milkymist-minimac2.c 13.6 KB
Newer Older
1
/*
2
 *  QEMU model of the Milkymist minimac2 block.
3
 *
4
 *  Copyright (c) 2011 Michael Walle <michael@walle.cc>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 *
 *
 * Specification available at:
21
 *   not available yet
22 23 24 25 26 27 28 29
 *
 */

#include "hw.h"
#include "sysbus.h"
#include "trace.h"
#include "net.h"
#include "qemu-error.h"
30
#include "qdev-addr.h"
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

#include <zlib.h>

enum {
    R_SETUP = 0,
    R_MDIO,
    R_STATE0,
    R_COUNT0,
    R_STATE1,
    R_COUNT1,
    R_TXCOUNT,
    R_MAX
};

enum {
46
    SETUP_PHY_RST = (1<<0),
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
};

enum {
    MDIO_DO  = (1<<0),
    MDIO_DI  = (1<<1),
    MDIO_OE  = (1<<2),
    MDIO_CLK = (1<<3),
};

enum {
    STATE_EMPTY   = 0,
    STATE_LOADED  = 1,
    STATE_PENDING = 2,
};

enum {
    MDIO_OP_WRITE = 1,
    MDIO_OP_READ  = 2,
};

enum mdio_state {
    MDIO_STATE_IDLE,
    MDIO_STATE_READING,
    MDIO_STATE_WRITING,
};

enum {
    R_PHY_ID1  = 2,
    R_PHY_ID2  = 3,
    R_PHY_MAX  = 32
};

79 80
#define MINIMAC2_MTU 1530
#define MINIMAC2_BUFFER_SIZE 2048
81

82
struct MilkymistMinimac2MdioState {
83 84 85 86 87 88 89 90 91
    int last_clk;
    int count;
    uint32_t data;
    uint16_t data_out;
    int state;

    uint8_t phy_addr;
    uint8_t reg_addr;
};
92
typedef struct MilkymistMinimac2MdioState MilkymistMinimac2MdioState;
93

94
struct MilkymistMinimac2State {
95 96 97 98
    SysBusDevice busdev;
    NICState *nic;
    NICConf conf;
    char *phy_model;
99
    target_phys_addr_t buffers_base;
100 101 102 103 104 105

    qemu_irq rx_irq;
    qemu_irq tx_irq;

    uint32_t regs[R_MAX];

106
    MilkymistMinimac2MdioState mdio;
107 108

    uint16_t phy_regs[R_PHY_MAX];
109 110 111 112

    uint8_t *rx0_buf;
    uint8_t *rx1_buf;
    uint8_t *tx_buf;
113
};
114
typedef struct MilkymistMinimac2State MilkymistMinimac2State;
115 116 117 118 119

static const uint8_t preamble_sfd[] = {
        0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0xd5
};

120
static void minimac2_mdio_write_reg(MilkymistMinimac2State *s,
121 122
        uint8_t phy_addr, uint8_t reg_addr, uint16_t value)
{
123
    trace_milkymist_minimac2_mdio_write(phy_addr, reg_addr, value);
124 125 126 127

    /* nop */
}

128
static uint16_t minimac2_mdio_read_reg(MilkymistMinimac2State *s,
129 130 131 132
        uint8_t phy_addr, uint8_t reg_addr)
{
    uint16_t r = s->phy_regs[reg_addr];

133
    trace_milkymist_minimac2_mdio_read(phy_addr, reg_addr, r);
134 135 136 137

    return r;
}

138
static void minimac2_update_mdio(MilkymistMinimac2State *s)
139
{
140
    MilkymistMinimac2MdioState *m = &s->mdio;
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

    /* detect rising clk edge */
    if (m->last_clk == 0 && (s->regs[R_MDIO] & MDIO_CLK)) {
        /* shift data in */
        int bit = ((s->regs[R_MDIO] & MDIO_DO)
                   && (s->regs[R_MDIO] & MDIO_OE)) ? 1 : 0;
        m->data = (m->data << 1) | bit;

