cadence_uart.c 14.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Device model for Cadence UART
 *
 * Copyright (c) 2010 Xilinx Inc.
 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
 * Copyright (c) 2012 PetaLogix Pty Ltd.
 * Written by Haibing Ma
 *            M.Habib
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, see <http://www.gnu.org/licenses/>.
 */

19
#include "hw/sysbus.h"
20
#include "sysemu/char.h"
21
#include "qemu/timer.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

#ifdef CADENCE_UART_ERR_DEBUG
#define DB_PRINT(...) do { \
    fprintf(stderr,  ": %s: ", __func__); \
    fprintf(stderr, ## __VA_ARGS__); \
    } while (0);
#else
    #define DB_PRINT(...)
#endif

#define UART_SR_INTR_RTRIG     0x00000001
#define UART_SR_INTR_REMPTY    0x00000002
#define UART_SR_INTR_RFUL      0x00000004
#define UART_SR_INTR_TEMPTY    0x00000008
#define UART_SR_INTR_TFUL      0x00000010
37 38 39
/* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
#define UART_SR_TTRIG          0x00002000
#define UART_INTR_TTRIG        0x00000400
40 41 42 43 44 45 46 47 48
/* bits fields in CSR that correlate to CISR. If any of these bits are set in
 * SR, then the same bit in CISR is set high too */
#define UART_SR_TO_CISR_MASK   0x0000001F

#define UART_INTR_ROVR         0x00000020
#define UART_INTR_FRAME        0x00000040
#define UART_INTR_PARE         0x00000080
#define UART_INTR_TIMEOUT      0x00000100
#define UART_INTR_DMSI         0x00000200
49
#define UART_INTR_TOVR         0x00001000
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

#define UART_SR_RACTIVE    0x00000400
#define UART_SR_TACTIVE    0x00000800
#define UART_SR_FDELT      0x00001000

#define UART_CR_RXRST       0x00000001
#define UART_CR_TXRST       0x00000002
#define UART_CR_RX_EN       0x00000004
#define UART_CR_RX_DIS      0x00000008
#define UART_CR_TX_EN       0x00000010
#define UART_CR_TX_DIS      0x00000020
#define UART_CR_RST_TO      0x00000040
#define UART_CR_STARTBRK    0x00000080
#define UART_CR_STOPBRK     0x00000100

#define UART_MR_CLKS            0x00000001
#define UART_MR_CHRL            0x00000006
#define UART_MR_CHRL_SH         1
#define UART_MR_PAR             0x00000038
#define UART_MR_PAR_SH          3
#define UART_MR_NBSTOP          0x000000C0
#define UART_MR_NBSTOP_SH       6
#define UART_MR_CHMODE          0x00000300
#define UART_MR_CHMODE_SH       8
#define UART_MR_UCLKEN          0x00000400
#define UART_MR_IRMODE          0x00000800

#define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
#define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
#define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
#define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
#define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
#define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
#define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
#define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
#define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
#define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)

#define RX_FIFO_SIZE           16
#define TX_FIFO_SIZE           16
#define UART_INPUT_CLK         50000000

#define R_CR       (0x00/4)
#define R_MR       (0x04/4)
#define R_IER      (0x08/4)
#define R_IDR      (0x0C/4)
#define R_IMR      (0x10/4)
#define R_CISR     (0x14/4)
#define R_BRGR     (0x18/4)
#define R_RTOR     (0x1C/4)
#define R_RTRIG    (0x20/4)
#define R_MCR      (0x24/4)
#define R_MSR      (0x28/4)
#define R_SR       (0x2C/4)
#define R_TX_RX    (0x30/4)
#define R_BDIV     (0x34/4)
#define R_FDEL     (0x38/4)
#define R_PMIN     (0x3C/4)
#define R_PWID     (0x40/4)
#define R_TTRIG    (0x44/4)

#define R_MAX (R_TTRIG + 1)

A
Andreas Färber 已提交
113 114 115
#define TYPE_CADENCE_UART "cadence_uart"
#define CADENCE_UART(obj) OBJECT_CHECK(UartState, (obj), TYPE_CADENCE_UART)

