x86.c 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/*
 * Copyright (C) 2016 Veertu Inc,
 * Copyright (C) 2017 Google Inc,
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 or
 * (at your option) version 3 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"

#include "qemu-common.h"
#include "x86_decode.h"
#include "x86_emu.h"
#include "vmcs.h"
#include "vmx.h"
#include "x86_mmu.h"
#include "x86_descr.h"

/* static uint32_t x86_segment_access_rights(struct x86_segment_descriptor *var)
{
   uint32_t ar;

   if (!var->p) {
       ar = 1 << 16;
       return ar;
   }

   ar = var->type & 15;
   ar |= (var->s & 1) << 4;
   ar |= (var->dpl & 3) << 5;
   ar |= (var->p & 1) << 7;
   ar |= (var->avl & 1) << 12;
   ar |= (var->l & 1) << 13;
   ar |= (var->db & 1) << 14;
   ar |= (var->g & 1) << 15;
   return ar;
}*/

bool x86_read_segment_descriptor(struct CPUState *cpu,
                                 struct x86_segment_descriptor *desc,
                                 x68_segment_selector sel)
{
    addr_t base;
    uint32_t limit;

    ZERO_INIT(*desc);
    /* valid gdt descriptors start from index 1 */
    if (!sel.index && GDT_SEL == sel.ti) {
        return false;
    }

    if (GDT_SEL == sel.ti) {
        base  = rvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE);
        limit = rvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT);
    } else {
        base  = rvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE);
        limit = rvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT);
    }

    if (sel.index * 8 >= limit) {
        return false;
    }

    vmx_read_mem(cpu, desc, base + sel.index * 8, sizeof(*desc));
    return true;
}

bool x86_write_segment_descriptor(struct CPUState *cpu,
                                  struct x86_segment_descriptor *desc,
                                  x68_segment_selector sel)
{
    addr_t base;
    uint32_t limit;
    
    if (GDT_SEL == sel.ti) {
        base  = rvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE);
        limit = rvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT);
    } else {
        base  = rvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE);
        limit = rvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT);
    }
    
    if (sel.index * 8 >= limit) {
        printf("%s: gdt limit\n", __func__);
        return false;
    }
    vmx_write_mem(cpu, base + sel.index * 8, desc, sizeof(*desc));
    return true;
}

bool x86_read_call_gate(struct CPUState *cpu, struct x86_call_gate *idt_desc,
                        int gate)
{
    addr_t base  = rvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_BASE);
    uint32_t limit = rvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_LIMIT);

    ZERO_INIT(*idt_desc);
    if (gate * 8 >= limit) {
        printf("%s: idt limit\n", __func__);
        return false;
    }

    vmx_read_mem(cpu, idt_desc, base + gate * 8, sizeof(*idt_desc));
    return true;
}

bool x86_is_protected(struct CPUState *cpu)
{
    uint64_t cr0 = rvmcs(cpu->hvf_fd, VMCS_GUEST_CR0);
    return cr0 & CR0_PE;
}

bool x86_is_real(struct CPUState *cpu)
{
    return !x86_is_protected(cpu);
}

bool x86_is_v8086(struct CPUState *cpu)
{
    X86CPU *x86_cpu = X86_CPU(cpu);
    CPUX86State *env = &x86_cpu->env;
    return x86_is_protected(cpu) && (RFLAGS(env) & RFLAGS_VM);
}

bool x86_is_long_mode(struct CPUState *cpu)
{
    return rvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER) & EFER_LMA;
}

bool x86_is_long64_mode(struct CPUState *cpu)
{
    struct vmx_segment desc;
    vmx_read_segment_descriptor(cpu, &desc, REG_SEG_CS);

    return x86_is_long_mode(cpu) && ((desc.ar >> 13) & 1);
}

bool x86_is_paging_mode(struct CPUState *cpu)
{
    uint64_t cr0 = rvmcs(cpu->hvf_fd, VMCS_GUEST_CR0);
    return cr0 & CR0_PG;
}

bool x86_is_pae_enabled(struct CPUState *cpu)
{
    uint64_t cr4 = rvmcs(cpu->hvf_fd, VMCS_GUEST_CR4);
    return cr4 & CR4_PAE;
}

addr_t linear_addr(struct CPUState *cpu, addr_t addr, x86_reg_segment seg)
{
    return vmx_read_segment_base(cpu, seg) + addr;
}

addr_t linear_addr_size(struct CPUState *cpu, addr_t addr, int size,
                        x86_reg_segment seg)
{
    switch (size) {
    case 2:
        addr = (uint16_t)addr;
        break;
    case 4:
        addr = (uint32_t)addr;
        break;
    default:
        break;
    }
    return linear_addr(cpu, addr, seg);
}

addr_t linear_rip(struct CPUState *cpu, addr_t rip)
{
    return linear_addr(cpu, rip, REG_SEG_CS);
}