softfloat-specialize.h 28.5 KB
Newer Older
B
bellard 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

/*============================================================================

This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2b.

Written by John R. Hauser.  This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704.  Funding was partially provided by the
National Science Foundation under grant MIP-9311980.  The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
arithmetic/SoftFloat.html'.

THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.

Derivative works are acceptable, even for commercial purposes, so long as
(1) the source code for the derivative work includes prominent notice that
the work is derivative, and (2) the source code includes prominent notice with
these four paragraphs for those parts of this code that are retained.

=============================================================================*/

33
#if defined(TARGET_MIPS) || defined(TARGET_SH4)
T
ths 已提交
34 35 36 37 38
#define SNAN_BIT_IS_ONE		1
#else
#define SNAN_BIT_IS_ONE		0
#endif

B
bellard 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
/*----------------------------------------------------------------------------
| Raises the exceptions specified by `flags'.  Floating-point traps can be
| defined here if desired.  It is currently not possible for such a trap
| to substitute a result value.  If traps are not implemented, this routine
| should be simply `float_exception_flags |= flags;'.
*----------------------------------------------------------------------------*/

void float_raise( int8 flags STATUS_PARAM )
{
    STATUS(float_exception_flags) |= flags;
}

/*----------------------------------------------------------------------------
| Internal canonical NaN format.
*----------------------------------------------------------------------------*/
typedef struct {
    flag sign;
    bits64 high, low;
} commonNaNT;

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
/*----------------------------------------------------------------------------
| The pattern for a default generated half-precision NaN.
*----------------------------------------------------------------------------*/
#if defined(TARGET_ARM)
#define float16_default_nan make_float16(0x7E00)
#elif SNAN_BIT_IS_ONE
#define float16_default_nan make_float16(0x7DFF)
#else
#define float16_default_nan make_float16(0xFE00)
#endif

/*----------------------------------------------------------------------------
| Returns 1 if the half-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

int float16_is_quiet_nan(float16 a_)
{
    uint16_t a = float16_val(a_);
#if SNAN_BIT_IS_ONE
    return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
#else
    return ((a & ~0x8000) >= 0x7c80);
#endif
}

/*----------------------------------------------------------------------------
| Returns 1 if the half-precision floating-point value `a' is a signaling
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

int float16_is_signaling_nan(float16 a_)
{
    uint16_t a = float16_val(a_);
#if SNAN_BIT_IS_ONE
    return ((a & ~0x8000) >= 0x7c80);
#else
    return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
#endif
}

/*----------------------------------------------------------------------------
| Returns a quiet NaN if the half-precision floating point value `a' is a
| signaling NaN; otherwise returns `a'.
*----------------------------------------------------------------------------*/
float16 float16_maybe_silence_nan(float16 a_)
{
    if (float16_is_signaling_nan(a_)) {
#if SNAN_BIT_IS_ONE
#  if defined(TARGET_MIPS) || defined(TARGET_SH4)
        return float16_default_nan;
#  else
#    error Rules for silencing a signaling NaN are target-specific
#  endif
#else
        uint16_t a = float16_val(a_);
        a |= (1 << 9);
        return make_float16(a);
#endif
    }
    return a_;
}

B
bellard 已提交
122 123 124
/*----------------------------------------------------------------------------
| The pattern for a default generated single-precision NaN.
*----------------------------------------------------------------------------*/
125 126
#if defined(TARGET_SPARC)
#define float32_default_nan make_float32(0x7FFFFFFF)
127
#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
128 129
#define float32_default_nan make_float32(0x7FC00000)
#elif SNAN_BIT_IS_ONE
P
pbrook 已提交
130
#define float32_default_nan make_float32(0x7FBFFFFF)
T
ths 已提交
131
#else
P
pbrook 已提交
132
#define float32_default_nan make_float32(0xFFC00000)
T
ths 已提交
133
#endif
B
bellard 已提交
134 135