116
typedef struct {
117
    /*< private >*/
A
Andreas Färber 已提交
118
    SysBusDevice parent_obj;
119
    /*< public >*/
A
Andreas Färber 已提交
120

121 122
    MemoryRegion iomem;
    uint32_t r[R_MAX];
123
    uint8_t rx_fifo[RX_FIFO_SIZE];
124
    uint8_t tx_fifo[TX_FIFO_SIZE];
125 126
    uint32_t rx_wpos;
    uint32_t rx_count;
127
    uint32_t tx_count;
128 129 130
    uint64_t char_tx_time;
    CharDriverState *chr;
    qemu_irq irq;
131
    QEMUTimer *fifo_trigger_handle;
132 133 134 135
} UartState;

static void uart_update_status(UartState *s)
{
136 137 138 139 140 141
    s->r[R_SR] = 0;

    s->r[R_SR] |= s->rx_count == RX_FIFO_SIZE ? UART_SR_INTR_RFUL : 0;
    s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
    s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;

142 143 144 145
    s->r[R_SR] |= s->tx_count == TX_FIFO_SIZE ? UART_SR_INTR_TFUL : 0;
    s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
    s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;

146
    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
147
    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
}

static void fifo_trigger_update(void *opaque)
{
    UartState *s = (UartState *)opaque;

    s->r[R_CISR] |= UART_INTR_TIMEOUT;

    uart_update_status(s);
}

static void uart_rx_reset(UartState *s)
{
    s->rx_wpos = 0;
    s->rx_count = 0;
164 165 166
    if (s->chr) {
        qemu_chr_accept_input(s->chr);
    }
167 168 169 170
}

static void uart_tx_reset(UartState *s)
{
171
    s->tx_count = 0;
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
}

static void uart_send_breaks(UartState *s)
{
    int break_enabled = 1;

    qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
                               &break_enabled);
}

static void uart_parameters_setup(UartState *s)
{
    QEMUSerialSetParams ssp;
    unsigned int baud_rate, packet_size;

    baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
            UART_INPUT_CLK / 8 : UART_INPUT_CLK;

    ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
    packet_size = 1;

    switch (s->r[R_MR] & UART_MR_PAR) {
    case UART_PARITY_EVEN:
        ssp.parity = 'E';
        packet_size++;
        break;
    case UART_PARITY_ODD:
        ssp.parity = 'O';
        packet_size++;
        break;
    default:
        ssp.parity = 'N';
        break;
    }

    switch (s->r[R_MR] & UART_MR_CHRL) {
    case UART_DATA_BITS_6:
        ssp.data_bits = 6;
        break;
    case UART_DATA_BITS_7:
        ssp.data_bits = 7;
        break;
    default:
        ssp.data_bits = 8;
        break;
    }

    switch (s->r[R_MR] & UART_MR_NBSTOP) {
    case UART_STOP_BITS_1:
        ssp.stop_bits = 1;
        break;
    default:
        ssp.stop_bits = 2;
        break;
    }

    packet_size += ssp.data_bits + ssp.stop_bits;
    s->char_tx_time = (get_ticks_per_sec() / ssp.speed) * packet_size;
    qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
}

static int uart_can_receive(void *opaque)
{
    UartState *s = (UartState *)opaque;
236 237
    int ret = MAX(RX_FIFO_SIZE, TX_FIFO_SIZE);
    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
238

239 240 241 242 243 244 245
    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
        ret = MIN(ret, RX_FIFO_SIZE - s->rx_count);
    }
    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
        ret = MIN(ret, TX_FIFO_SIZE - s->tx_count);
    }
    return ret;
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
}

static void uart_ctrl_update(UartState *s)
{
    if (s->r[R_CR] & UART_CR_TXRST) {
        uart_tx_reset(s);
    }

    if (s->r[R_CR] & UART_CR_RXRST) {
        uart_rx_reset(s);
    }

    s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);

    if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
        uart_send_breaks(s);
    }
}

static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
{
    UartState *s = (UartState *)opaque;
268
    uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
269 270 271 272 273 274 275 276 277 278
    int i;

