cputlb.c 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  Common CPU TLB handling
 *
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "config.h"
#include "cpu.h"
22 23 24
#include "exec/exec-all.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
25

26
#include "exec/cputlb.h"
27

28
#include "exec/memory-internal.h"
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

//#define DEBUG_TLB
//#define DEBUG_TLB_CHECK

/* statistics */
int tlb_flush_count;

/* NOTE:
 * If flush_global is true (the usual case), flush all tlb entries.
 * If flush_global is false, flush (at least) all tlb entries not
 * marked global.
 *
 * Since QEMU doesn't currently implement a global/not-global flag
 * for tlb entries, at the moment tlb_flush() will also flush all
 * tlb entries in the flush_global == false case. This is OK because
 * CPU architectures generally permit an implementation to drop
 * entries from the TLB at any time, so flushing more entries than
 * required is only an efficiency issue, not a correctness issue.
 */
void tlb_flush(CPUArchState *env, int flush_global)
{
50
    CPUState *cpu = ENV_GET_CPU(env);
51 52 53 54 55 56

#if defined(DEBUG_TLB)
    printf("tlb_flush:\n");
#endif
    /* must reset current TB so that interrupts cannot modify the
       links while we are modifying them */
57
    cpu->current_tb = NULL;
58

59
    memset(env->tlb_table, -1, sizeof(env->tlb_table));
60
    memset(env->tb_jmp_cache, 0, sizeof(env->tb_jmp_cache));
61 62 63 64 65 66 67 68 69 70 71 72 73 74

    env->tlb_flush_addr = -1;
    env->tlb_flush_mask = 0;
    tlb_flush_count++;
}

static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
{
    if (addr == (tlb_entry->addr_read &
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
        addr == (tlb_entry->addr_write &
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
        addr == (tlb_entry->addr_code &
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
75
        memset(tlb_entry, -1, sizeof(*tlb_entry));
76 77 78 79 80
    }
}

void tlb_flush_page(CPUArchState *env, target_ulong addr)
{
81
    CPUState *cpu = ENV_GET_CPU(env);
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    int i;
    int mmu_idx;

#if defined(DEBUG_TLB)
    printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
#endif
    /* Check if we need to flush due to large pages.  */
    if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
#if defined(DEBUG_TLB)
        printf("tlb_flush_page: forced full flush ("
               TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
               env->tlb_flush_addr, env->tlb_flush_mask);
#endif
        tlb_flush(env, 1);
        return;
    }
    /* must reset current TB so that interrupts cannot modify the
       links while we are modifying them */
100
    cpu->current_tb = NULL;
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

    addr &= TARGET_PAGE_MASK;
    i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
        tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
    }

    tb_flush_jmp_cache(env, addr);
}

/* update the TLBs so that writes to code in the virtual page 'addr'
   can be detected */
void tlb_protect_code(ram_addr_t ram_addr)
{
    cpu_physical_memory_reset_dirty(ram_addr,
                                    ram_addr + TARGET_PAGE_SIZE,
117
                                    DIRTY_MEMORY_CODE);
118 119 120 121 122 123 124
}

/* update the TLB so that writes in physical page 'phys_addr' are no longer
   tested for self modifying code */
void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
                             target_ulong vaddr)
{
125
    cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
}

static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
{
    return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
}

void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
                           uintptr_t length)
{
    uintptr_t addr;

    if (tlb_is_dirty_ram(tlb_entry)) {
        addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
        if ((addr - start) < length) {
            tlb_entry->addr_write |= TLB_NOTDIRTY;
        }
    }
}

146 147 148 149
static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
{
    ram_addr_t ram_addr;

150
    if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) {
151 152 153 154 155 156
        fprintf(stderr, "Bad ram pointer %p\n", ptr);
        abort();
    }
    return ram_addr;
}

157 158
void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
{
159
    CPUState *cpu;
160 161
    CPUArchState *env;

A
Andreas Färber 已提交
162
    CPU_FOREACH(cpu) {
163 164
        int mmu_idx;

165
        env = cpu->env_ptr;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
            unsigned int i;

            for (i = 0; i < CPU_TLB_SIZE; i++) {
                tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
                                      start1, length);
            }
        }
    }
}

static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
{
    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
        tlb_entry->addr_write = vaddr;
    }
}

/* update the TLB corresponding to virtual page vaddr
   so that it is no longer dirty */
void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
{
    int i;
    int mmu_idx;

    vaddr &= TARGET_PAGE_MASK;
    i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
        tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
    }
}

