linuxboot_dma.c 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
/*
 * Linux Boot Option ROM for fw_cfg DMA
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 *
 * Copyright (c) 2015-2016 Red Hat Inc.
 *   Authors:
 *     Marc Marí <marc.mari.barcelo@gmail.com>
 *     Richard W.M. Jones <rjones@redhat.com>
 */

asm(
".text\n"
".global _start\n"
"_start:\n"
"   .short 0xaa55\n"
"   .byte 0\n" /* size in 512 units, filled in by signrom.py */
"   .byte 0xcb\n" /* far return without prefix */
"   .org 0x18\n"
"   .short 0\n"
"   .short _pnph\n"
"_pnph:\n"
"   .ascii \"$PnP\"\n"
"   .byte 0x01\n"
"   .byte (_pnph_len / 16)\n"
"   .short 0x0000\n"
"   .byte 0x00\n"
"   .byte 0x00\n"
"   .long 0x00000000\n"
"   .short _manufacturer\n"
"   .short _product\n"
"   .long 0x00000000\n"
"   .short 0x0000\n"
"   .short 0x0000\n"
"   .short _bev\n"
"   .short 0x0000\n"
"   .short 0x0000\n"
"   .equ _pnph_len, . - _pnph\n"
"_manufacturer:\n"
"   .asciz \"QEMU\"\n"
"_product:\n"
"   .asciz \"Linux loader DMA\"\n"
"   .align 4, 0\n"
"_bev:\n"
"   cli\n"
"   cld\n"
"   jmp load_kernel\n"
);

#include "../../include/hw/nvram/fw_cfg_keys.h"

/* QEMU_CFG_DMA_CONTROL bits */
#define BIOS_CFG_DMA_CTL_ERROR   0x01
#define BIOS_CFG_DMA_CTL_READ    0x02
#define BIOS_CFG_DMA_CTL_SKIP    0x04
#define BIOS_CFG_DMA_CTL_SELECT  0x08

#define BIOS_CFG_DMA_ADDR_HIGH 0x514
#define BIOS_CFG_DMA_ADDR_LOW  0x518

#define uint64_t unsigned long long
#define uint32_t unsigned int
#define uint16_t unsigned short

#define barrier() asm("" : : : "memory")

typedef struct FWCfgDmaAccess {
    uint32_t control;
    uint32_t length;
    uint64_t address;
} __attribute__((packed)) FWCfgDmaAccess;

static inline void outl(uint32_t value, uint16_t port)
{
    asm("outl %0, %w1" : : "a"(value), "Nd"(port));
}

static inline void set_es(void *addr)
{
    uint32_t seg = (uint32_t)addr >> 4;
    asm("movl %0, %%es" : : "r"(seg));
}

#ifdef __clang__
#define ADDR32
#else
#define ADDR32 "addr32 "
#endif

static inline uint16_t readw_es(uint16_t offset)
{
    uint16_t val;
    asm(ADDR32 "movw %%es:(%1), %0" : "=r"(val) : "r"((uint32_t)offset));
    barrier();
    return val;
}

static inline uint32_t readl_es(uint16_t offset)
{
    uint32_t val;
    asm(ADDR32 "movl %%es:(%1), %0" : "=r"(val) : "r"((uint32_t)offset));
    barrier();
    return val;
}

static inline void writel_es(uint16_t offset, uint32_t val)
{
    barrier();
    asm(ADDR32 "movl %0, %%es:(%1)" : : "r"(val), "r"((uint32_t)offset));
}

static inline uint32_t bswap32(uint32_t x)
{
    return
        ((x & 0x000000ffU) << 24) |
        ((x & 0x0000ff00U) <<  8) |
        ((x & 0x00ff0000U) >>  8) |
        ((x & 0xff000000U) >> 24);
}

static inline uint64_t bswap64(uint64_t x)
{
    return
        ((x & 0x00000000000000ffULL) << 56) |
        ((x & 0x000000000000ff00ULL) << 40) |
        ((x & 0x0000000000ff0000ULL) << 24) |
        ((x & 0x00000000ff000000ULL) <<  8) |
        ((x & 0x000000ff00000000ULL) >>  8) |
        ((x & 0x0000ff0000000000ULL) >> 24) |
        ((x & 0x00ff000000000000ULL) >> 40) |
        ((x & 0xff00000000000000ULL) >> 56);
}

static inline uint64_t cpu_to_be64(uint64_t x)
{
    return bswap64(x);
}

static inline uint32_t cpu_to_be32(uint32_t x)
{
    return bswap32(x);
}

static inline uint32_t be32_to_cpu(uint32_t x)
{
    return bswap32(x);
}

static void bios_cfg_read_entry(void *buf, uint16_t entry, uint32_t len)
{
    FWCfgDmaAccess access;
    uint32_t control = (entry << 16) | BIOS_CFG_DMA_CTL_SELECT
                        | BIOS_CFG_DMA_CTL_READ;

    access.address = cpu_to_be64((uint64_t)(uint32_t)buf);
    access.length = cpu_to_be32(len);
    access.control = cpu_to_be32(control);

    barrier();

    outl(cpu_to_be32((uint32_t)&access), BIOS_CFG_DMA_ADDR_LOW);

    while (be32_to_cpu(access.control) & ~BIOS_CFG_DMA_CTL_ERROR) {
        barrier();
    }
}

