_find(address >> TARGET_PAGE_BITS);
2140
    if (!p)
2141 2142 2143 2144 2145 2146 2147
        return 0;
    return p->flags;
}

/* modify the flags of a page and invalidate the code if
   necessary. The flag PAGE_WRITE_ORG is positionned automatically
   depending on PAGE_WRITE */
2148
void page_set_flags(target_ulong start, target_ulong end, int flags)
2149 2150
{
    PageDesc *p;
2151
    target_ulong addr;
2152

P
pbrook 已提交
2153
    /* mmap_lock should already be held.  */
2154 2155 2156 2157 2158 2159
    start = start & TARGET_PAGE_MASK;
    end = TARGET_PAGE_ALIGN(end);
    if (flags & PAGE_WRITE)
        flags |= PAGE_WRITE_ORG;
    for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
        p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2160 2161 2162 2163
        /* We may be called for host regions that are outside guest
           address space.  */
        if (!p)
            return;
2164 2165
        /* if the write protection is set, then we invalidate the code
           inside */
2166
        if (!(p->flags & PAGE_WRITE) &&
2167 2168
            (flags & PAGE_WRITE) &&
            p->first_tb) {
B
bellard 已提交
2169
            tb_invalidate_phys_page(addr, 0, NULL);
2170 2171 2172
        }
        p->flags = flags;
    }
2173 2174
}

2175 2176 2177 2178 2179 2180
int page_check_range(target_ulong start, target_ulong len, int flags)
{
    PageDesc *p;
    target_ulong end;
    target_ulong addr;

2181 2182 2183 2184
    if (start + len < start)
        /* we've wrapped around */
        return -1;

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
    end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
    start = start & TARGET_PAGE_MASK;

    for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
        p = page_find(addr >> TARGET_PAGE_BITS);
        if( !p )
            return -1;
        if( !(p->flags & PAGE_VALID) )
            return -1;

2195
        if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2196
            return -1;
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
        if (flags & PAGE_WRITE) {
            if (!(p->flags & PAGE_WRITE_ORG))
                return -1;
            /* unprotect the page if it was put read-only because it
               contains translated code */
            if (!(p->flags & PAGE_WRITE)) {
                if (!page_unprotect(addr, 0, NULL))
                    return -1;
            }
            return 0;
        }
2208 2209 2210 2211
    }
    return 0;
}

2212 2213
/* called from signal handler: invalidate the code and unprotect the
   page. Return TRUE if the fault was succesfully handled. */
2214
int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2215 2216 2217
{
    unsigned int page_index, prot, pindex;
    PageDesc *p, *p1;
2218
    target_ulong host_start, host_end, addr;
2219

P
pbrook 已提交
2220 2221 2222 2223 2224
    /* Technically this isn't safe inside a signal handler.  However we
       know this only ever happens in a synchronous SEGV handler, so in
       practice it seems to be ok.  */
    mmap_lock();

2225
    host_start = address & qemu_host_page_mask;
2226 2227
    page_index = host_start >> TARGET_PAGE_BITS;
    p1 = page_find(page_index);
P
pbrook 已提交
2228 2229
    if (!p1) {
        mmap_unlock();
2230
        return 0;
P
pbrook 已提交
2231
    }
2232
    host_end = host_start + qemu_host_page_size;
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
    p = p1;
    prot = 0;
    for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
        prot |= p->flags;
        p++;
    }
    /* if the page was really writable, then we change its
       protection back to writable */
    if (prot & PAGE_WRITE_ORG) {
        pindex = (address - host_start) >> TARGET_PAGE_BITS;
        if (!(p1[pindex].flags & PAGE_WRITE)) {
2244
            mprotect((void *)g2h(host_start), qemu_host_page_size,
2245 2246 2247 2248
                     (prot & PAGE_BITS) | PAGE_WRITE);
            p1[pindex].flags |= PAGE_WRITE;
            /* and since the content will be modified, we must invalidate
               the corresponding translated code. */
B
bellard 已提交
2249
            tb_invalidate_phys_page(address, pc, puc);
2250 2251 2252
#ifdef DEBUG_TB_CHECK
            tb_invalidate_check(address);
#endif
P
pbrook 已提交
2253
            mmap_unlock();
2254 2255 2256
            return 1;
        }
    }
P
pbrook 已提交
2257
    mmap_unlock();
2258 2259 2260
    return 0;
}

B
bellard 已提交
2261 2262
static inline void tlb_set_dirty(CPUState *env,
                                 unsigned long addr, target_ulong vaddr)
2263 2264
{
}
2265 2266
#endif /* defined(CONFIG_USER_ONLY) */

2267
#if !defined(CONFIG_USER_ONLY)
2268

2269
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2270
                             ram_addr_t memory, ram_addr_t region_offset);
2271
static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2272
                           ram_addr_t orig_memory, ram_addr_t region_offset);
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
                      need_subpage)                                     \
    do {                                                                \
        if (addr > start_addr)                                          \
            start_addr2 = 0;                                            \
        else {                                                          \
            start_addr2 = start_addr & ~TARGET_PAGE_MASK;               \
            if (start_addr2 > 0)                                        \
                need_subpage = 1;                                       \
        }                                                               \
                                                                        \
2284
        if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE)        \
2285 2286 2287 2288 2289 2290 2291 2292
            end_addr2 = TARGET_PAGE_SIZE - 1;                           \
        else {                                                          \
            end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
            if (end_addr2 < TARGET_PAGE_SIZE - 1)                       \
                need_subpage = 1;                                       \
        }                                                               \
    } while (0)

2293 2294
/* register physical memory. 'size' must be a multiple of the target
   page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2295 2296 2297 2298 2299 2300 2301 2302 2303
   io memory page.  The address used when calling the IO function is
   the offset from the start of the region, plus region_offset.  Both
   start_region and regon_offset are rounded down to a page boundary
   before calculating this offset.  This should not be a problem unless
   the low bits of start_addr and region_offset differ.  */
void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
                                         ram_addr_t size,
                                         ram_addr_t phys_offset,
                                         ram_addr_t region_offset)
2304
{
2305
    target_phys_addr_t addr, end_addr;
B
bellard 已提交
2306
    PhysPageDesc *p;
2307
    CPUState *env;
2308
    ram_addr_t orig_size = size;
2309
    void *subpage;
2310

