kvm.c 17.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * ARM implementation of KVM hooks
 *
 * Copyright Christoffer Dall 2009-2010
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

P
Peter Maydell 已提交
11
#include "qemu/osdep.h"
12 13 14 15 16 17
#include <sys/ioctl.h>

#include <linux/kvm.h>

#include "qemu-common.h"
#include "qemu/timer.h"
18
#include "qemu/error-report.h"
19 20
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
21
#include "kvm_arm.h"
22
#include "cpu.h"
23
#include "internals.h"
24
#include "hw/arm/arm.h"
25
#include "exec/memattrs.h"
26
#include "exec/address-spaces.h"
27
#include "hw/boards.h"
28
#include "qemu/log.h"
29 30 31 32 33

const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
    KVM_CAP_LAST_INFO
};

34 35
static bool cap_has_mp_state;

36 37 38 39 40 41 42 43 44 45 46
int kvm_arm_vcpu_init(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    struct kvm_vcpu_init init;

    init.target = cpu->kvm_target;
    memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));

    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
}

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
                                      int *fdarray,
                                      struct kvm_vcpu_init *init)
{
    int ret, kvmfd = -1, vmfd = -1, cpufd = -1;

    kvmfd = qemu_open("/dev/kvm", O_RDWR);
    if (kvmfd < 0) {
        goto err;
    }
    vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
    if (vmfd < 0) {
        goto err;
    }
    cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
    if (cpufd < 0) {
        goto err;
    }

66 67 68 69 70
    if (!init) {
        /* Caller doesn't want the VCPU to be initialized, so skip it */
        goto finish;
    }

71 72 73 74 75 76
    ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
    if (ret >= 0) {
        ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
        if (ret < 0) {
            goto err;
        }
77
    } else if (cpus_to_try) {
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
        /* Old kernel which doesn't know about the
         * PREFERRED_TARGET ioctl: we know it will only support
         * creating one kind of guest CPU which is its preferred
         * CPU type.
         */
        while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
            init->target = *cpus_to_try++;
            memset(init->features, 0, sizeof(init->features));
            ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
            if (ret >= 0) {
                break;
            }
        }
        if (ret < 0) {
            goto err;
        }
94 95 96 97 98 99
    } else {
        /* Treat a NULL cpus_to_try argument the same as an empty
         * list, which means we will fail the call since this must
         * be an old kernel which doesn't support PREFERRED_TARGET.
         */
        goto err;
100 101
    }

102
finish:
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    fdarray[0] = kvmfd;
    fdarray[1] = vmfd;
    fdarray[2] = cpufd;

    return true;

err:
    if (cpufd >= 0) {
        close(cpufd);
    }
    if (vmfd >= 0) {
        close(vmfd);
    }
    if (kvmfd >= 0) {
        close(kvmfd);
    }

    return false;
}

void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
{
    int i;

    for (i = 2; i >= 0; i--) {
        close(fdarray[i]);
    }
}

static void kvm_arm_host_cpu_class_init(ObjectClass *oc, void *data)
{
    ARMHostCPUClass *ahcc = ARM_HOST_CPU_CLASS(oc);

    /* All we really need to set up for the 'host' CPU
     * is the feature bits -- we rely on the fact that the
     * various ID register values in ARMCPU are only used for
     * TCG CPUs.
     */
    if (!kvm_arm_get_host_cpu_features(ahcc)) {
        fprintf(stderr, "Failed to retrieve host CPU features!\n");
        abort();
    }
}

static void kvm_arm_host_cpu_initfn(Object *obj)
{
    ARMHostCPUClass *ahcc = ARM_HOST_CPU_GET_CLASS(obj);
    ARMCPU *cpu = ARM_CPU(obj);
    CPUARMState *env = &cpu->env;

    cpu->kvm_target = ahcc->target;
    cpu->dtb_compatible = ahcc->dtb_compatible;
    env->features = ahcc->features;
}

static const TypeInfo host_arm_cpu_type_info = {
    .name = TYPE_ARM_HOST_CPU,
160 161 162
#ifdef TARGET_AARCH64
    .parent = TYPE_AARCH64_CPU,
#else
163
    .parent = TYPE_ARM_CPU,
164
#endif
165 166 167 168 169
    .instance_init = kvm_arm_host_cpu_initfn,
    .class_init = kvm_arm_host_cpu_class_init,
    .class_size = sizeof(ARMHostCPUClass),
};

