vm86.c 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/*
 *  vm86 linux syscall support
 * 
 *  Copyright (c) 2003 Fabrice Bellard
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>

#include "qemu.h"

//#define DEBUG_VM86

#define set_flags(X,new,mask) \
((X) = ((X) & ~(mask)) | ((new) & (mask)))

#define SAFE_MASK	(0xDD5)
#define RETURN_MASK	(0xDFF)

static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
{
39
    return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1;
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
}

static inline void vm_putw(uint8_t *segptr, unsigned int reg16, unsigned int val)
{
    *(uint16_t *)(segptr + (reg16 & 0xffff)) = tswap16(val);
}

static inline void vm_putl(uint8_t *segptr, unsigned int reg16, unsigned int val)
{
    *(uint32_t *)(segptr + (reg16 & 0xffff)) = tswap32(val);
}

static inline unsigned int vm_getw(uint8_t *segptr, unsigned int reg16)
{
    return tswap16(*(uint16_t *)(segptr + (reg16 & 0xffff)));
}

static inline unsigned int vm_getl(uint8_t *segptr, unsigned int reg16)
{
    return tswap32(*(uint16_t *)(segptr + (reg16 & 0xffff)));
}

void save_v86_state(CPUX86State *env)
{
    TaskState *ts = env->opaque;

    /* put the VM86 registers in the userspace register structure */
    ts->target_v86->regs.eax = tswap32(env->regs[R_EAX]);
    ts->target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
    ts->target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
    ts->target_v86->regs.edx = tswap32(env->regs[R_EDX]);
    ts->target_v86->regs.esi = tswap32(env->regs[R_ESI]);
    ts->target_v86->regs.edi = tswap32(env->regs[R_EDI]);
    ts->target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
    ts->target_v86->regs.esp = tswap32(env->regs[R_ESP]);
    ts->target_v86->regs.eip = tswap32(env->eip);
    ts->target_v86->regs.cs = tswap16(env->segs[R_CS]);
    ts->target_v86->regs.ss = tswap16(env->segs[R_SS]);
    ts->target_v86->regs.ds = tswap16(env->segs[R_DS]);
    ts->target_v86->regs.es = tswap16(env->segs[R_ES]);
    ts->target_v86->regs.fs = tswap16(env->segs[R_FS]);
    ts->target_v86->regs.gs = tswap16(env->segs[R_GS]);
    set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
    ts->target_v86->regs.eflags = tswap32(env->eflags);
#ifdef DEBUG_VM86
    fprintf(logfile, "save_v86_state: eflags=%08x cs:ip=%04x:%04x\n", 
            env->eflags, env->segs[R_CS], env->eip);
#endif

    /* restore 32 bit registers */
    env->regs[R_EAX] = ts->vm86_saved_regs.eax;
    env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
    env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
    env->regs[R_EDX] = ts->vm86_saved_regs.edx;
    env->regs[R_ESI] = ts->vm86_saved_regs.esi;
    env->regs[R_EDI] = ts->vm86_saved_regs.edi;
    env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
    env->regs[R_ESP] = ts->vm86_saved_regs.esp;
    env->eflags = ts->vm86_saved_regs.eflags;
    env->eip = ts->vm86_saved_regs.eip;

    cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
    cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
    cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
    cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
    cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
    cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
}

/* return from vm86 mode to 32 bit. The vm86() syscall will return
   'retval' */
static inline void return_to_32bit(CPUX86State *env, int retval)
{
#ifdef DEBUG_VM86
    fprintf(logfile, "return_to_32bit: ret=0x%x\n", retval);
#endif
    save_v86_state(env);
    env->regs[R_EAX] = retval;
}

static inline int set_IF(CPUX86State *env)
{
    TaskState *ts = env->opaque;
    
    ts->v86flags |= VIF_MASK;
    if (ts->v86flags & VIP_MASK) {
        return_to_32bit(env, TARGET_VM86_STI);
        return 1;
    }
    return 0;
}

static inline void clear_IF(CPUX86State *env)
{
    TaskState *ts = env->opaque;

    ts->v86flags &= ~VIF_MASK;
}

static inline void clear_TF(CPUX86State *env)
{
    env->eflags &= ~TF_MASK;
}

B
bellard 已提交
144 145 146 147 148
static inline void clear_AC(CPUX86State *env)
{
    env->eflags &= ~AC_MASK;
}