/*----------------------------------------------------------------------------
T
ths 已提交
136 137
| Returns 1 if the single-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
B
bellard 已提交
138 139
*----------------------------------------------------------------------------*/

140
int float32_is_quiet_nan( float32 a_ )
B
bellard 已提交
141
{
P
pbrook 已提交
142
    uint32_t a = float32_val(a_);
T
ths 已提交
143
#if SNAN_BIT_IS_ONE
T
ths 已提交
144 145 146 147
    return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
#else
    return ( 0xFF800000 <= (bits32) ( a<<1 ) );
#endif
B
bellard 已提交
148 149 150 151 152 153 154
}

/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is a signaling
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

P
pbrook 已提交
155
int float32_is_signaling_nan( float32 a_ )
B
bellard 已提交
156
{
P
pbrook 已提交
157
    uint32_t a = float32_val(a_);
T
ths 已提交
158
#if SNAN_BIT_IS_ONE
T
ths 已提交
159 160
    return ( 0xFF800000 <= (bits32) ( a<<1 ) );
#else
B
bellard 已提交
161
    return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
T
ths 已提交
162
#endif
B
bellard 已提交
163 164
}

165 166 167 168 169 170 171 172 173
/*----------------------------------------------------------------------------
| Returns a quiet NaN if the single-precision floating point value `a' is a
| signaling NaN; otherwise returns `a'.
*----------------------------------------------------------------------------*/

float32 float32_maybe_silence_nan( float32 a_ )
{
    if (float32_is_signaling_nan(a_)) {
#if SNAN_BIT_IS_ONE
174
#  if defined(TARGET_MIPS) || defined(TARGET_SH4)
175 176 177 178
        return float32_default_nan;
#  else
#    error Rules for silencing a signaling NaN are target-specific
#  endif
179
#else
180
        bits32 a = float32_val(a_);
181 182
        a |= (1 << 22);
        return make_float32(a);
183
#endif
184 185 186 187
    }
    return a_;
}

B
bellard 已提交
188 189 190 191 192 193 194 195 196 197 198
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point NaN
| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/

static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM )
{
    commonNaNT z;

    if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
P
pbrook 已提交
199
    z.sign = float32_val(a)>>31;
B
bellard 已提交
200
    z.low = 0;
P
pbrook 已提交
201
    z.high = ( (bits64) float32_val(a) )<<41;
B
bellard 已提交
202 203 204 205 206 207 208 209
    return z;
}

/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the single-
| precision floating-point format.
*----------------------------------------------------------------------------*/

210
static float32 commonNaNToFloat32( commonNaNT a STATUS_PARAM)
B
bellard 已提交
211
{
212
    bits32 mantissa = a.high>>41;
213 214 215 216 217

    if ( STATUS(default_nan_mode) ) {
        return float32_default_nan;
    }

218 219 220 221 222
    if ( mantissa )
        return make_float32(
            ( ( (bits32) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) );
    else
        return float32_default_nan;
B
bellard 已提交
223 224
}

225 226 227 228 229 230 231
/*----------------------------------------------------------------------------
| Select which NaN to propagate for a two-input operation.
| IEEE754 doesn't specify all the details of this, so the
| algorithm is target-specific.
| The routine is passed various bits of information about the
| two NaNs and should return 0 to select NaN a and 1 for NaN b.
| Note that signalling NaNs are always squashed to quiet NaNs
232 233
| by the caller, by calling floatXX_maybe_silence_nan() before
| returning them.
234 235 236 237 238 239 240 241
|
| aIsLargerSignificand is only valid if both a and b are NaNs
| of some kind, and is true if a has the larger significand,
| or if both a and b have the same significand but a is
| positive but b is negative. It is only needed for the x87
| tie-break rule.
*----------------------------------------------------------------------------*/