170
int kvm_arch_init(MachineState *ms, KVMState *s)
171 172 173 174 175
{
    /* For ARM interrupt delivery is always asynchronous,
     * whether we are using an in-kernel VGIC or not.
     */
    kvm_async_interrupts_allowed = true;
176

177 178 179 180 181 182
    /*
     * PSCI wakes up secondary cores, so we always need to
     * have vCPUs waiting in kernel space
     */
    kvm_halt_in_kernel_allowed = true;

183 184
    cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);

185 186
    type_register_static(&host_arm_cpu_type_info);

187 188 189 190 191 192 193 194
    return 0;
}

unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
    return cpu->cpu_index;
}

195 196 197 198 199 200 201 202 203 204
/* We track all the KVM devices which need their memory addresses
 * passing to the kernel in a list of these structures.
 * When board init is complete we run through the list and
 * tell the kernel the base addresses of the memory regions.
 * We use a MemoryListener to track mapping and unmapping of
 * the regions during board creation, so the board models don't
 * need to do anything special for the KVM case.
 */
typedef struct KVMDevice {
    struct kvm_arm_device_addr kda;
205
    struct kvm_device_attr kdattr;
206 207
    MemoryRegion *mr;
    QSLIST_ENTRY(KVMDevice) entries;
208
    int dev_fd;
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
} KVMDevice;

static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;

static void kvm_arm_devlistener_add(MemoryListener *listener,
                                    MemoryRegionSection *section)
{
    KVMDevice *kd;

    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
        if (section->mr == kd->mr) {
            kd->kda.addr = section->offset_within_address_space;
        }
    }
}

static void kvm_arm_devlistener_del(MemoryListener *listener,
                                    MemoryRegionSection *section)
{
    KVMDevice *kd;

    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
        if (section->mr == kd->mr) {
            kd->kda.addr = -1;
        }
    }
}

static MemoryListener devlistener = {
    .region_add = kvm_arm_devlistener_add,
    .region_del = kvm_arm_devlistener_del,
};

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
static void kvm_arm_set_device_addr(KVMDevice *kd)
{
    struct kvm_device_attr *attr = &kd->kdattr;
    int ret;

    /* If the device control API is available and we have a device fd on the
     * KVMDevice struct, let's use the newer API
     */
    if (kd->dev_fd >= 0) {
        uint64_t addr = kd->kda.addr;
        attr->addr = (uintptr_t)&addr;
        ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
    } else {
        ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
    }

    if (ret < 0) {
        fprintf(stderr, "Failed to set device address: %s\n",
                strerror(-ret));
        abort();
    }
}

265 266 267 268 269 270 271
static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
{
    KVMDevice *kd, *tkd;

    memory_listener_unregister(&devlistener);
    QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
        if (kd->kda.addr != -1) {
272
            kvm_arm_set_device_addr(kd);
273
        }
P
Paolo Bonzini 已提交
274
        memory_region_unref(kd->mr);
275 276 277 278 279 280 281 282
        g_free(kd);
    }
}

static Notifier notify = {
    .notify = kvm_arm_machine_init_done,
};

283 284
void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
                             uint64_t attr, int dev_fd)
285 286 287 288 289 290 291 292
{
    KVMDevice *kd;

    if (!kvm_irqchip_in_kernel()) {
        return;
    }

    if (QSLIST_EMPTY(&kvm_devices_head)) {
293
        memory_listener_register(&devlistener, &address_space_memory);
294 295 296 297 298 299
        qemu_add_machine_init_done_notifier(&notify);
    }
    kd = g_new0(KVMDevice, 1);
    kd->mr = mr;
    kd->kda.id = devid;
    kd->kda.addr = -1;
300 301 302 303
    kd->kdattr.flags = 0;
    kd->kdattr.group = group;
    kd->kdattr.attr = attr;
    kd->dev_fd = dev_fd;
304
    QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
P
Paolo Bonzini 已提交
305
    memory_region_ref(kd->mr);
306 307
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
static int compare_u64(const void *a, const void *b)
{
    if (*(uint64_t *)a > *(uint64_t *)b) {
        return 1;
    }
    if (*(uint64_t *)a < *(uint64_t *)b) {
        return -1;
    }
    return 0;
}