2311 2312 2313 2314 2315 2316 2317
#ifdef USE_KQEMU
    /* XXX: should not depend on cpu context */
    env = first_cpu;
    if (env->kqemu_enabled) {
        kqemu_set_phys_mem(start_addr, size, phys_offset);
    }
#endif
A
aliguori 已提交
2318 2319 2320
    if (kvm_enabled())
        kvm_set_phys_mem(start_addr, size, phys_offset);

P
pbrook 已提交
2321 2322 2323
    if (phys_offset == IO_MEM_UNASSIGNED) {
        region_offset = start_addr;
    }
2324
    region_offset &= TARGET_PAGE_MASK;
B
bellard 已提交
2325
    size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2326 2327
    end_addr = start_addr + (target_phys_addr_t)size;
    for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2328 2329
        p = phys_page_find(addr >> TARGET_PAGE_BITS);
        if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2330
            ram_addr_t orig_memory = p->phys_offset;
2331 2332 2333 2334 2335
            target_phys_addr_t start_addr2, end_addr2;
            int need_subpage = 0;

            CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
                          need_subpage);
2336
            if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2337 2338
                if (!(orig_memory & IO_MEM_SUBPAGE)) {
                    subpage = subpage_init((addr & TARGET_PAGE_MASK),
2339 2340
                                           &p->phys_offset, orig_memory,
                                           p->region_offset);
2341 2342 2343 2344
                } else {
                    subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
                                            >> IO_MEM_SHIFT];
                }
2345 2346 2347
                subpage_register(subpage, start_addr2, end_addr2, phys_offset,
                                 region_offset);
                p->region_offset = 0;
2348 2349 2350 2351 2352 2353 2354 2355 2356
            } else {
                p->phys_offset = phys_offset;
                if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
                    (phys_offset & IO_MEM_ROMD))
                    phys_offset += TARGET_PAGE_SIZE;
            }
        } else {
            p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
            p->phys_offset = phys_offset;
2357
            p->region_offset = region_offset;
2358
            if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2359
                (phys_offset & IO_MEM_ROMD)) {
2360
                phys_offset += TARGET_PAGE_SIZE;
P
pbrook 已提交
2361
            } else {
2362 2363 2364 2365 2366 2367
                target_phys_addr_t start_addr2, end_addr2;
                int need_subpage = 0;

                CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
                              end_addr2, need_subpage);

2368
                if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2369
                    subpage = subpage_init((addr & TARGET_PAGE_MASK),
2370
                                           &p->phys_offset, IO_MEM_UNASSIGNED,
P
pbrook 已提交
2371
                                           addr & TARGET_PAGE_MASK);
2372
                    subpage_register(subpage, start_addr2, end_addr2,
2373 2374
                                     phys_offset, region_offset);
                    p->region_offset = 0;
2375 2376 2377
                }
            }
        }
2378
        region_offset += TARGET_PAGE_SIZE;
2379
    }
2380

2381 2382 2383 2384 2385 2386
    /* since each CPU stores ram addresses in its TLB cache, we must
       reset the modified entries */
    /* XXX: slow ! */
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
        tlb_flush(env, 1);
    }
2387 2388
}

B
bellard 已提交
2389
/* XXX: temporary until new memory mapping API */
2390
ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
B
bellard 已提交
2391 2392 2393 2394 2395 2396 2397 2398 2399
{
    PhysPageDesc *p;

    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p)
        return IO_MEM_UNASSIGNED;
    return p->phys_offset;
}

A
aliguori 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
{
    if (kvm_enabled())
        kvm_coalesce_mmio_region(addr, size);
}

void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
{
    if (kvm_enabled())
        kvm_uncoalesce_mmio_region(addr, size);
}

B
bellard 已提交
2412
/* XXX: better than nothing */
2413
ram_addr_t qemu_ram_alloc(ram_addr_t size)
B
bellard 已提交
2414 2415
{
    ram_addr_t addr;
2416
    if ((phys_ram_alloc_offset + size) > phys_ram_size) {
T
ths 已提交
2417
        fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
B
bellard 已提交
2418
                (uint64_t)size, (uint64_t)phys_ram_size);
B
bellard 已提交
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
        abort();
    }
    addr = phys_ram_alloc_offset;
    phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
    return addr;
}

void qemu_ram_free(ram_addr_t addr)
{
}

2430 2431 2432 2433 2434 2435 2436 2437
/* Return a host pointer to ram allocated with qemu_ram_alloc.
   This may only be used if you actually allocated the ram, and
   aready know how but the ram block is.  */
void *qemu_get_ram_ptr(ram_addr_t addr)
{
    return phys_ram_base + addr;
}

B
bellard 已提交
2438
static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2439
{
P
pbrook 已提交
2440
#ifdef DEBUG_UNASSIGNED
B
blueswir1 已提交
2441
    printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2442
#endif
2443
#if defined(TARGET_SPARC)
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
    do_unassigned_access(addr, 0, 0, 0, 1);
#endif
    return 0;
}

static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
{
#ifdef DEBUG_UNASSIGNED
    printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
#endif
2454
#if defined(TARGET_SPARC)
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
    do_unassigned_access(addr, 0, 0, 0, 2);
#endif
    return 0;
}

static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
{
#ifdef DEBUG_UNASSIGNED
    printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
#endif
2465
#if defined(TARGET_SPARC)
2466
    do_unassigned_access(addr, 0, 0, 0, 4);
P
pbrook 已提交
2467
#endif
2468 2469 2470
    return 0;
}