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
#if defined(TARGET_ARM)
static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
                    flag aIsLargerSignificand)
{
    /* ARM mandated NaN propagation rules: take the first of:
     *  1. A if it is signaling
     *  2. B if it is signaling
     *  3. A (quiet)
     *  4. B (quiet)
     * A signaling NaN is always quietened before returning it.
     */
    if (aIsSNaN) {
        return 0;
    } else if (bIsSNaN) {
        return 1;
    } else if (aIsQNaN) {
        return 0;
    } else {
        return 1;
    }
}
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
#elif defined(TARGET_MIPS)
static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
                    flag aIsLargerSignificand)
{
    /* According to MIPS specifications, if one of the two operands is
     * a sNaN, a new qNaN has to be generated. This is done in
     * floatXX_maybe_silence_nan(). For qNaN inputs the specifications
     * says: "When possible, this QNaN result is one of the operand QNaN
     * values." In practice it seems that most implementations choose
     * the first operand if both operands are qNaN. In short this gives
     * the following rules:
     *  1. A if it is signaling
     *  2. B if it is signaling
     *  3. A (quiet)
     *  4. B (quiet)
     * A signaling NaN is always silenced before returning it.
     */
    if (aIsSNaN) {
        return 0;
    } else if (bIsSNaN) {
        return 1;
    } else if (aIsQNaN) {
        return 0;
    } else {
        return 1;
    }
}
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
#elif defined(TARGET_PPC)
static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
                   flag aIsLargerSignificand)
{
    /* PowerPC propagation rules:
     *  1. A if it sNaN or qNaN
     *  2. B if it sNaN or qNaN
     * A signaling NaN is always silenced before returning it.
     */
    if (aIsSNaN || aIsQNaN) {
        return 0;
    } else {
        return 1;
    }
}
305
#else
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
                    flag aIsLargerSignificand)
{
    /* This implements x87 NaN propagation rules:
     * SNaN + QNaN => return the QNaN
     * two SNaNs => return the one with the larger significand, silenced
     * two QNaNs => return the one with the larger significand
     * SNaN and a non-NaN => return the SNaN, silenced
     * QNaN and a non-NaN => return the QNaN
     *
     * If we get down to comparing significands and they are the same,
     * return the NaN with the positive sign bit (if any).
     */
    if (aIsSNaN) {
        if (bIsSNaN) {
            return aIsLargerSignificand ? 0 : 1;
        }
        return bIsQNaN ? 1 : 0;
    }
    else if (aIsQNaN) {
        if (bIsSNaN || !bIsQNaN)
            return 0;
        else {
            return aIsLargerSignificand ? 0 : 1;
        }
    } else {
        return 1;
    }
}
335
#endif
336

B
bellard 已提交
337 338 339 340 341 342 343 344
/*----------------------------------------------------------------------------
| Takes two single-precision floating-point values `a' and `b', one of which
| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/

static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM)
{
345 346
    flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
    flag aIsLargerSignificand;
347
    bits32 av, bv;
B
bellard 已提交
348

349
    aIsQuietNaN = float32_is_quiet_nan( a );
B
bellard 已提交
350
    aIsSignalingNaN = float32_is_signaling_nan( a );
351
    bIsQuietNaN = float32_is_quiet_nan( b );
B
bellard 已提交
352
    bIsSignalingNaN = float32_is_signaling_nan( b );
P
pbrook 已提交
353 354
    av = float32_val(a);
    bv = float32_val(b);
355

B
bellard 已提交
356
    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
357

A
Aurelien Jarno 已提交
358 359 360
    if ( STATUS(default_nan_mode) )
        return float32_default_nan;

361 362 363 364 365 366
    if ((bits32)(av<<1) < (bits32)(bv<<1)) {
        aIsLargerSignificand = 0;
    } else if ((bits32)(bv<<1) < (bits32)(av<<1)) {
        aIsLargerSignificand = 1;
    } else {
        aIsLargerSignificand = (av < bv) ? 1 : 0;
B
bellard 已提交
367
    }
368

369
    if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
370
                aIsLargerSignificand)) {
371
        return float32_maybe_silence_nan(b);
372
    } else {
373
        return float32_maybe_silence_nan(a);
B
bellard 已提交
374 375 376 377 378 379
    }
}