/* Our TLB does not support large pages, so remember the area covered by
   large pages and trigger a full TLB flush if these are invalidated.  */
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
                               target_ulong size)
{
    target_ulong mask = ~(size - 1);

    if (env->tlb_flush_addr == (target_ulong)-1) {
        env->tlb_flush_addr = vaddr & mask;
        env->tlb_flush_mask = mask;
        return;
    }
    /* Extend the existing region to include the new page.
       This is a compromise between unnecessary flushes and the cost
       of maintaining a full variable size TLB.  */
    mask &= env->tlb_flush_mask;
    while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
        mask <<= 1;
    }
    env->tlb_flush_addr &= mask;
    env->tlb_flush_mask = mask;
}

/* Add a new TLB entry. At most one entry for a given virtual address
   is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
   supplied size is only used by tlb_flush_page.  */
void tlb_set_page(CPUArchState *env, target_ulong vaddr,
A
Avi Kivity 已提交
225
                  hwaddr paddr, int prot,
226 227 228 229 230 231 232 233
                  int mmu_idx, target_ulong size)
{
    MemoryRegionSection *section;
    unsigned int index;
    target_ulong address;
    target_ulong code_address;
    uintptr_t addend;
    CPUTLBEntry *te;
234
    hwaddr iotlb, xlat, sz;
235 236 237 238 239

    assert(size >= TARGET_PAGE_SIZE);
    if (size != TARGET_PAGE_SIZE) {
        tlb_add_large_page(env, vaddr, size);
    }
240 241

    sz = size;
242 243
    section = address_space_translate_for_iotlb(&address_space_memory, paddr,
                                                &xlat, &sz);
244 245
    assert(sz >= TARGET_PAGE_SIZE);

246 247
#if defined(DEBUG_TLB)
    printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
H
Hervé Poussineau 已提交
248 249
           " prot=%x idx=%d\n",
           vaddr, paddr, prot, mmu_idx);
250 251 252
#endif

    address = vaddr;
P
Paolo Bonzini 已提交
253 254
    if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
        /* IO memory case */
255
        address |= TLB_MMIO;
P
Paolo Bonzini 已提交
256 257 258
        addend = 0;
    } else {
        /* TLB_MMIO for rom/romd handled below */
259
        addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
260 261 262
    }

    code_address = address;
263 264
    iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, xlat,
                                            prot, &address);
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

    index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    env->iotlb[mmu_idx][index] = iotlb - vaddr;
    te = &env->tlb_table[mmu_idx][index];
    te->addend = addend - vaddr;
    if (prot & PAGE_READ) {
        te->addr_read = address;
    } else {
        te->addr_read = -1;
    }

    if (prot & PAGE_EXEC) {
        te->addr_code = code_address;
    } else {
        te->addr_code = -1;
    }
    if (prot & PAGE_WRITE) {
        if ((memory_region_is_ram(section->mr) && section->readonly)
283
            || memory_region_is_romd(section->mr)) {
284 285 286
            /* Write access calls the I/O callback.  */
            te->addr_write = address | TLB_MMIO;
        } else if (memory_region_is_ram(section->mr)
287
                   && !cpu_physical_memory_is_dirty(section->mr->ram_addr + xlat)) {
288 289 290 291 292 293 294 295 296 297 298
            te->addr_write = address | TLB_NOTDIRTY;
        } else {
            te->addr_write = address;
        }
    } else {
        te->addr_write = -1;
    }
}

/* NOTE: this function can trigger an exception */
/* NOTE2: the returned address is not exactly the physical address: it
299 300 301
 * is actually a ram_addr_t (in system mode; the user mode emulation
 * version of this function returns a guest virtual address).
 */
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
{
    int mmu_idx, page_index, pd;
    void *p;
    MemoryRegion *mr;

    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    mmu_idx = cpu_mmu_index(env1);
    if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
                 (addr & TARGET_PAGE_MASK))) {
        cpu_ldub_code(env1, addr);
    }
    pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
    mr = iotlb_to_region(pd);
    if (memory_region_is_unassigned(mr)) {
317 318 319 320 321 322 323 324 325
        CPUState *cpu = ENV_GET_CPU(env1);
        CPUClass *cc = CPU_GET_CLASS(cpu);

        if (cc->do_unassigned_access) {
            cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
        } else {
            cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x"
                      TARGET_FMT_lx "\n", addr);
        }
326 327 328 329 330 331 332 333 334 335 336
    }
    p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
    return qemu_ram_addr_from_host_nofail(p);
}

#define MMUSUFFIX _cmmu
#undef GETPC
#define GETPC() ((uintptr_t)0)
#define SOFTMMU_CODE_ACCESS

#define SHIFT 0
337
#include "exec/softmmu_template.h"
338 339

#define SHIFT 1
340
#include "exec/softmmu_template.h"
341 342

#define SHIFT 2
343
#include "exec/softmmu_template.h"
344 345

#define SHIFT 3
346
#include "exec/softmmu_template.h"
347 348

#undef env