B
bellard 已提交
2471
static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2472
{
P
pbrook 已提交
2473
#ifdef DEBUG_UNASSIGNED
B
blueswir1 已提交
2474
    printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
P
pbrook 已提交
2475
#endif
2476
#if defined(TARGET_SPARC)
2477 2478 2479 2480 2481 2482 2483 2484 2485
    do_unassigned_access(addr, 1, 0, 0, 1);
#endif
}

static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
#ifdef DEBUG_UNASSIGNED
    printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
#endif
2486
#if defined(TARGET_SPARC)
2487 2488 2489 2490 2491 2492 2493 2494 2495
    do_unassigned_access(addr, 1, 0, 0, 2);
#endif
}

static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
#ifdef DEBUG_UNASSIGNED
    printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
#endif
2496
#if defined(TARGET_SPARC)
2497
    do_unassigned_access(addr, 1, 0, 0, 4);
2498
#endif
2499 2500 2501 2502
}

static CPUReadMemoryFunc *unassigned_mem_read[3] = {
    unassigned_mem_readb,
2503 2504
    unassigned_mem_readw,
    unassigned_mem_readl,
2505 2506 2507 2508
};

static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
    unassigned_mem_writeb,
2509 2510
    unassigned_mem_writew,
    unassigned_mem_writel,
2511 2512
};

P
pbrook 已提交
2513 2514
static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
                                uint32_t val)
2515
{
2516 2517 2518
    int dirty_flags;
    dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
    if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2519
#if !defined(CONFIG_USER_ONLY)
2520 2521
        tb_invalidate_phys_page_fast(ram_addr, 1);
        dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2522
#endif
2523
    }
P
pbrook 已提交
2524
    stb_p(phys_ram_base + ram_addr, val);
2525 2526 2527 2528 2529
#ifdef USE_KQEMU
    if (cpu_single_env->kqemu_enabled &&
        (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
        kqemu_modify_page(cpu_single_env, ram_addr);
#endif
B
bellard 已提交
2530 2531 2532 2533 2534
    dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
    phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
    /* we remove the notdirty callback only if the code has been
       flushed */
    if (dirty_flags == 0xff)
P
pbrook 已提交
2535
        tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2536 2537
}

P
pbrook 已提交
2538 2539
static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
                                uint32_t val)
2540
{
2541 2542 2543
    int dirty_flags;
    dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
    if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2544
#if !defined(CONFIG_USER_ONLY)
2545 2546
        tb_invalidate_phys_page_fast(ram_addr, 2);
        dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2547
#endif
2548
    }
P
pbrook 已提交
2549
    stw_p(phys_ram_base + ram_addr, val);
2550 2551 2552 2553 2554
#ifdef USE_KQEMU
    if (cpu_single_env->kqemu_enabled &&
        (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
        kqemu_modify_page(cpu_single_env, ram_addr);
#endif
B
bellard 已提交
2555 2556 2557 2558 2559
    dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
    phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
    /* we remove the notdirty callback only if the code has been
       flushed */
    if (dirty_flags == 0xff)
P
pbrook 已提交
2560
        tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2561 2562
}

P
pbrook 已提交
2563 2564
static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
                                uint32_t val)
2565
{
2566 2567 2568
    int dirty_flags;
    dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
    if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2569
#if !defined(CONFIG_USER_ONLY)
2570 2571
        tb_invalidate_phys_page_fast(ram_addr, 4);
        dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2572
#endif
2573
    }
P
pbrook 已提交
2574
    stl_p(phys_ram_base + ram_addr, val);
2575 2576 2577 2578 2579
#ifdef USE_KQEMU
    if (cpu_single_env->kqemu_enabled &&
        (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
        kqemu_modify_page(cpu_single_env, ram_addr);
#endif
B
bellard 已提交
2580 2581 2582 2583 2584
    dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
    phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
    /* we remove the notdirty callback only if the code has been
       flushed */
    if (dirty_flags == 0xff)
P
pbrook 已提交
2585
        tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2586 2587
}

2588
static CPUReadMemoryFunc *error_mem_read[3] = {
2589 2590 2591 2592 2593
    NULL, /* never used */
    NULL, /* never used */
    NULL, /* never used */
};

2594 2595 2596 2597 2598 2599
static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
    notdirty_mem_writeb,
    notdirty_mem_writew,
    notdirty_mem_writel,
};

P
pbrook 已提交
2600
/* Generate a debug exception if a watchpoint has been hit.  */
2601
static void check_watchpoint(int offset, int len_mask, int flags)
P
pbrook 已提交
2602 2603
{
    CPUState *env = cpu_single_env;
2604 2605
    target_ulong pc, cs_base;
    TranslationBlock *tb;
P
pbrook 已提交
2606
    target_ulong vaddr;
2607
    CPUWatchpoint *wp;
2608
    int cpu_flags;
P
pbrook 已提交
2609

2610 2611 2612 2613 2614 2615 2616
    if (env->watchpoint_hit) {
        /* We re-entered the check after replacing the TB. Now raise
         * the debug interrupt so that is will trigger after the
         * current instruction. */
        cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
        return;
    }
P
pbrook 已提交
2617
    vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2618
    TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2619 2620
        if ((vaddr == (wp->vaddr & len_mask) ||
             (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
            wp->flags |= BP_WATCHPOINT_HIT;
            if (!env->watchpoint_hit) {
                env->watchpoint_hit = wp;
                tb = tb_find_pc(env->mem_io_pc);
                if (!tb) {
                    cpu_abort(env, "check_watchpoint: could not find TB for "
                              "pc=%p", (void *)env->mem_io_pc);
                }
                cpu_restore_state(tb, env, env->mem_io_pc, NULL);
                tb_phys_invalidate(tb, -1);
                if (wp->flags & BP_STOP_BEFORE_ACCESS) {
                    env->exception_index = EXCP_DEBUG;
                } else {
                    cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
                    tb_gen_code(env, pc, cs_base, cpu_flags, 1);
                }
                cpu_resume_from_signal(env, NULL);
2638
            }
2639 2640
        } else {
            wp->flags &= ~BP_WATCHPOINT_HIT;
P
pbrook 已提交
2641 2642 2643 2644
        }
    }
}