        /* check for sync */
        if (m->data == 0xffffffff) {
            m->count = 32;
        }

        if (m->count == 16) {
            uint8_t start = (m->data >> 14) & 0x3;
            uint8_t op = (m->data >> 12) & 0x3;
            uint8_t ta = (m->data) & 0x3;

            if (start == 1 && op == MDIO_OP_WRITE && ta == 2) {
                m->state = MDIO_STATE_WRITING;
            } else if (start == 1 && op == MDIO_OP_READ && (ta & 1) == 0) {
                m->state = MDIO_STATE_READING;
            } else {
                m->state = MDIO_STATE_IDLE;
            }

            if (m->state != MDIO_STATE_IDLE) {
                m->phy_addr = (m->data >> 7) & 0x1f;
                m->reg_addr = (m->data >> 2) & 0x1f;
            }

            if (m->state == MDIO_STATE_READING) {
173
                m->data_out = minimac2_mdio_read_reg(s, m->phy_addr,
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
                        m->reg_addr);
            }
        }

        if (m->count < 16 && m->state == MDIO_STATE_READING) {
            int bit = (m->data_out & 0x8000) ? 1 : 0;
            m->data_out <<= 1;

            if (bit) {
                s->regs[R_MDIO] |= MDIO_DI;
            } else {
                s->regs[R_MDIO] &= ~MDIO_DI;
            }
        }

        if (m->count == 0 && m->state) {
            if (m->state == MDIO_STATE_WRITING) {
                uint16_t data = m->data & 0xffff;
192
                minimac2_mdio_write_reg(s, m->phy_addr, m->reg_addr, data);
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
            }
            m->state = MDIO_STATE_IDLE;
        }
        m->count--;
    }

    m->last_clk = (s->regs[R_MDIO] & MDIO_CLK) ? 1 : 0;
}

static size_t assemble_frame(uint8_t *buf, size_t size,
        const uint8_t *payload, size_t payload_size)
{
    uint32_t crc;

    if (size < payload_size + 12) {
208
        error_report("milkymist_minimac2: received too big ethernet frame");
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
        return 0;
    }

    /* prepend preamble and sfd */
    memcpy(buf, preamble_sfd, 8);

    /* now copy the payload */
    memcpy(buf + 8, payload, payload_size);

    /* pad frame if needed */
    if (payload_size < 60) {
        memset(buf + payload_size + 8, 0, 60 - payload_size);
        payload_size = 60;
    }

    /* append fcs */
    crc = cpu_to_le32(crc32(0, buf + 8, payload_size));
    memcpy(buf + payload_size + 8, &crc, 4);

    return payload_size + 12;
}

231
static void minimac2_tx(MilkymistMinimac2State *s)
232 233
{
    uint32_t txcount = s->regs[R_TXCOUNT];
234
    uint8_t *buf = s->tx_buf;
235 236

    if (txcount < 64) {
237
        error_report("milkymist_minimac2: ethernet frame too small (%u < %u)\n",
238
                txcount, 64);
239
        goto err;
240 241
    }

242 243 244 245
    if (txcount > MINIMAC2_MTU) {
        error_report("milkymist_minimac2: MTU exceeded (%u > %u)\n",
                txcount, MINIMAC2_MTU);
        goto err;
246 247 248
    }

    if (memcmp(buf, preamble_sfd, 8) != 0) {
249
        error_report("milkymist_minimac2: frame doesn't contain the preamble "
250 251
                "and/or the SFD (%02x %02x %02x %02x %02x %02x %02x %02x)\n",
                buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
252
        goto err;
253 254
    }

255
    trace_milkymist_minimac2_tx_frame(txcount - 12);
256 257 258 259 260 261

    /* send packet, skipping preamble and sfd */
    qemu_send_packet_raw(&s->nic->nc, buf + 8, txcount - 12);

    s->regs[R_TXCOUNT] = 0;

262 263
err:
    trace_milkymist_minimac2_pulse_irq_tx();
264 265 266
    qemu_irq_pulse(s->tx_irq);
}

267 268 269 270 271 272 273 274 275 276 277 278 279
static void update_rx_interrupt(MilkymistMinimac2State *s)
{
    if (s->regs[R_STATE0] == STATE_PENDING
            || s->regs[R_STATE1] == STATE_PENDING) {
        trace_milkymist_minimac2_raise_irq_rx();
        qemu_irq_raise(s->rx_irq);
    } else {
        trace_milkymist_minimac2_lower_irq_rx();
        qemu_irq_lower(s->rx_irq);
    }
}

static ssize_t minimac2_rx(VLANClientState *nc, const uint8_t *buf, size_t size)
280
{
281
    MilkymistMinimac2State *s = DO_UPCAST(NICState, nc, nc)->opaque;
282 283 284

    uint32_t r_count;
    uint32_t r_state;
285
    uint8_t *rx_buf;
286 287 288

    size_t frame_size;

289
    trace_milkymist_minimac2_rx_frame(buf, size);
290 291 292 293 294

    /* choose appropriate slot */
    if (s->regs[R_STATE0] == STATE_LOADED) {
        r_count = R_COUNT0;
        r_state = R_STATE0;
295
        rx_buf = s->rx0_buf;
296 297 298
    } else if (s->regs[R_STATE1] == STATE_LOADED) {
        r_count = R_COUNT1;
        r_state = R_STATE1;
299
        rx_buf = s->rx1_buf;
300
    } else {
301
        trace_milkymist_minimac2_drop_rx_frame(buf);
302 303 304 305
        return size;
    }