    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
        return;
    }

    if (s->rx_count == RX_FIFO_SIZE) {
        s->r[R_CISR] |= UART_INTR_ROVR;
    } else {
        for (i = 0; i < size; i++) {
279
            s->rx_fifo[s->rx_wpos] = buf[i];
280 281 282
            s->rx_wpos = (s->rx_wpos + 1) % RX_FIFO_SIZE;
            s->rx_count++;
        }
283
        timer_mod(s->fifo_trigger_handle, new_rx_time +
284 285 286 287 288
                                                (s->char_tx_time * 4));
    }
    uart_update_status(s);
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
                                  void *opaque)
{
    UartState *s = opaque;
    int ret;

    /* instant drain the fifo when there's no back-end */
    if (!s->chr) {
        s->tx_count = 0;
    }

    if (!s->tx_count) {
        return FALSE;
    }

    ret = qemu_chr_fe_write(s->chr, s->tx_fifo, s->tx_count);
    s->tx_count -= ret;
    memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);

    if (s->tx_count) {
        int r = qemu_chr_fe_add_watch(s->chr, G_IO_OUT, cadence_uart_xmit, s);
        assert(r);
    }

    uart_update_status(s);
    return FALSE;
}

317 318 319 320 321 322
static void uart_write_tx_fifo(UartState *s, const uint8_t *buf, int size)
{
    if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
        return;
    }

323 324 325 326 327 328 329 330 331 332 333 334 335 336
    if (size > TX_FIFO_SIZE - s->tx_count) {
        size = TX_FIFO_SIZE - s->tx_count;
        /*
         * This can only be a guest error via a bad tx fifo register push,
         * as can_receive() should stop remote loop and echo modes ever getting
         * us to here.
         */
        qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
        s->r[R_CISR] |= UART_INTR_ROVR;
    }

    memcpy(s->tx_fifo + s->tx_count, buf, size);
    s->tx_count += size;

337
    cadence_uart_xmit(NULL, G_IO_OUT, s);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
}

static void uart_receive(void *opaque, const uint8_t *buf, int size)
{
    UartState *s = (UartState *)opaque;
    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;

    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
        uart_write_rx_fifo(opaque, buf, size);
    }
    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
        uart_write_tx_fifo(s, buf, size);
    }
}

static void uart_event(void *opaque, int event)
{
    UartState *s = (UartState *)opaque;
    uint8_t buf = '\0';

    if (event == CHR_EVENT_BREAK) {
        uart_write_rx_fifo(opaque, &buf, 1);
    }

    uart_update_status(s);
}

static void uart_read_rx_fifo(UartState *s, uint32_t *c)
{
    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
        return;
    }

    if (s->rx_count) {
        uint32_t rx_rpos =
                (RX_FIFO_SIZE + s->rx_wpos - s->rx_count) % RX_FIFO_SIZE;
374
        *c = s->rx_fifo[rx_rpos];
375 376
        s->rx_count--;

377
        qemu_chr_accept_input(s->chr);
378 379 380 381 382 383 384
    } else {
        *c = 0;
    }

    uart_update_status(s);
}

A
Avi Kivity 已提交
385
static void uart_write(void *opaque, hwaddr offset,
386 387 388 389
                          uint64_t value, unsigned size)
{
    UartState *s = (UartState *)opaque;

390
    DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
    offset >>= 2;
    switch (offset) {
    case R_IER: /* ier (wts imr) */
        s->r[R_IMR] |= value;
        break;
    case R_IDR: /* idr (wtc imr) */
        s->r[R_IMR] &= ~value;
        break;
    case R_IMR: /* imr (read only) */
        break;
    case R_CISR: /* cisr (wtc) */
        s->r[R_CISR] &= ~value;
        break;
    case R_TX_RX: /* UARTDR */
        switch (s->r[R_MR] & UART_MR_CHMODE) {
        case NORMAL_MODE:
            uart_write_tx_fifo(s, (uint8_t *) &value, 1);
            break;
        case LOCAL_LOOPBACK:
            uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
            break;
        }
        break;
    default:
        s->r[offset] = value;
    }

    switch (offset) {
    case R_CR:
        uart_ctrl_update(s);
        break;
    case R_MR:
        uart_parameters_setup(s);
        break;
    }
426
    uart_update_status(s);
427 428
}