2645 2646 2647 2648 2649
/* Watchpoint access routines.  Watchpoints are inserted using TLB tricks,
   so these check for a hit then pass through to the normal out-of-line
   phys routines.  */
static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
{
2650
    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2651 2652 2653 2654 2655
    return ldub_phys(addr);
}

static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
{
2656
    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2657 2658 2659 2660 2661
    return lduw_phys(addr);
}

static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
{
2662
    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2663 2664 2665 2666 2667 2668
    return ldl_phys(addr);
}

static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
                             uint32_t val)
{
2669
    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2670 2671 2672 2673 2674 2675
    stb_phys(addr, val);
}

static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
                             uint32_t val)
{
2676
    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2677 2678 2679 2680 2681 2682
    stw_phys(addr, val);
}

static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
                             uint32_t val)
{
2683
    check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
    stl_phys(addr, val);
}

static CPUReadMemoryFunc *watch_mem_read[3] = {
    watch_mem_readb,
    watch_mem_readw,
    watch_mem_readl,
};

static CPUWriteMemoryFunc *watch_mem_write[3] = {
    watch_mem_writeb,
    watch_mem_writew,
    watch_mem_writel,
};

2699 2700 2701 2702 2703 2704
static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
                                 unsigned int len)
{
    uint32_t ret;
    unsigned int idx;

2705
    idx = SUBPAGE_IDX(addr);
2706 2707 2708 2709
#if defined(DEBUG_SUBPAGE)
    printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
           mmio, len, addr, idx);
#endif
2710 2711
    ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
                                       addr + mmio->region_offset[idx][0][len]);
2712 2713 2714 2715 2716 2717 2718 2719 2720

    return ret;
}

static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
                              uint32_t value, unsigned int len)
{
    unsigned int idx;

2721
    idx = SUBPAGE_IDX(addr);
2722 2723 2724 2725
#if defined(DEBUG_SUBPAGE)
    printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
           mmio, len, addr, idx, value);
#endif
2726 2727 2728
    (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
                                  addr + mmio->region_offset[idx][1][len],
                                  value);
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
}

static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
{
#if defined(DEBUG_SUBPAGE)
    printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
#endif

    return subpage_readlen(opaque, addr, 0);
}

static void subpage_writeb (void *opaque, target_phys_addr_t addr,
                            uint32_t value)
{
#if defined(DEBUG_SUBPAGE)
    printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
#endif
    subpage_writelen(opaque, addr, value, 0);
}

static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
{
#if defined(DEBUG_SUBPAGE)
    printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
#endif

    return subpage_readlen(opaque, addr, 1);
}

static void subpage_writew (void *opaque, target_phys_addr_t addr,
                            uint32_t value)
{
#if defined(DEBUG_SUBPAGE)
    printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
#endif
    subpage_writelen(opaque, addr, value, 1);
}

static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
{
#if defined(DEBUG_SUBPAGE)
    printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
#endif

    return subpage_readlen(opaque, addr, 2);
}

static void subpage_writel (void *opaque,
                         target_phys_addr_t addr, uint32_t value)
{
#if defined(DEBUG_SUBPAGE)
    printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
#endif
    subpage_writelen(opaque, addr, value, 2);
}

static CPUReadMemoryFunc *subpage_read[] = {
    &subpage_readb,
    &subpage_readw,
    &subpage_readl,
};

static CPUWriteMemoryFunc *subpage_write[] = {
    &subpage_writeb,
    &subpage_writew,
    &subpage_writel,
};

static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2798
                             ram_addr_t memory, ram_addr_t region_offset)
2799 2800
{
    int idx, eidx;
2801
    unsigned int i;
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812

    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
        return -1;
    idx = SUBPAGE_IDX(start);
    eidx = SUBPAGE_IDX(end);
#if defined(DEBUG_SUBPAGE)
    printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
           mmio, start, end, idx, eidx, memory);
#endif
    memory >>= IO_MEM_SHIFT;
    for (; idx <= eidx; idx++) {
2813
        for (i = 0; i < 4; i++) {
2814 2815 2816
            if (io_mem_read[memory][i]) {
                mmio->mem_read[idx][i] = &io_mem_read[memory][i];
                mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2817
                mmio->region_offset[idx][0][i] = region_offset;
2818 2819 2820 2821
            }
            if (io_mem_write[memory][i]) {
                mmio->mem_write[idx][i] = &io_mem_write[memory][i];
                mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2822
                mmio->region_offset[idx][1][i] = region_offset;
2823
            }
2824
        }
2825 2826 2827 2828 2829
    }

    return 0;
}

2830
static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2831
                           ram_addr_t orig_memory, ram_addr_t region_offset)
2832 2833 2834 2835 2836
{
    subpage_t *mmio;
    int subpage_memory;

    mmio = qemu_mallocz(sizeof(subpage_t));
2837 2838 2839

    mmio->base = base;
    subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2840
#if defined(DEBUG_SUBPAGE)
2841 2842
    printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
           mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2843
#endif
2844 2845
    *phys = subpage_memory | IO_MEM_SUBPAGE;
    subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2846
                         region_offset);
2847 2848 2849 2850

    return mmio;
}

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
static int get_free_io_mem_idx(void)
{
    int i;

    for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
        if (!io_mem_used[i]) {
            io_mem_used[i] = 1;
            return i;
        }

    return -1;
}

2864 2865
static void io_mem_init(void)
{
2866 2867
    int i;

2868
    cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
B
bellard 已提交
2869
    cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2870
    cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2871 2872
    for (i=0; i<5; i++)
        io_mem_used[i] = 1;
2873

P
pbrook 已提交
2874
    io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
2875
                                          watch_mem_write, NULL);
2876
    /* alloc dirty bits array */
B
bellard 已提交
2877
    phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2878
    memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2879 2880 2881 2882
}