/* Initialize the CPUState's cpreg list according to the kernel's
 * definition of what CPU registers it knows about (and throw away
 * the previous TCG-created cpreg list).
 */
int kvm_arm_init_cpreg_list(ARMCPU *cpu)
{
    struct kvm_reg_list rl;
    struct kvm_reg_list *rlp;
    int i, ret, arraylen;
    CPUState *cs = CPU(cpu);

    rl.n = 0;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
    if (ret != -E2BIG) {
        return ret;
    }
    rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
    rlp->n = rl.n;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
    if (ret) {
        goto out;
    }
    /* Sort the list we get back from the kernel, since cpreg_tuples
     * must be in strictly ascending order.
     */
    qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);

    for (i = 0, arraylen = 0; i < rlp->n; i++) {
        if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
            continue;
        }
        switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
        case KVM_REG_SIZE_U32:
        case KVM_REG_SIZE_U64:
            break;
        default:
            fprintf(stderr, "Can't handle size of register in kernel list\n");
            ret = -EINVAL;
            goto out;
        }

        arraylen++;
    }

    cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
    cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
    cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
                                         arraylen);
    cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
                                        arraylen);
    cpu->cpreg_array_len = arraylen;
    cpu->cpreg_vmstate_array_len = arraylen;

    for (i = 0, arraylen = 0; i < rlp->n; i++) {
        uint64_t regidx = rlp->reg[i];
        if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
            continue;
        }
        cpu->cpreg_indexes[arraylen] = regidx;
        arraylen++;
    }
    assert(cpu->cpreg_array_len == arraylen);

    if (!write_kvmstate_to_list(cpu)) {
        /* Shouldn't happen unless kernel is inconsistent about
         * what registers exist.
         */
        fprintf(stderr, "Initial read of kernel register state failed\n");
        ret = -EINVAL;
        goto out;
    }

out:
    g_free(rlp);
    return ret;
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
bool write_kvmstate_to_list(ARMCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        struct kvm_one_reg r;
        uint64_t regidx = cpu->cpreg_indexes[i];
        uint32_t v32;
        int ret;

        r.id = regidx;

        switch (regidx & KVM_REG_SIZE_MASK) {
        case KVM_REG_SIZE_U32:
            r.addr = (uintptr_t)&v32;
            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
            if (!ret) {
                cpu->cpreg_values[i] = v32;
            }
            break;
        case KVM_REG_SIZE_U64:
            r.addr = (uintptr_t)(cpu->cpreg_values + i);
            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
            break;
        default:
            abort();
        }
        if (ret) {
            ok = false;
        }
    }
    return ok;
}

432
bool write_list_to_kvmstate(ARMCPU *cpu, int level)
433 434 435 436 437 438 439 440 441 442 443
{
    CPUState *cs = CPU(cpu);
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        struct kvm_one_reg r;
        uint64_t regidx = cpu->cpreg_indexes[i];
        uint32_t v32;
        int ret;

444 445 446 447
        if (kvm_arm_cpreg_level(regidx) > level) {
            continue;
        }

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
        r.id = regidx;
        switch (regidx & KVM_REG_SIZE_MASK) {
        case KVM_REG_SIZE_U32:
            v32 = cpu->cpreg_values[i];
            r.addr = (uintptr_t)&v32;
            break;
        case KVM_REG_SIZE_U64:
            r.addr = (uintptr_t)(cpu->cpreg_values + i);
            break;
        default:
            abort();
        }
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
        if (ret) {
            /* We might fail for "unknown register" and also for
             * "you tried to set a register which is constant with
             * a different value from what it actually contains".
             */
            ok = false;
        }
    }
    return ok;
}

472 473
void kvm_arm_reset_vcpu(ARMCPU *cpu)
{
474 475
    int ret;

476 477 478
    /* Re-init VCPU so that all registers are set to
     * their respective reset values.
     */
479 480 481 482 483 484 485 486 487
    ret = kvm_arm_vcpu_init(CPU(cpu));
    if (ret < 0) {
        fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
        abort();
    }
    if (!write_kvmstate_to_list(cpu)) {
        fprintf(stderr, "write_kvmstate_to_list failed\n");
        abort();
    }
488 489
}