    /* assemble frame */
306
    frame_size = assemble_frame(rx_buf, MINIMAC2_BUFFER_SIZE, buf, size);
307 308 309 310 311

    if (frame_size == 0) {
        return size;
    }

312
    trace_milkymist_minimac2_rx_transfer(rx_buf, frame_size);
313 314 315 316 317

    /* update slot */
    s->regs[r_count] = frame_size;
    s->regs[r_state] = STATE_PENDING;

318
    update_rx_interrupt(s);
319 320 321 322 323

    return size;
}

static uint32_t
324
minimac2_read(void *opaque, target_phys_addr_t addr)
325
{
326
    MilkymistMinimac2State *s = opaque;
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    uint32_t r = 0;

    addr >>= 2;
    switch (addr) {
    case R_SETUP:
    case R_MDIO:
    case R_STATE0:
    case R_COUNT0:
    case R_STATE1:
    case R_COUNT1:
    case R_TXCOUNT:
        r = s->regs[addr];
        break;

    default:
342
        error_report("milkymist_minimac2: read access to unknown register 0x"
343 344 345 346
                TARGET_FMT_plx, addr << 2);
        break;
    }

347
    trace_milkymist_minimac2_memory_read(addr << 2, r);
348 349 350 351 352

    return r;
}

static void
353
minimac2_write(void *opaque, target_phys_addr_t addr, uint32_t value)
354
{
355
    MilkymistMinimac2State *s = opaque;
356

357
    trace_milkymist_minimac2_memory_read(addr, value);
358 359 360 361 362 363 364 365 366 367 368 369 370 371

    addr >>= 2;
    switch (addr) {
    case R_MDIO:
    {
        /* MDIO_DI is read only */
        int mdio_di = (s->regs[R_MDIO] & MDIO_DI);
        s->regs[R_MDIO] = value;
        if (mdio_di) {
            s->regs[R_MDIO] |= mdio_di;
        } else {
            s->regs[R_MDIO] &= ~mdio_di;
        }

372
        minimac2_update_mdio(s);
373 374 375 376
    } break;
    case R_TXCOUNT:
        s->regs[addr] = value;
        if (value > 0) {
377
            minimac2_tx(s);
378 379 380 381
        }
        break;
    case R_STATE0:
    case R_STATE1:
382 383 384 385 386
        s->regs[addr] = value;
        update_rx_interrupt(s);
        break;
    case R_SETUP:
    case R_COUNT0:
387 388 389 390 391
    case R_COUNT1:
        s->regs[addr] = value;
        break;

    default:
392
        error_report("milkymist_minimac2: write access to unknown register 0x"
393 394 395 396 397
                TARGET_FMT_plx, addr << 2);
        break;
    }
}

398
static CPUReadMemoryFunc * const minimac2_read_fn[] = {
399 400
    NULL,
    NULL,
401
    &minimac2_read,
402 403
};

404
static CPUWriteMemoryFunc * const minimac2_write_fn[] = {
405 406
    NULL,
    NULL,
407
    &minimac2_write,
408 409
};

410
static int minimac2_can_rx(VLANClientState *nc)
411
{
412
    MilkymistMinimac2State *s = DO_UPCAST(NICState, nc, nc)->opaque;
413 414 415 416 417 418 419 420 421 422 423

    if (s->regs[R_STATE0] == STATE_LOADED) {
        return 1;
    }
    if (s->regs[R_STATE1] == STATE_LOADED) {
        return 1;
    }

    return 0;
}

424
static void minimac2_cleanup(VLANClientState *nc)
425
{
426
    MilkymistMinimac2State *s = DO_UPCAST(NICState, nc, nc)->opaque;
427 428 429 430

    s->nic = NULL;
}

431
static void milkymist_minimac2_reset(DeviceState *d)
432
{
433 434
    MilkymistMinimac2State *s =
            container_of(d, MilkymistMinimac2State, busdev.qdev);
435 436 437 438 439 440 441 442 443 444 445 446 447 448
    int i;

    for (i = 0; i < R_MAX; i++) {
        s->regs[i] = 0;
    }
    for (i = 0; i < R_PHY_MAX; i++) {
        s->phy_regs[i] = 0;
    }

    /* defaults */
    s->phy_regs[R_PHY_ID1] = 0x0022; /* Micrel KSZ8001L */
    s->phy_regs[R_PHY_ID2] = 0x161a;
}