/*----------------------------------------------------------------------------
| The pattern for a default generated double-precision NaN.
*----------------------------------------------------------------------------*/
380 381
#if defined(TARGET_SPARC)
#define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
382
#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
383 384
#define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
#elif SNAN_BIT_IS_ONE
P
pbrook 已提交
385
#define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
T
ths 已提交
386
#else
P
pbrook 已提交
387
#define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
T
ths 已提交
388
#endif
B
bellard 已提交
389 390

/*----------------------------------------------------------------------------
T
ths 已提交
391 392
| Returns 1 if the double-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
B
bellard 已提交
393 394
*----------------------------------------------------------------------------*/

395
int float64_is_quiet_nan( float64 a_ )
B
bellard 已提交
396
{
P
pbrook 已提交
397
    bits64 a = float64_val(a_);
T
ths 已提交
398
#if SNAN_BIT_IS_ONE
T
ths 已提交
399 400 401 402 403 404
    return
           ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
        && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
#else
    return ( LIT64( 0xFFF0000000000000 ) <= (bits64) ( a<<1 ) );
#endif
B
bellard 已提交
405 406 407 408 409 410 411
}

/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is a signaling
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

P
pbrook 已提交
412
int float64_is_signaling_nan( float64 a_ )
B
bellard 已提交
413
{
P
pbrook 已提交
414
    bits64 a = float64_val(a_);
T
ths 已提交
415
#if SNAN_BIT_IS_ONE
T
ths 已提交
416 417
    return ( LIT64( 0xFFF0000000000000 ) <= (bits64) ( a<<1 ) );
#else
B
bellard 已提交
418 419 420
    return
           ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
        && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
T
ths 已提交
421
#endif
B
bellard 已提交
422 423
}

424 425 426 427 428 429 430 431 432
/*----------------------------------------------------------------------------
| Returns a quiet NaN if the double-precision floating point value `a' is a
| signaling NaN; otherwise returns `a'.
*----------------------------------------------------------------------------*/

float64 float64_maybe_silence_nan( float64 a_ )
{
    if (float64_is_signaling_nan(a_)) {
#if SNAN_BIT_IS_ONE
433
#  if defined(TARGET_MIPS) || defined(TARGET_SH4)
434 435 436 437
        return float64_default_nan;
#  else
#    error Rules for silencing a signaling NaN are target-specific
#  endif
438
#else
439
        bits64 a = float64_val(a_);
440 441
        a |= LIT64( 0x0008000000000000 );
        return make_float64(a);
442
#endif
443 444 445 446
    }
    return a_;
}

B
bellard 已提交
447 448 449 450 451 452 453 454 455 456 457
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point NaN
| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/

static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM)
{
    commonNaNT z;

    if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
P
pbrook 已提交
458
    z.sign = float64_val(a)>>63;
B
bellard 已提交
459
    z.low = 0;
P
pbrook 已提交
460
    z.high = float64_val(a)<<12;
B
bellard 已提交
461 462 463 464 465 466 467 468
    return z;
}

/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the double-
| precision floating-point format.
*----------------------------------------------------------------------------*/

469
static float64 commonNaNToFloat64( commonNaNT a STATUS_PARAM)
B
bellard 已提交
470
{
471 472
    bits64 mantissa = a.high>>12;

473 474 475 476
    if ( STATUS(default_nan_mode) ) {
        return float64_default_nan;
    }

477 478 479 480 481 482 483
    if ( mantissa )
        return make_float64(
              ( ( (bits64) a.sign )<<63 )
            | LIT64( 0x7FF0000000000000 )
            | ( a.high>>12 ));
    else
        return float64_default_nan;
B
bellard 已提交
484 485 486 487 488 489 490 491 492 493
}

/*----------------------------------------------------------------------------
| Takes two double-precision floating-point values `a' and `b', one of which
| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/

static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM)
{
494 495
    flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
    flag aIsLargerSignificand;
496
    bits64 av, bv;
B
bellard 已提交
497