/* mem_read and mem_write are arrays of functions containing the
   function to access byte (index 0), word (index 1) and dword (index
2883 2884 2885
   2). Functions can be omitted with a NULL function pointer. The
   registered functions may be modified dynamically later.
   If io_index is non zero, the corresponding io zone is
2886 2887 2888
   modified. If it is zero, a new io zone is allocated. The return
   value can be used with cpu_register_physical_memory(). (-1) is
   returned if error. */
2889 2890
int cpu_register_io_memory(int io_index,
                           CPUReadMemoryFunc **mem_read,
B
bellard 已提交
2891 2892
                           CPUWriteMemoryFunc **mem_write,
                           void *opaque)
2893
{
2894
    int i, subwidth = 0;
2895 2896

    if (io_index <= 0) {
2897 2898 2899
        io_index = get_free_io_mem_idx();
        if (io_index == -1)
            return io_index;
2900 2901 2902 2903
    } else {
        if (io_index >= IO_MEM_NB_ENTRIES)
            return -1;
    }
B
bellard 已提交
2904

2905
    for(i = 0;i < 3; i++) {
2906 2907
        if (!mem_read[i] || !mem_write[i])
            subwidth = IO_MEM_SUBWIDTH;
2908 2909 2910
        io_mem_read[io_index][i] = mem_read[i];
        io_mem_write[io_index][i] = mem_write[i];
    }
B
bellard 已提交
2911
    io_mem_opaque[io_index] = opaque;
2912
    return (io_index << IO_MEM_SHIFT) | subwidth;
2913
}
B
bellard 已提交
2914

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
void cpu_unregister_io_memory(int io_table_address)
{
    int i;
    int io_index = io_table_address >> IO_MEM_SHIFT;

    for (i=0;i < 3; i++) {
        io_mem_read[io_index][i] = unassigned_mem_read[i];
        io_mem_write[io_index][i] = unassigned_mem_write[i];
    }
    io_mem_opaque[io_index] = NULL;
    io_mem_used[io_index] = 0;
}

B
bellard 已提交
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
{
    return io_mem_write[io_index >> IO_MEM_SHIFT];
}

CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
{
    return io_mem_read[io_index >> IO_MEM_SHIFT];
}

2938 2939
#endif /* !defined(CONFIG_USER_ONLY) */

B
bellard 已提交
2940 2941
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
2942
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
B
bellard 已提交
2943 2944 2945 2946
                            int len, int is_write)
{
    int l, flags;
    target_ulong page;
2947
    void * p;
B
bellard 已提交
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        flags = page_get_flags(page);
        if (!(flags & PAGE_VALID))
            return;
        if (is_write) {
            if (!(flags & PAGE_WRITE))
                return;
2960
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
2961
            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2962 2963
                /* FIXME - should this return an error rather than just fail? */
                return;
A
aurel32 已提交
2964 2965
            memcpy(p, buf, l);
            unlock_user(p, addr, l);
B
bellard 已提交
2966 2967 2968
        } else {
            if (!(flags & PAGE_READ))
                return;
2969
            /* XXX: this code should not depend on lock_user */
A
aurel32 已提交
2970
            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2971 2972
                /* FIXME - should this return an error rather than just fail? */
                return;
A
aurel32 已提交
2973
            memcpy(buf, p, l);
A
aurel32 已提交
2974
            unlock_user(p, addr, 0);
B
bellard 已提交
2975 2976 2977 2978 2979 2980
        }
        len -= l;
        buf += l;
        addr += l;
    }
}
B
bellard 已提交
2981

B
bellard 已提交
2982
#else
2983
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
B
bellard 已提交
2984 2985 2986 2987 2988
                            int len, int is_write)
{
    int l, io_index;
    uint8_t *ptr;
    uint32_t val;
2989 2990
    target_phys_addr_t page;
    unsigned long pd;
B
bellard 已提交
2991
    PhysPageDesc *p;
2992

B
bellard 已提交
2993 2994 2995 2996 2997
    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
B
bellard 已提交
2998
        p = phys_page_find(page >> TARGET_PAGE_BITS);
B
bellard 已提交
2999 3000 3001 3002 3003
        if (!p) {
            pd = IO_MEM_UNASSIGNED;
        } else {
            pd = p->phys_offset;
        }
3004

B
bellard 已提交
3005
        if (is_write) {
3006
            if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3007
                target_phys_addr_t addr1 = addr;
B
bellard 已提交
3008
                io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3009
                if (p)
3010
                    addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
B
bellard 已提交
3011 3012
                /* XXX: could force cpu_single_env to NULL to avoid
                   potential bugs */
3013
                if (l >= 4 && ((addr1 & 3) == 0)) {
B
bellard 已提交
3014
                    /* 32 bit write access */
B
bellard 已提交
3015
                    val = ldl_p(buf);
3016
                    io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
B
bellard 已提交
3017
                    l = 4;
3018
                } else if (l >= 2 && ((addr1 & 1) == 0)) {
B
bellard 已提交
3019
                    /* 16 bit write access */
B
bellard 已提交
3020
                    val = lduw_p(buf);
3021
                    io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
B
bellard 已提交
3022 3023
                    l = 2;
                } else {
B
bellard 已提交
3024
                    /* 8 bit write access */
B
bellard 已提交
3025
                    val = ldub_p(buf);
3026
                    io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
B
bellard 已提交
3027 3028 3029
                    l = 1;
                }
            } else {
3030 3031
                unsigned long addr1;
                addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
B
bellard 已提交
3032
                /* RAM case */
3033
                ptr = phys_ram_base + addr1;
B
bellard 已提交
3034
                memcpy(ptr, buf, l);
3035 3036 3037 3038
                if (!cpu_physical_memory_is_dirty(addr1)) {
                    /* invalidate code */
                    tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
                    /* set dirty bit */
3039
                    phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
B
bellard 已提交
3040
                        (0xff & ~CODE_DIRTY_FLAG);
3041
                }
B
bellard 已提交
3042 3043
            }
        } else {
3044
            if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3045
                !(pd & IO_MEM_ROMD)) {
3046
                target_phys_addr_t addr1 = addr;
B
bellard 已提交
3047 3048
                /* I/O case */
                io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3049
                if (p)
3050 3051
                    addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
                if (l >= 4 && ((addr1 & 3) == 0)) {
B
bellard 已提交
3052
                    /* 32 bit read access */
3053
                    val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
B
bellard 已提交
3054
                    stl_p(buf, val);
B
bellard 已提交
3055
                    l = 4;
3056
                } else if (l >= 2 && ((addr1 & 1) == 0)) {
B
bellard 已提交
3057
                    /* 16 bit read access */
3058
                    val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
B
bellard 已提交
3059
                    stw_p(buf, val);
B
bellard 已提交
3060 3061
                    l = 2;
                } else {
B
bellard 已提交
3062
                    /* 8 bit read access */
3063
                    val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
B
bellard 已提交
3064
                    stb_p(buf, val);
B
bellard 已提交
3065 3066 3067 3068
                    l = 1;
                }
            } else {
                /* RAM case */
3069
                ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
B
bellard 已提交
3070 3071 3072 3073 3074 3075 3076 3077 3078
                    (addr & ~TARGET_PAGE_MASK);
                memcpy(buf, ptr, l);
            }
        }
        len -= l;
        buf += l;
        addr += l;
    }
}
B
bellard 已提交
3079