149 150 151 152 153 154 155 156
static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
{
    TaskState *ts = env->opaque;

    set_flags(ts->v86flags, eflags, ts->v86mask);
    set_flags(env->eflags, eflags, SAFE_MASK);
    if (eflags & IF_MASK)
        return set_IF(env);
B
bellard 已提交
157 158
    else
        clear_IF(env);
159 160 161 162 163 164 165 166 167 168 169
    return 0;
}

static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
{
    TaskState *ts = env->opaque;

    set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
    set_flags(env->eflags, flags, SAFE_MASK);
    if (flags & IF_MASK)
        return set_IF(env);
B
bellard 已提交
170 171
    else
        clear_IF(env);
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    return 0;
}

static inline unsigned int get_vflags(CPUX86State *env)
{
    TaskState *ts = env->opaque;
    unsigned int flags;

    flags = env->eflags & RETURN_MASK;
    if (ts->v86flags & VIF_MASK)
        flags |= IF_MASK;
    return flags | (ts->v86flags & ts->v86mask);
}

#define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)

/* handle VM86 interrupt (NOTE: the CPU core currently does not
   support TSS interrupt revectoring, so this code is always executed) */
B
bellard 已提交
190
static void do_int(CPUX86State *env, int intno)
191 192 193 194 195 196 197 198
{
    TaskState *ts = env->opaque;
    uint32_t *int_ptr, segoffs;
    uint8_t *ssp;
    unsigned int sp;

    if (env->segs[R_CS] == TARGET_BIOSSEG)
        goto cannot_handle;
199
    if (is_revectored(intno, &ts->vm86plus.int_revectored))
200 201
        goto cannot_handle;
    if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff, 
202
                                       &ts->vm86plus.int21_revectored))
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
        goto cannot_handle;
    int_ptr = (uint32_t *)(intno << 2);
    segoffs = tswap32(*int_ptr);
    if ((segoffs >> 16) == TARGET_BIOSSEG)
        goto cannot_handle;
#if defined(DEBUG_VM86)
    fprintf(logfile, "VM86: emulating int 0x%x. CS:IP=%04x:%04x\n", 
            intno, segoffs >> 16, segoffs & 0xffff);
#endif
    /* save old state */
    ssp = (uint8_t *)(env->segs[R_SS] << 4);
    sp = env->regs[R_ESP] & 0xffff;
    vm_putw(ssp, sp - 2, get_vflags(env));
    vm_putw(ssp, sp - 4, env->segs[R_CS]);
    vm_putw(ssp, sp - 6, env->eip);
    ADD16(env->regs[R_ESP], -6);
    /* goto interrupt handler */
    env->eip = segoffs & 0xffff;
    cpu_x86_load_seg(env, R_CS, segoffs >> 16);
    clear_TF(env);
    clear_IF(env);
B
bellard 已提交
224
    clear_AC(env);
225 226 227 228 229 230 231 232
    return;
 cannot_handle:
#if defined(DEBUG_VM86)
    fprintf(logfile, "VM86: return to 32 bits int 0x%x\n", intno);
#endif
    return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
}

B
bellard 已提交
233 234 235 236 237 238 239 240 241
void handle_vm86_trap(CPUX86State *env, int trapno)
{
    if (trapno == 1 || trapno == 3) {
        return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
    } else {
        do_int(env, trapno);
    }
}

242 243 244 245
#define CHECK_IF_IN_TRAP() \
      if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
          (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \
		newflags |= TF_MASK
246 247