498
    aIsQuietNaN = float64_is_quiet_nan( a );
B
bellard 已提交
499
    aIsSignalingNaN = float64_is_signaling_nan( a );
500
    bIsQuietNaN = float64_is_quiet_nan( b );
B
bellard 已提交
501
    bIsSignalingNaN = float64_is_signaling_nan( b );
P
pbrook 已提交
502 503
    av = float64_val(a);
    bv = float64_val(b);
504

B
bellard 已提交
505
    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
506

A
Aurelien Jarno 已提交
507 508 509
    if ( STATUS(default_nan_mode) )
        return float64_default_nan;

510 511 512 513 514 515
    if ((bits64)(av<<1) < (bits64)(bv<<1)) {
        aIsLargerSignificand = 0;
    } else if ((bits64)(bv<<1) < (bits64)(av<<1)) {
        aIsLargerSignificand = 1;
    } else {
        aIsLargerSignificand = (av < bv) ? 1 : 0;
B
bellard 已提交
516
    }
517

518
    if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
519
                aIsLargerSignificand)) {
520
        return float64_maybe_silence_nan(b);
521
    } else {
522
        return float64_maybe_silence_nan(a);
B
bellard 已提交
523 524 525 526 527 528 529 530 531 532
    }
}

#ifdef FLOATX80

/*----------------------------------------------------------------------------
| The pattern for a default generated extended double-precision NaN.  The
| `high' and `low' values hold the most- and least-significant bits,
| respectively.
*----------------------------------------------------------------------------*/
T
ths 已提交
533 534 535 536
#if SNAN_BIT_IS_ONE
#define floatx80_default_nan_high 0x7FFF
#define floatx80_default_nan_low  LIT64( 0xBFFFFFFFFFFFFFFF )
#else
B
bellard 已提交
537 538
#define floatx80_default_nan_high 0xFFFF
#define floatx80_default_nan_low  LIT64( 0xC000000000000000 )
T
ths 已提交
539
#endif
B
bellard 已提交
540 541 542

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is a
543 544
| quiet NaN; otherwise returns 0. This slightly differs from the same
| function for other types as floatx80 has an explicit bit.
B
bellard 已提交
545 546
*----------------------------------------------------------------------------*/

547
int floatx80_is_quiet_nan( floatx80 a )
B
bellard 已提交
548
{
T
ths 已提交
549 550
#if SNAN_BIT_IS_ONE
    bits64 aLow;
B
bellard 已提交
551

T
ths 已提交
552 553 554 555 556 557
    aLow = a.low & ~ LIT64( 0x4000000000000000 );
    return
           ( ( a.high & 0x7FFF ) == 0x7FFF )
        && (bits64) ( aLow<<1 )
        && ( a.low == aLow );
#else
558 559
    return ( ( a.high & 0x7FFF ) == 0x7FFF )
        && (LIT64( 0x8000000000000000 ) <= ((bits64) ( a.low<<1 )));
T
ths 已提交
560
#endif
B
bellard 已提交
561 562 563 564
}

/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is a
565 566
| signaling NaN; otherwise returns 0. This slightly differs from the same
| function for other types as floatx80 has an explicit bit.
B
bellard 已提交
567 568
*----------------------------------------------------------------------------*/

569
int floatx80_is_signaling_nan( floatx80 a )
B
bellard 已提交
570
{
T
ths 已提交
571
#if SNAN_BIT_IS_ONE
572 573
    return ( ( a.high & 0x7FFF ) == 0x7FFF )
        && (LIT64( 0x8000000000000000 ) <= ((bits64) ( a.low<<1 )));
T
ths 已提交
574
#else
B
bellard 已提交
575 576 577 578 579 580 581
    bits64 aLow;

    aLow = a.low & ~ LIT64( 0x4000000000000000 );
    return
           ( ( a.high & 0x7FFF ) == 0x7FFF )
        && (bits64) ( aLow<<1 )
        && ( a.low == aLow );
T
ths 已提交
582
#endif
B
bellard 已提交
583 584
}