490 491 492 493 494 495 496
/*
 * Update KVM's MP_STATE based on what QEMU thinks it is
 */
int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
{
    if (cap_has_mp_state) {
        struct kvm_mp_state mp_state = {
497 498
            .mp_state = (cpu->power_state == PSCI_OFF) ?
            KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
        };
        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
        if (ret) {
            fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
                    __func__, ret, strerror(-ret));
            return -1;
        }
    }

    return 0;
}

/*
 * Sync the KVM MP_STATE into QEMU
 */
int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
{
    if (cap_has_mp_state) {
        struct kvm_mp_state mp_state;
        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
        if (ret) {
            fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
                    __func__, ret, strerror(-ret));
            abort();
        }
524 525
        cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
            PSCI_OFF : PSCI_ON;
526 527 528 529 530
    }

    return 0;
}

531 532 533 534
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
{
}

535
MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
536
{
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
    ARMCPU *cpu;
    uint32_t switched_level;

    if (kvm_irqchip_in_kernel()) {
        /*
         * We only need to sync timer states with user-space interrupt
         * controllers, so return early and save cycles if we don't.
         */
        return MEMTXATTRS_UNSPECIFIED;
    }

    cpu = ARM_CPU(cs);

    /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
    if (run->s.regs.device_irq_level != cpu->device_irq_level) {
        switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;

        qemu_mutex_lock_iothread();

        if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
                         !!(run->s.regs.device_irq_level &
                            KVM_ARM_DEV_EL1_VTIMER));
            switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
        }

        if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
                         !!(run->s.regs.device_irq_level &
                            KVM_ARM_DEV_EL1_PTIMER));
            switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
        }

570 571 572 573 574
        if (switched_level & KVM_ARM_DEV_PMU) {
            qemu_set_irq(cpu->pmu_interrupt,
                         !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
            switched_level &= ~KVM_ARM_DEV_PMU;
        }
575 576 577 578 579 580 581 582 583 584 585

        if (switched_level) {
            qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
                          __func__, switched_level);
        }

        /* We also mark unknown levels as processed to not waste cycles */
        cpu->device_irq_level = run->s.regs.device_irq_level;
        qemu_mutex_unlock_iothread();
    }

586
    return MEMTXATTRS_UNSPECIFIED;
587 588
}

589

590 591
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
592 593 594 595 596 597 598 599 600 601 602 603 604 605
    int ret = 0;

    switch (run->exit_reason) {
    case KVM_EXIT_DEBUG:
        if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
            ret = EXCP_DEBUG;
        } /* otherwise return to guest */
        break;
    default:
        qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
                      __func__, run->exit_reason);
        break;
    }
    return ret;
606 607 608 609 610 611 612 613 614 615 616 617
}

bool kvm_arch_stop_on_emulation_error(CPUState *cs)
{
    return true;
}

int kvm_arch_process_async_events(CPUState *cs)
{
    return 0;
}

618 619 620
/* The #ifdef protections are until 32bit headers are imported and can
 * be removed once both 32 and 64 bit reach feature parity.
 */
621 622
void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
{
623 624 625 626 627
#ifdef KVM_GUESTDBG_USE_SW_BP
    if (kvm_sw_breakpoints_active(cs)) {
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
    }
#endif
628 629 630 631 632 633
#ifdef KVM_GUESTDBG_USE_HW
    if (kvm_arm_hw_debug_active(cs)) {
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
        kvm_arm_copy_hw_debug_data(&dbg->arch);
    }
#endif
634
}
635 636 637 638

void kvm_arch_init_irq_routing(KVMState *s)
{
}
639

640
int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
641
{
642 643 644 645 646
     if (machine_kernel_irqchip_split(ms)) {
         perror("-machine kernel_irqchip=split is not supported on ARM.");
         exit(1);
    }

647 648 649
    /* If we can create the VGIC using the newer device control API, we
     * let the device do this when it initializes itself, otherwise we
     * fall back to the old API */
650 651
    return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
}
652

653 654 655 656 657 658 659 660 661 662
int kvm_arm_vgic_probe(void)
{
    if (kvm_create_device(kvm_state,
                          KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
        return 3;
    } else if (kvm_create_device(kvm_state,
                                 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
        return 2;
    } else {
        return 0;
663 664
    }
}
665 666

int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
667
                             uint64_t address, uint32_t data, PCIDevice *dev)
668 669 670
{
    return 0;
}
671

672 673 674 675 676 677 678 679 680 681 682
int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
                                int vector, PCIDevice *dev)
{
    return 0;
}

int kvm_arch_release_virq_post(int virq)
{
    return 0;
}

683 684 685 686
int kvm_arch_msi_data_to_gsi(uint32_t data)
{
    return (data - 32) & 0xffff;
}