#define VM86_FAULT_RETURN \
248
        if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
249 250 251 252 253 254 255 256
            (ts->v86flags & (IF_MASK | VIF_MASK))) \
            return_to_32bit(env, TARGET_VM86_PICRETURN); \
        return

void handle_vm86_fault(CPUX86State *env)
{
    TaskState *ts = env->opaque;
    uint8_t *csp, *pc, *ssp;
257 258
    unsigned int ip, sp, newflags, newip, newcs, opcode, intno;
    int data32, pref_done;
259 260 261 262 263 264 265 266 267 268 269 270 271

    csp = (uint8_t *)(env->segs[R_CS] << 4);
    ip = env->eip & 0xffff;
    pc = csp + ip;
    
    ssp = (uint8_t *)(env->segs[R_SS] << 4);
    sp = env->regs[R_ESP] & 0xffff;

#if defined(DEBUG_VM86)
    fprintf(logfile, "VM86 exception %04x:%08x %02x %02x\n",
            env->segs[R_CS], env->eip, pc[0], pc[1]);
#endif

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    data32 = 0;
    pref_done = 0;
    do {
        opcode = csp[ip];
        ADD16(ip, 1);
        switch (opcode) {
        case 0x66:      /* 32-bit data */     data32=1; break;
        case 0x67:      /* 32-bit address */  break;
        case 0x2e:      /* CS */              break;
        case 0x3e:      /* DS */              break;
        case 0x26:      /* ES */              break;
        case 0x36:      /* SS */              break;
        case 0x65:      /* GS */              break;
        case 0x64:      /* FS */              break;
        case 0xf2:      /* repnz */	      break;
        case 0xf3:      /* rep */             break;
        default: pref_done = 1;
        }
    } while (!pref_done);

292
    /* VM86 mode */
293 294 295 296
    switch(opcode) {
    case 0x9c: /* pushf */
        ADD16(env->eip, 2);
        if (data32) {
297
            vm_putl(ssp, sp - 4, get_vflags(env));
298 299 300 301 302 303 304
            ADD16(env->regs[R_ESP], -4);
        } else {
            vm_putw(ssp, sp - 2, get_vflags(env));
            ADD16(env->regs[R_ESP], -2);
        }
        env->eip = ip;
        VM86_FAULT_RETURN;
305

306 307 308
    case 0x9d: /* popf */
        if (data32) {
            newflags = vm_getl(ssp, sp);
309
            ADD16(env->regs[R_ESP], 4);
310 311 312 313 314 315 316 317
        } else {
            newflags = vm_getw(ssp, sp);
            ADD16(env->regs[R_ESP], 2);
        }
        env->eip = ip;
        CHECK_IF_IN_TRAP();
        if (data32) {
            if (set_vflags_long(newflags, env))
318
                return;
319 320
        } else {
            if (set_vflags_short(newflags, env))
321 322 323 324 325
                return;
        }
        VM86_FAULT_RETURN;

    case 0xcd: /* int */
326 327 328 329 330 331 332 333 334 335 336
        intno = csp[ip];
        ADD16(ip, 1);
        env->eip = ip;
        if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) {
            if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >> 
                  (intno &7)) & 1) {
                return_to_32bit(env, TARGET_VM86_INTx + (intno << 8));
                return;
            }
        }
        do_int(env, intno);
337 338 339
        break;

    case 0xcf: /* iret */
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        if (data32) {
            newip = vm_getl(ssp, sp) & 0xffff;
            newcs = vm_getl(ssp, sp + 4) & 0xffff;
            newflags = vm_getl(ssp, sp + 8);
            ADD16(env->regs[R_ESP], 12);
        } else {
            newip = vm_getw(ssp, sp);
            newcs = vm_getw(ssp, sp + 2);
            newflags = vm_getw(ssp, sp + 4);
            ADD16(env->regs[R_ESP], 6);
        }
        env->eip = newip;
        cpu_x86_load_seg(env, R_CS, newcs);
        CHECK_IF_IN_TRAP();
        if (data32) {
            if (set_vflags_long(newflags, env))
                return;
        } else {
            if (set_vflags_short(newflags, env))
                return;
        }
361
        VM86_FAULT_RETURN;
362
        