585 586 587 588 589 590 591 592 593
/*----------------------------------------------------------------------------
| Returns a quiet NaN if the extended double-precision floating point value
| `a' is a signaling NaN; otherwise returns `a'.
*----------------------------------------------------------------------------*/

floatx80 floatx80_maybe_silence_nan( floatx80 a )
{
    if (floatx80_is_signaling_nan(a)) {
#if SNAN_BIT_IS_ONE
594
#  if defined(TARGET_MIPS) || defined(TARGET_SH4)
595 596 597 598 599 600 601 602 603 604 605 606 607
        a.low = floatx80_default_nan_low;
        a.high = floatx80_default_nan_high;
#  else
#    error Rules for silencing a signaling NaN are target-specific
#  endif
#else
        a.low |= LIT64( 0xC000000000000000 );
        return a;
#endif
    }
    return a;
}

B
bellard 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620
/*----------------------------------------------------------------------------
| Returns the result of converting the extended double-precision floating-
| point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/

static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM)
{
    commonNaNT z;

    if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
    z.sign = a.high>>15;
    z.low = 0;
621
    z.high = a.low;
B
bellard 已提交
622 623 624 625 626 627 628 629
    return z;
}

/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the extended
| double-precision floating-point format.
*----------------------------------------------------------------------------*/

630
static floatx80 commonNaNToFloatx80( commonNaNT a STATUS_PARAM)
B
bellard 已提交
631 632 633
{
    floatx80 z;

634 635 636 637 638 639
    if ( STATUS(default_nan_mode) ) {
        z.low = floatx80_default_nan_low;
        z.high = floatx80_default_nan_high;
        return z;
    }

640 641 642 643
    if (a.high)
        z.low = a.high;
    else
        z.low = floatx80_default_nan_low;
B
bellard 已提交
644 645 646 647 648 649 650 651 652 653 654 655
    z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
    return z;
}

/*----------------------------------------------------------------------------
| Takes two extended double-precision floating-point values `a' and `b', one
| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
| `b' is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/

static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
{
656 657
    flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
    flag aIsLargerSignificand;
B
bellard 已提交
658

659
    aIsQuietNaN = floatx80_is_quiet_nan( a );
B
bellard 已提交
660
    aIsSignalingNaN = floatx80_is_signaling_nan( a );
661
    bIsQuietNaN = floatx80_is_quiet_nan( b );
B
bellard 已提交
662
    bIsSignalingNaN = floatx80_is_signaling_nan( b );
663

B
bellard 已提交
664
    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
665

A
Aurelien Jarno 已提交
666 667 668 669 670 671
    if ( STATUS(default_nan_mode) ) {
        a.low = floatx80_default_nan_low;
        a.high = floatx80_default_nan_high;
        return a;
    }

672 673 674 675 676 677
    if (a.low < b.low) {
        aIsLargerSignificand = 0;
    } else if (b.low < a.low) {
        aIsLargerSignificand = 1;
    } else {
        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
B
bellard 已提交
678
    }
679

680
    if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
681
                aIsLargerSignificand)) {
682
        return floatx80_maybe_silence_nan(b);
683
    } else {
684
        return floatx80_maybe_silence_nan(a);
B
bellard 已提交
685 686 687 688 689 690 691 692 693 694 695
    }
}

#endif

#ifdef FLOAT128

/*----------------------------------------------------------------------------
| The pattern for a default generated quadruple-precision NaN.  The `high' and
| `low' values hold the most- and least-significant bits, respectively.
*----------------------------------------------------------------------------*/
T
ths 已提交
696 697 698 699
#if SNAN_BIT_IS_ONE
#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
#define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
#else
B
bellard 已提交
700 701
#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
#define float128_default_nan_low  LIT64( 0x0000000000000000 )
T
ths 已提交
702
#endif
B
bellard 已提交
703 704

/*----------------------------------------------------------------------------
T
ths 已提交
705 706
| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
B
bellard 已提交
707 708
*----------------------------------------------------------------------------*/