B
bellard 已提交
3080
/* used for ROM loading : can write in RAM and ROM */
3081
void cpu_physical_memory_write_rom(target_phys_addr_t addr,
B
bellard 已提交
3082 3083 3084 3085 3086 3087 3088
                                   const uint8_t *buf, int len)
{
    int l;
    uint8_t *ptr;
    target_phys_addr_t page;
    unsigned long pd;
    PhysPageDesc *p;
3089

B
bellard 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        p = phys_page_find(page >> TARGET_PAGE_BITS);
        if (!p) {
            pd = IO_MEM_UNASSIGNED;
        } else {
            pd = p->phys_offset;
        }
3101

B
bellard 已提交
3102
        if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3103 3104
            (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
            !(pd & IO_MEM_ROMD)) {
B
bellard 已提交
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
            /* do nothing */
        } else {
            unsigned long addr1;
            addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
            /* ROM/RAM case */
            ptr = phys_ram_base + addr1;
            memcpy(ptr, buf, l);
        }
        len -= l;
        buf += l;
        addr += l;
    }
}

3119 3120 3121 3122 3123 3124 3125 3126
typedef struct {
    void *buffer;
    target_phys_addr_t addr;
    target_phys_addr_t len;
} BounceBuffer;

static BounceBuffer bounce;

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
typedef struct MapClient {
    void *opaque;
    void (*callback)(void *opaque);
    LIST_ENTRY(MapClient) link;
} MapClient;

static LIST_HEAD(map_client_list, MapClient) map_client_list
    = LIST_HEAD_INITIALIZER(map_client_list);

void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
{
    MapClient *client = qemu_malloc(sizeof(*client));

    client->opaque = opaque;
    client->callback = callback;
    LIST_INSERT_HEAD(&map_client_list, client, link);
    return client;
}

void cpu_unregister_map_client(void *_client)
{
    MapClient *client = (MapClient *)_client;

    LIST_REMOVE(client, link);
}

static void cpu_notify_map_clients(void)
{
    MapClient *client;

    while (!LIST_EMPTY(&map_client_list)) {
        client = LIST_FIRST(&map_client_list);
        client->callback(client->opaque);
        LIST_REMOVE(client, link);
    }
}

3164 3165 3166 3167
/* Map a physical memory region into a host virtual address.
 * May map a subset of the requested range, given by and returned in *plen.
 * May return NULL if resources needed to perform the mapping are exhausted.
 * Use only for reads OR writes - not for read-modify-write operations.
3168 3169
 * Use cpu_register_map_client() to know when retrying the map operation is
 * likely to succeed.
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
 */
void *cpu_physical_memory_map(target_phys_addr_t addr,
                              target_phys_addr_t *plen,
                              int is_write)
{
    target_phys_addr_t len = *plen;
    target_phys_addr_t done = 0;
    int l;
    uint8_t *ret = NULL;
    uint8_t *ptr;
    target_phys_addr_t page;
    unsigned long pd;
    PhysPageDesc *p;
    unsigned long addr1;

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        p = phys_page_find(page >> TARGET_PAGE_BITS);
        if (!p) {
            pd = IO_MEM_UNASSIGNED;
        } else {
            pd = p->phys_offset;
        }

        if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
            if (done || bounce.buffer) {
                break;
            }
            bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
            bounce.addr = addr;
            bounce.len = l;
            if (!is_write) {
                cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
            }
            ptr = bounce.buffer;
        } else {
            addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
            ptr = phys_ram_base + addr1;
        }
        if (!done) {
            ret = ptr;
        } else if (ret + done != ptr) {
            break;
        }

        len -= l;
        addr += l;
        done += l;
    }
    *plen = done;
    return ret;
}

/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
 * Will also mark the memory as dirty if is_write == 1.  access_len gives
 * the amount of memory that was actually read or written by the caller.
 */
void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
                               int is_write, target_phys_addr_t access_len)
{
    if (buffer != bounce.buffer) {
        if (is_write) {
            unsigned long addr1 = (uint8_t *)buffer - phys_ram_base;
            while (access_len) {
                unsigned l;
                l = TARGET_PAGE_SIZE;
                if (l > access_len)
                    l = access_len;
                if (!cpu_physical_memory_is_dirty(addr1)) {
                    /* invalidate code */
                    tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
                    /* set dirty bit */
                    phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
                        (0xff & ~CODE_DIRTY_FLAG);
                }
                addr1 += l;
                access_len -= l;
            }
        }
        return;
    }
    if (is_write) {
        cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
    }
    qemu_free(bounce.buffer);
    bounce.buffer = NULL;
3259
    cpu_notify_map_clients();
3260
}
B
bellard 已提交
3261