A
Avi Kivity 已提交
429
static uint64_t uart_read(void *opaque, hwaddr offset,
430 431 432 433 434 435
        unsigned size)
{
    UartState *s = (UartState *)opaque;
    uint32_t c = 0;

    offset >>= 2;
S
Stefan Weil 已提交
436
    if (offset >= R_MAX) {
437
        c = 0;
438 439
    } else if (offset == R_TX_RX) {
        uart_read_rx_fifo(s, &c);
440 441
    } else {
       c = s->r[offset];
442
    }
443 444 445

    DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
    return c;
446 447 448 449 450 451 452 453
}

static const MemoryRegionOps uart_ops = {
    .read = uart_read,
    .write = uart_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

454
static void cadence_uart_reset(DeviceState *dev)
455
{
456 457
    UartState *s = CADENCE_UART(dev);

458 459 460 461 462 463 464 465 466 467
    s->r[R_CR] = 0x00000128;
    s->r[R_IMR] = 0;
    s->r[R_CISR] = 0;
    s->r[R_RTRIG] = 0x00000020;
    s->r[R_BRGR] = 0x0000000F;
    s->r[R_TTRIG] = 0x00000020;

    uart_rx_reset(s);
    uart_tx_reset(s);

468
    uart_update_status(s);
469 470 471 472
}

static int cadence_uart_init(SysBusDevice *dev)
{
A
Andreas Färber 已提交
473
    UartState *s = CADENCE_UART(dev);
474

475
    memory_region_init_io(&s->iomem, OBJECT(s), &uart_ops, s, "uart", 0x1000);
476 477 478
    sysbus_init_mmio(dev, &s->iomem);
    sysbus_init_irq(dev, &s->irq);

479
    s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
            (QEMUTimerCB *)fifo_trigger_update, s);

    s->char_tx_time = (get_ticks_per_sec() / 9600) * 10;

    s->chr = qemu_char_get_next_serial();

    if (s->chr) {
        qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
                              uart_event, s);
    }

    return 0;
}

static int cadence_uart_post_load(void *opaque, int version_id)
{
    UartState *s = opaque;

    uart_parameters_setup(s);
    uart_update_status(s);
    return 0;
}

static const VMStateDescription vmstate_cadence_uart = {
    .name = "cadence_uart",
505 506
    .version_id = 2,
    .minimum_version_id = 2,
507 508 509
    .post_load = cadence_uart_post_load,
    .fields = (VMStateField[]) {
        VMSTATE_UINT32_ARRAY(r, UartState, R_MAX),
510
        VMSTATE_UINT8_ARRAY(rx_fifo, UartState, RX_FIFO_SIZE),
511
        VMSTATE_UINT8_ARRAY(tx_fifo, UartState, RX_FIFO_SIZE),
512
        VMSTATE_UINT32(rx_count, UartState),
513
        VMSTATE_UINT32(tx_count, UartState),
514 515 516 517 518 519 520 521 522 523 524 525 526
        VMSTATE_UINT32(rx_wpos, UartState),
        VMSTATE_TIMER(fifo_trigger_handle, UartState),
        VMSTATE_END_OF_LIST()
    }
};

static void cadence_uart_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);

    sdc->init = cadence_uart_init;
    dc->vmsd = &vmstate_cadence_uart;
527
    dc->reset = cadence_uart_reset;
528 529
}

530
static const TypeInfo cadence_uart_info = {
A
Andreas Färber 已提交
531
    .name          = TYPE_CADENCE_UART,
532 533 534 535 536 537 538 539 540 541 542
    .parent        = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(UartState),
    .class_init    = cadence_uart_class_init,
};

static void cadence_uart_register_types(void)
{
    type_register_static(&cadence_uart_info);
}

type_init(cadence_uart_register_types)