709
int float128_is_quiet_nan( float128 a )
B
bellard 已提交
710
{
T
ths 已提交
711 712 713 714 715
#if SNAN_BIT_IS_ONE
    return
           ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
        && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
#else
B
bellard 已提交
716 717 718
    return
           ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
        && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
T
ths 已提交
719
#endif
B
bellard 已提交
720 721 722 723 724 725 726
}

/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is a
| signaling NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/

727
int float128_is_signaling_nan( float128 a )
B
bellard 已提交
728
{
T
ths 已提交
729 730 731 732 733
#if SNAN_BIT_IS_ONE
    return
           ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
        && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
#else
B
bellard 已提交
734 735 736
    return
           ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
        && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
T
ths 已提交
737
#endif
B
bellard 已提交
738 739
}

740 741 742 743 744 745 746 747 748
/*----------------------------------------------------------------------------
| Returns a quiet NaN if the quadruple-precision floating point value `a' is
| a signaling NaN; otherwise returns `a'.
*----------------------------------------------------------------------------*/

float128 float128_maybe_silence_nan( float128 a )
{
    if (float128_is_signaling_nan(a)) {
#if SNAN_BIT_IS_ONE
749
#  if defined(TARGET_MIPS) || defined(TARGET_SH4)
750 751 752 753 754 755 756 757 758 759 760 761 762
        a.low = float128_default_nan_low;
        a.high = float128_default_nan_high;
#  else
#    error Rules for silencing a signaling NaN are target-specific
#  endif
#else
        a.high |= LIT64( 0x0000800000000000 );
        return a;
#endif
    }
    return a;
}

B
bellard 已提交
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point NaN
| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/

static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM)
{
    commonNaNT z;

    if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
    z.sign = a.high>>63;
    shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
    return z;
}

/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the quadruple-
| precision floating-point format.
*----------------------------------------------------------------------------*/

784
static float128 commonNaNToFloat128( commonNaNT a STATUS_PARAM)
B
bellard 已提交
785 786 787
{
    float128 z;

788 789 790 791 792 793
    if ( STATUS(default_nan_mode) ) {
        z.low = float128_default_nan_low;
        z.high = float128_default_nan_high;
        return z;
    }

B
bellard 已提交
794
    shift128Right( a.high, a.low, 16, &z.high, &z.low );
795
    z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 );
B
bellard 已提交
796 797 798 799 800 801 802 803 804 805 806
    return z;
}

/*----------------------------------------------------------------------------
| Takes two quadruple-precision floating-point values `a' and `b', one of
| which is a NaN, and returns the appropriate NaN result.  If either `a' or
| `b' is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/

static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM)
{
807 808
    flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
    flag aIsLargerSignificand;
B
bellard 已提交
809

810
    aIsQuietNaN = float128_is_quiet_nan( a );
B
bellard 已提交
811
    aIsSignalingNaN = float128_is_signaling_nan( a );
812
    bIsQuietNaN = float128_is_quiet_nan( b );
B
bellard 已提交
813
    bIsSignalingNaN = float128_is_signaling_nan( b );
814

B
bellard 已提交
815
    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
816

A
Aurelien Jarno 已提交
817 818 819 820 821 822
    if ( STATUS(default_nan_mode) ) {
        a.low = float128_default_nan_low;
        a.high = float128_default_nan_high;
        return a;
    }

823 824 825 826 827 828
    if (lt128(a.high<<1, a.low, b.high<<1, b.low)) {
        aIsLargerSignificand = 0;
    } else if (lt128(b.high<<1, b.low, a.high<<1, a.low)) {
        aIsLargerSignificand = 1;
    } else {
        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
B
bellard 已提交
829
    }
830

831
    if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
832
                aIsLargerSignificand)) {
833
        return float128_maybe_silence_nan(b);
834
    } else {
835
        return float128_maybe_silence_nan(a);
B
bellard 已提交
836 837 838 839
    }
}

#endif