B
bellard 已提交
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
/* warning: addr must be aligned */
uint32_t ldl_phys(target_phys_addr_t addr)
{
    int io_index;
    uint8_t *ptr;
    uint32_t val;
    unsigned long pd;
    PhysPageDesc *p;

    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }
3277

3278
    if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3279
        !(pd & IO_MEM_ROMD)) {
B
bellard 已提交
3280 3281
        /* I/O case */
        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3282 3283
        if (p)
            addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
B
bellard 已提交
3284 3285 3286
        val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
    } else {
        /* RAM case */
3287
        ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
B
bellard 已提交
3288 3289 3290 3291 3292 3293
            (addr & ~TARGET_PAGE_MASK);
        val = ldl_p(ptr);
    }
    return val;
}

B
bellard 已提交
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
/* warning: addr must be aligned */
uint64_t ldq_phys(target_phys_addr_t addr)
{
    int io_index;
    uint8_t *ptr;
    uint64_t val;
    unsigned long pd;
    PhysPageDesc *p;

    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }
3309

3310 3311
    if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
        !(pd & IO_MEM_ROMD)) {
B
bellard 已提交
3312 3313
        /* I/O case */
        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3314 3315
        if (p)
            addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
B
bellard 已提交
3316 3317 3318 3319 3320 3321 3322 3323 3324
#ifdef TARGET_WORDS_BIGENDIAN
        val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
        val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
#else
        val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
        val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
#endif
    } else {
        /* RAM case */
3325
        ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
B
bellard 已提交
3326 3327 3328 3329 3330 3331
            (addr & ~TARGET_PAGE_MASK);
        val = ldq_p(ptr);
    }
    return val;
}

B
bellard 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
/* XXX: optimize */
uint32_t ldub_phys(target_phys_addr_t addr)
{
    uint8_t val;
    cpu_physical_memory_read(addr, &val, 1);
    return val;
}

/* XXX: optimize */
uint32_t lduw_phys(target_phys_addr_t addr)
{
    uint16_t val;
    cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
    return tswap16(val);
}

B
bellard 已提交
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
/* warning: addr must be aligned. The ram page is not masked as dirty
   and the code inside is not invalidated. It is useful if the dirty
   bits are used to track modified PTEs */
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
{
    int io_index;
    uint8_t *ptr;
    unsigned long pd;
    PhysPageDesc *p;

    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }
3364

3365
    if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
B
bellard 已提交
3366
        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3367 3368
        if (p)
            addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
B
bellard 已提交
3369 3370
        io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
    } else {
A
aliguori 已提交
3371 3372
        unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
        ptr = phys_ram_base + addr1;
B
bellard 已提交
3373
        stl_p(ptr, val);
A
aliguori 已提交
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383

        if (unlikely(in_migration)) {
            if (!cpu_physical_memory_is_dirty(addr1)) {
                /* invalidate code */
                tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
                /* set dirty bit */
                phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
                    (0xff & ~CODE_DIRTY_FLAG);
            }
        }
B
bellard 已提交
3384 3385 3386
    }
}

J
j_mayer 已提交
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
{
    int io_index;
    uint8_t *ptr;
    unsigned long pd;
    PhysPageDesc *p;

    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }
3400

J
j_mayer 已提交
3401 3402
    if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3403 3404
        if (p)
            addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
J
j_mayer 已提交
3405 3406 3407 3408 3409 3410 3411 3412
#ifdef TARGET_WORDS_BIGENDIAN
        io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
        io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
#else
        io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
        io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
#endif
    } else {
3413
        ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
J
j_mayer 已提交
3414 3415 3416 3417 3418
            (addr & ~TARGET_PAGE_MASK);
        stq_p(ptr, val);
    }
}

B
bellard 已提交
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
/* warning: addr must be aligned */
void stl_phys(target_phys_addr_t addr, uint32_t val)
{
    int io_index;
    uint8_t *ptr;
    unsigned long pd;
    PhysPageDesc *p;

    p = phys_page_find(addr >> TARGET_PAGE_BITS);
    if (!p) {
        pd = IO_MEM_UNASSIGNED;
    } else {
        pd = p->phys_offset;
    }
3433

3434
    if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
B
bellard 已提交
3435
        io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3436 3437
        if (p)
            addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
B
bellard 已提交
3438 3439 3440 3441 3442 3443 3444
        io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
    } else {
        unsigned long addr1;
        addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
        /* RAM case */
        ptr = phys_ram_base + addr1;
        stl_p(ptr, val);
3445 3446 3447 3448
        if (!cpu_physical_memory_is_dirty(addr1)) {
            /* invalidate code */
            tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
            /* set dirty bit */
B
bellard 已提交
3449 3450
            phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
                (0xff & ~CODE_DIRTY_FLAG);
3451
        }
B
bellard 已提交
3452 3453 3454
    }
}

B
bellard 已提交
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
/* XXX: optimize */
void stb_phys(target_phys_addr_t addr, uint32_t val)
{
    uint8_t v = val;
    cpu_physical_memory_write(addr, &v, 1);
}

/* XXX: optimize */
void stw_phys(target_phys_addr_t addr, uint32_t val)
{
    uint16_t v = tswap16(val);
    cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
}

/* XXX: optimize */
void stq_phys(target_phys_addr_t addr, uint64_t val)
{
    val = tswap64(val);
    cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
}