449
static NetClientInfo net_milkymist_minimac2_info = {
450 451
    .type = NET_CLIENT_TYPE_NIC,
    .size = sizeof(NICState),
452 453 454
    .can_receive = minimac2_can_rx,
    .receive = minimac2_rx,
    .cleanup = minimac2_cleanup,
455 456
};

457
static int milkymist_minimac2_init(SysBusDevice *dev)
458
{
459
    MilkymistMinimac2State *s = FROM_SYSBUS(typeof(*s), dev);
460
    int regs;
461 462
    ram_addr_t buffers;
    size_t buffers_size = TARGET_PAGE_ALIGN(3 * MINIMAC2_BUFFER_SIZE);
463 464 465 466

    sysbus_init_irq(dev, &s->rx_irq);
    sysbus_init_irq(dev, &s->tx_irq);

467
    regs = cpu_register_io_memory(minimac2_read_fn, minimac2_write_fn, s,
468 469 470
            DEVICE_NATIVE_ENDIAN);
    sysbus_init_mmio(dev, R_MAX * 4, regs);

471 472 473 474 475 476 477 478 479
    /* register buffers memory */
    buffers = qemu_ram_alloc(NULL, "milkymist_minimac2.buffers", buffers_size);
    s->rx0_buf = qemu_get_ram_ptr(buffers);
    s->rx1_buf = s->rx0_buf + MINIMAC2_BUFFER_SIZE;
    s->tx_buf = s->rx1_buf + MINIMAC2_BUFFER_SIZE;

    cpu_register_physical_memory(s->buffers_base, buffers_size,
            buffers | IO_MEM_RAM);

480
    qemu_macaddr_default_if_unset(&s->conf.macaddr);
481
    s->nic = qemu_new_nic(&net_milkymist_minimac2_info, &s->conf,
482 483 484 485 486 487
                          dev->qdev.info->name, dev->qdev.id, s);
    qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);

    return 0;
}

488 489
static const VMStateDescription vmstate_milkymist_minimac2_mdio = {
    .name = "milkymist-minimac2-mdio",
490 491 492 493
    .version_id = 1,
    .minimum_version_id = 1,
    .minimum_version_id_old = 1,
    .fields      = (VMStateField[]) {
494 495 496 497 498 499 500
        VMSTATE_INT32(last_clk, MilkymistMinimac2MdioState),
        VMSTATE_INT32(count, MilkymistMinimac2MdioState),
        VMSTATE_UINT32(data, MilkymistMinimac2MdioState),
        VMSTATE_UINT16(data_out, MilkymistMinimac2MdioState),
        VMSTATE_INT32(state, MilkymistMinimac2MdioState),
        VMSTATE_UINT8(phy_addr, MilkymistMinimac2MdioState),
        VMSTATE_UINT8(reg_addr, MilkymistMinimac2MdioState),
501 502 503 504
        VMSTATE_END_OF_LIST()
    }
};

505 506
static const VMStateDescription vmstate_milkymist_minimac2 = {
    .name = "milkymist-minimac2",
507 508 509 510
    .version_id = 1,
    .minimum_version_id = 1,
    .minimum_version_id_old = 1,
    .fields      = (VMStateField[]) {
511 512 513 514
        VMSTATE_UINT32_ARRAY(regs, MilkymistMinimac2State, R_MAX),
        VMSTATE_UINT16_ARRAY(phy_regs, MilkymistMinimac2State, R_PHY_MAX),
        VMSTATE_STRUCT(mdio, MilkymistMinimac2State, 0,
                vmstate_milkymist_minimac2_mdio, MilkymistMinimac2MdioState),
515 516 517 518
        VMSTATE_END_OF_LIST()
    }
};

519 520 521 522 523 524
static SysBusDeviceInfo milkymist_minimac2_info = {
    .init = milkymist_minimac2_init,
    .qdev.name  = "milkymist-minimac2",
    .qdev.size  = sizeof(MilkymistMinimac2State),
    .qdev.vmsd  = &vmstate_milkymist_minimac2,
    .qdev.reset = milkymist_minimac2_reset,
525
    .qdev.props = (Property[]) {
526 527 528 529
        DEFINE_PROP_TADDR("buffers_base", MilkymistMinimac2State,
                buffers_base, 0),
        DEFINE_NIC_PROPERTIES(MilkymistMinimac2State, conf),
        DEFINE_PROP_STRING("phy_model", MilkymistMinimac2State, phy_model),
530 531 532 533
        DEFINE_PROP_END_OF_LIST(),
    }
};

534
static void milkymist_minimac2_register(void)
535
{
536
    sysbus_register_withprop(&milkymist_minimac2_info);
537 538
}

539
device_init(milkymist_minimac2_register)