/* Return top of memory using BIOS function E801. */
static uint32_t get_e801_addr(void)
{
    uint16_t ax, bx, cx, dx;
    uint32_t ret;

    asm("int $0x15\n"
        : "=a"(ax), "=b"(bx), "=c"(cx), "=d"(dx)
        : "a"(0xe801), "b"(0), "c"(0), "d"(0));

    /* Not SeaBIOS, but in theory a BIOS could return CX=DX=0 in which
     * case we need to use the result from AX & BX instead.
     */
    if (cx == 0 && dx == 0) {
        cx = ax;
        dx = bx;
    }

    if (dx) {
        /* DX = extended memory above 16M, in 64K units.
         * Convert it to bytes and return.
         */
        ret = ((uint32_t)dx + 256 /* 16M in 64K units */) << 16;
    } else {
        /* This is a fallback path for machines with <= 16MB of RAM,
         * which probably would never be the case, but deal with it
         * anyway.
         *
         * CX = extended memory between 1M and 16M, in kilobytes
         * Convert it to bytes and return.
         */
        ret = ((uint32_t)cx + 1024 /* 1M in K */) << 10;
    }

    return ret;
}

/* Force the asm name without leading underscore, even on Win32. */
extern void load_kernel(void) asm("load_kernel");

void load_kernel(void)
{
    void *setup_addr;
    void *initrd_addr;
    void *kernel_addr;
    void *cmdline_addr;
    uint32_t setup_size;
    uint32_t initrd_size;
    uint32_t kernel_size;
    uint32_t cmdline_size;
    uint32_t initrd_end_page, max_allowed_page;
    uint32_t segment_addr, stack_addr;

    bios_cfg_read_entry(&setup_addr, FW_CFG_SETUP_ADDR, 4);
    bios_cfg_read_entry(&setup_size, FW_CFG_SETUP_SIZE, 4);
    bios_cfg_read_entry(setup_addr, FW_CFG_SETUP_DATA, setup_size);

    set_es(setup_addr);

    /* For protocol < 0x203 we don't have initrd_max ... */
    if (readw_es(0x206) < 0x203) {
        /* ... so we assume initrd_max = 0x37ffffff. */
        writel_es(0x22c, 0x37ffffff);
    }

    bios_cfg_read_entry(&initrd_addr, FW_CFG_INITRD_ADDR, 4);
    bios_cfg_read_entry(&initrd_size, FW_CFG_INITRD_SIZE, 4);

    initrd_end_page = ((uint32_t)(initrd_addr + initrd_size) & -4096);
    max_allowed_page = (readl_es(0x22c) & -4096);

    if (initrd_end_page != 0 && max_allowed_page != 0 &&
        initrd_end_page != max_allowed_page) {
        /* Initrd at the end of memory. Compute better initrd address
         * based on e801 data
         */
        initrd_addr = (void *)((get_e801_addr() - initrd_size) & -4096);
        writel_es(0x218, (uint32_t)initrd_addr);

    }

    bios_cfg_read_entry(initrd_addr, FW_CFG_INITRD_DATA, initrd_size);

    bios_cfg_read_entry(&kernel_addr, FW_CFG_KERNEL_ADDR, 4);
    bios_cfg_read_entry(&kernel_size, FW_CFG_KERNEL_SIZE, 4);
    bios_cfg_read_entry(kernel_addr, FW_CFG_KERNEL_DATA, kernel_size);

    bios_cfg_read_entry(&cmdline_addr, FW_CFG_CMDLINE_ADDR, 4);
    bios_cfg_read_entry(&cmdline_size, FW_CFG_CMDLINE_SIZE, 4);
    bios_cfg_read_entry(cmdline_addr, FW_CFG_CMDLINE_DATA, cmdline_size);

    /* Boot linux */
    segment_addr = ((uint32_t)setup_addr >> 4);
    stack_addr = (uint32_t)(cmdline_addr - setup_addr - 16);

    /* As we are changing critical registers, we cannot leave freedom to the
     * compiler.
     */
    asm("movw %%ax, %%ds\n"
        "movw %%ax, %%es\n"
        "movw %%ax, %%fs\n"
        "movw %%ax, %%gs\n"
        "movw %%ax, %%ss\n"
        "movl %%ebx, %%esp\n"
        "addw $0x20, %%ax\n"
        "pushw %%ax\n" /* CS */
        "pushw $0\n" /* IP */
        /* Clear registers and jump to Linux */
        "xor %%ebx, %%ebx\n"
        "xor %%ecx, %%ecx\n"
        "xor %%edx, %%edx\n"
        "xor %%edi, %%edi\n"
        "xor %%ebp, %%ebp\n"
        "lretw\n"
        : : "a"(segment_addr), "b"(stack_addr));
}