B
bellard 已提交
3476 3477
#endif

3478
/* virtual memory access for debug (includes writing to ROM) */
3479
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3480
                        uint8_t *buf, int len, int is_write)
B
bellard 已提交
3481 3482
{
    int l;
3483 3484
    target_phys_addr_t phys_addr;
    target_ulong page;
B
bellard 已提交
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        phys_addr = cpu_get_phys_page_debug(env, page);
        /* if no physical page mapped, return an error */
        if (phys_addr == -1)
            return -1;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
3495 3496 3497 3498 3499 3500 3501
        phys_addr += (addr & ~TARGET_PAGE_MASK);
#if !defined(CONFIG_USER_ONLY)
        if (is_write)
            cpu_physical_memory_write_rom(phys_addr, buf, l);
        else
#endif
            cpu_physical_memory_rw(phys_addr, buf, l, is_write);
B
bellard 已提交
3502 3503 3504 3505 3506 3507 3508
        len -= l;
        buf += l;
        addr += l;
    }
    return 0;
}

P
pbrook 已提交
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
/* in deterministic execution mode, instructions doing device I/Os
   must be at the end of the TB */
void cpu_io_recompile(CPUState *env, void *retaddr)
{
    TranslationBlock *tb;
    uint32_t n, cflags;
    target_ulong pc, cs_base;
    uint64_t flags;

    tb = tb_find_pc((unsigned long)retaddr);
    if (!tb) {
        cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p", 
                  retaddr);
    }
    n = env->icount_decr.u16.low + tb->icount;
    cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
    /* Calculate how many instructions had been executed before the fault
T
ths 已提交
3526
       occurred.  */
P
pbrook 已提交
3527 3528 3529 3530 3531
    n = n - env->icount_decr.u16.low;
    /* Generate a new TB ending on the I/O insn.  */
    n++;
    /* On MIPS and SH, delay slot instructions can only be restarted if
       they were already the first instruction in the TB.  If this is not
T
ths 已提交
3532
       the first instruction in a TB then re-execute the preceding
P
pbrook 已提交
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
       branch.  */
#if defined(TARGET_MIPS)
    if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
        env->active_tc.PC -= 4;
        env->icount_decr.u16.low++;
        env->hflags &= ~MIPS_HFLAG_BMASK;
    }
#elif defined(TARGET_SH4)
    if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
            && n > 1) {
        env->pc -= 2;
        env->icount_decr.u16.low++;
        env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
    }
#endif
    /* This should never happen.  */
    if (n > CF_COUNT_MASK)
        cpu_abort(env, "TB too big during recompile");

    cflags = n | CF_LAST_IO;
    pc = tb->pc;
    cs_base = tb->cs_base;
    flags = tb->flags;
    tb_phys_invalidate(tb, -1);
    /* FIXME: In theory this could raise an exception.  In practice
       we have already translated the block once so it's probably ok.  */
    tb_gen_code(env, pc, cs_base, flags, cflags);
T
ths 已提交
3560
    /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
P
pbrook 已提交
3561 3562 3563 3564 3565 3566 3567
       the first in the TB) then we end up generating a whole new TB and
       repeating the fault, which is horribly inefficient.
       Better would be to execute just this insn uncached, or generate a
       second new TB.  */
    cpu_resume_from_signal(env, NULL);
}

B
bellard 已提交
3568 3569 3570 3571 3572 3573
void dump_exec_info(FILE *f,
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
{
    int i, target_code_size, max_target_code_size;
    int direct_jmp_count, direct_jmp2_count, cross_page;
    TranslationBlock *tb;
3574

B
bellard 已提交
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
    target_code_size = 0;
    max_target_code_size = 0;
    cross_page = 0;
    direct_jmp_count = 0;
    direct_jmp2_count = 0;
    for(i = 0; i < nb_tbs; i++) {
        tb = &tbs[i];
        target_code_size += tb->size;
        if (tb->size > max_target_code_size)
            max_target_code_size = tb->size;
        if (tb->page_addr[1] != -1)
            cross_page++;
        if (tb->tb_next_offset[0] != 0xffff) {
            direct_jmp_count++;
            if (tb->tb_next_offset[1] != 0xffff) {
                direct_jmp2_count++;
            }
        }
    }
    /* XXX: avoid using doubles ? */
B
bellard 已提交
3595
    cpu_fprintf(f, "Translation buffer state:\n");
3596 3597 3598 3599
    cpu_fprintf(f, "gen code size       %ld/%ld\n",
                code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
    cpu_fprintf(f, "TB count            %d/%d\n", 
                nb_tbs, code_gen_max_blocks);
3600
    cpu_fprintf(f, "TB avg target size  %d max=%d bytes\n",
B
bellard 已提交
3601 3602
                nb_tbs ? target_code_size / nb_tbs : 0,
                max_target_code_size);
3603
    cpu_fprintf(f, "TB avg host size    %d bytes (expansion ratio: %0.1f)\n",
B
bellard 已提交
3604 3605
                nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
                target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3606 3607
    cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
            cross_page,
B
bellard 已提交
3608 3609
            nb_tbs ? (cross_page * 100) / nb_tbs : 0);
    cpu_fprintf(f, "direct jump count   %d (%d%%) (2 jumps=%d %d%%)\n",
3610
                direct_jmp_count,
B
bellard 已提交
3611 3612 3613
                nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
                direct_jmp2_count,
                nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
B
bellard 已提交
3614
    cpu_fprintf(f, "\nStatistics:\n");
B
bellard 已提交
3615 3616 3617
    cpu_fprintf(f, "TB flush count      %d\n", tb_flush_count);
    cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
    cpu_fprintf(f, "TLB flush count     %d\n", tlb_flush_count);
B
bellard 已提交
3618
    tcg_dump_info(f, cpu_fprintf);
B
bellard 已提交
3619 3620
}

3621
#if !defined(CONFIG_USER_ONLY)
B
bellard 已提交
3622 3623 3624 3625

#define MMUSUFFIX _cmmu
#define GETPC() NULL
#define env cpu_single_env
B
bellard 已提交
3626
#define SOFTMMU_CODE_ACCESS
B
bellard 已提交
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642

#define SHIFT 0
#include "softmmu_template.h"

#define SHIFT 1
#include "softmmu_template.h"

#define SHIFT 2
#include "softmmu_template.h"

#define SHIFT 3
#include "softmmu_template.h"

#undef env

#endif