363
    case 0xfa: /* cli */
364
        env->eip = ip;
365 366 367 368
        clear_IF(env);
        VM86_FAULT_RETURN;
        
    case 0xfb: /* sti */
369
        env->eip = ip;
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
        if (set_IF(env))
            return;
        VM86_FAULT_RETURN;

    default:
        /* real VM86 GPF exception */
        return_to_32bit(env, TARGET_VM86_UNKNOWN);
        break;
    }
}

int do_vm86(CPUX86State *env, long subfunction, 
            struct target_vm86plus_struct * target_v86)
{
    TaskState *ts = env->opaque;
    int ret;
    
    switch (subfunction) {
    case TARGET_VM86_REQUEST_IRQ:
    case TARGET_VM86_FREE_IRQ:
    case TARGET_VM86_GET_IRQ_BITS:
    case TARGET_VM86_GET_AND_RESET_IRQ:
        gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction);
        ret = -EINVAL;
        goto out;
    case TARGET_VM86_PLUS_INSTALL_CHECK:
        /* NOTE: on old vm86 stuff this will return the error
           from verify_area(), because the subfunction is
           interpreted as (invalid) address to vm86_struct.
           So the installation check works.
            */
        ret = 0;
        goto out;
    }

    ts->target_v86 = target_v86;
    /* save current CPU regs */
    ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
    ts->vm86_saved_regs.ebx = env->regs[R_EBX];
    ts->vm86_saved_regs.ecx = env->regs[R_ECX];
    ts->vm86_saved_regs.edx = env->regs[R_EDX];
    ts->vm86_saved_regs.esi = env->regs[R_ESI];
    ts->vm86_saved_regs.edi = env->regs[R_EDI];
    ts->vm86_saved_regs.ebp = env->regs[R_EBP];
    ts->vm86_saved_regs.esp = env->regs[R_ESP];
    ts->vm86_saved_regs.eflags = env->eflags;
    ts->vm86_saved_regs.eip  = env->eip;
    ts->vm86_saved_regs.cs = env->segs[R_CS];
    ts->vm86_saved_regs.ss = env->segs[R_SS];
    ts->vm86_saved_regs.ds = env->segs[R_DS];
    ts->vm86_saved_regs.es = env->segs[R_ES];
    ts->vm86_saved_regs.fs = env->segs[R_FS];
    ts->vm86_saved_regs.gs = env->segs[R_GS];

    /* build vm86 CPU state */
    ts->v86flags = tswap32(target_v86->regs.eflags);
    env->eflags = (env->eflags & ~SAFE_MASK) | 
        (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443

    ts->vm86plus.cpu_type = tswapl(target_v86->cpu_type);
    switch (ts->vm86plus.cpu_type) {
    case TARGET_CPU_286:
        ts->v86mask = 0;
        break;
    case TARGET_CPU_386:
        ts->v86mask = NT_MASK | IOPL_MASK;
        break;
    case TARGET_CPU_486:
        ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK;
        break;
    default:
        ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
        break;
    }
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

    env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
    env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
    env->regs[R_EDX] = tswap32(target_v86->regs.edx);
    env->regs[R_ESI] = tswap32(target_v86->regs.esi);
    env->regs[R_EDI] = tswap32(target_v86->regs.edi);
    env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
    env->regs[R_ESP] = tswap32(target_v86->regs.esp);
    env->eip = tswap32(target_v86->regs.eip);
    cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
    cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
    cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
    cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
    cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
    cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
    ret = tswap32(target_v86->regs.eax); /* eax will be restored at
                                            the end of the syscall */
461 462 463 464 465 466 467 468
    memcpy(&ts->vm86plus.int_revectored, 
           &target_v86->int_revectored, 32);
    memcpy(&ts->vm86plus.int21_revectored, 
           &target_v86->int21_revectored, 32);
    ts->vm86plus.vm86plus.flags = tswapl(target_v86->vm86plus.flags);
    memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab, 
           target_v86->vm86plus.vm86dbg_intxxtab, 32);
    
469 470 471 472 473 474 475 476
#ifdef DEBUG_VM86
    fprintf(logfile, "do_vm86: cs:ip=%04x:%04x\n", env->segs[R_CS], env->eip);
#endif
    /* now the virtual CPU is ready for vm86 execution ! */
 out:
    return ret;
}