spapr.c 15.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
#include "sysemu.h"
#include "hw.h"
#include "elf.h"
30
#include "net.h"
31
#include "blockdev.h"
32 33 34 35 36 37

#include "hw/boards.h"
#include "hw/ppc.h"
#include "hw/loader.h"

#include "hw/spapr.h"
38
#include "hw/spapr_vio.h"
39
#include "hw/xics.h"
40 41 42 43 44 45

#include <libfdt.h>

#define KERNEL_LOAD_ADDR        0x00000000
#define INITRD_LOAD_ADDR        0x02800000
#define FDT_MAX_SIZE            0x10000
46
#define RTAS_MAX_SIZE           0x10000
47 48 49 50
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"

#define MIN_RAM_SLOF		512UL
51 52 53 54

#define TIMEBASE_FREQ           512000000ULL

#define MAX_CPUS                32
55
#define XICS_IRQS		1024
56 57 58 59 60 61 62 63

sPAPREnvironment *spapr;

static void *spapr_create_fdt(int *fdt_size, ram_addr_t ramsize,
                              const char *cpu_model, CPUState *envs[],
                              sPAPREnvironment *spapr,
                              target_phys_addr_t initrd_base,
                              target_phys_addr_t initrd_size,
64
                              const char *boot_device,
65
                              const char *kernel_cmdline,
66 67
                              target_phys_addr_t rtas_addr,
                              target_phys_addr_t rtas_size,
68
                              long hash_shift)
69 70 71 72 73
{
    void *fdt;
    uint64_t mem_reg_property[] = { 0, cpu_to_be64(ramsize) };
    uint32_t start_prop = cpu_to_be32(initrd_base);
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
74
    uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
75
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
76
        "\0hcall-tce\0hcall-vio\0hcall-splpar";
77
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
78 79
    int i;
    char *modelname;
80
    int ret;
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

#define _FDT(exp) \
    do { \
        int ret = (exp);                                           \
        if (ret < 0) {                                             \
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
                    #exp, fdt_strerror(ret));                      \
            exit(1);                                               \
        }                                                          \
    } while (0)

    fdt = qemu_mallocz(FDT_MAX_SIZE);
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));

    _FDT((fdt_finish_reservemap(fdt)));

    /* Root node */
    _FDT((fdt_begin_node(fdt, "")));
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
    _FDT((fdt_property_string(fdt, "model", "qemu,emulated-pSeries-LPAR")));

    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));

    /* /chosen */
    _FDT((fdt_begin_node(fdt, "chosen")));

    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
    _FDT((fdt_property(fdt, "linux,initrd-start",
                       &start_prop, sizeof(start_prop))));
    _FDT((fdt_property(fdt, "linux,initrd-end",
                       &end_prop, sizeof(end_prop))));
113
    _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

    _FDT((fdt_end_node(fdt)));

    /* memory node */
    _FDT((fdt_begin_node(fdt, "memory@0")));

    _FDT((fdt_property_string(fdt, "device_type", "memory")));
    _FDT((fdt_property(fdt, "reg",
                       mem_reg_property, sizeof(mem_reg_property))));

    _FDT((fdt_end_node(fdt)));

    /* cpus */
    _FDT((fdt_begin_node(fdt, "cpus")));

    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));

    modelname = qemu_strdup(cpu_model);

    for (i = 0; i < strlen(modelname); i++) {
        modelname[i] = toupper(modelname[i]);
    }

    for (i = 0; i < smp_cpus; i++) {
        CPUState *env = envs[i];
140
        uint32_t gserver_prop[] = {cpu_to_be32(i), 0}; /* HACK! */
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        char *nodename;
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                           0xffffffff, 0xffffffff};

        if (asprintf(&nodename, "%s@%x", modelname, i) < 0) {
            fprintf(stderr, "Allocation failure\n");
            exit(1);
        }

        _FDT((fdt_begin_node(fdt, nodename)));

        free(nodename);

        _FDT((fdt_property_cell(fdt, "reg", i)));
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));

        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
        _FDT((fdt_property_cell(fdt, "dcache-block-size",
                                env->dcache_line_size)));
        _FDT((fdt_property_cell(fdt, "icache-block-size",
                                env->icache_line_size)));
        _FDT((fdt_property_cell(fdt, "timebase-frequency", TIMEBASE_FREQ)));
        /* Hardcode CPU frequency for now.  It's kind of arbitrary on
         * full emu, for kvm we should copy it from the host */
        _FDT((fdt_property_cell(fdt, "clock-frequency", 1000000000)));
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
167 168
        _FDT((fdt_property(fdt, "ibm,pft-size",
                           pft_size_prop, sizeof(pft_size_prop))));
169 170
        _FDT((fdt_property_string(fdt, "status", "okay")));
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
171 172 173
        _FDT((fdt_property_cell(fdt, "ibm,ppc-interrupt-server#s", i)));
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
                           gserver_prop, sizeof(gserver_prop))));
174 175 176 177 178 179 180 181 182 183 184 185 186

        if (envs[i]->mmu_model & POWERPC_MMU_1TSEG) {
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
                               segs, sizeof(segs))));
        }

        _FDT((fdt_end_node(fdt)));
    }

    qemu_free(modelname);

    _FDT((fdt_end_node(fdt)));

187 188 189 190 191 192 193 194
    /* RTAS */
    _FDT((fdt_begin_node(fdt, "rtas")));

    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
                       sizeof(hypertas_prop))));

    _FDT((fdt_end_node(fdt)));

195 196 197 198 199 200 201 202 203 204 205 206 207 208
    /* interrupt controller */
    _FDT((fdt_begin_node(fdt, "interrupt-controller@0")));

    _FDT((fdt_property_string(fdt, "device_type",
                              "PowerPC-External-Interrupt-Presentation")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
    _FDT((fdt_property_cell(fdt, "reg", 0)));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
                       interrupt_server_ranges_prop,
                       sizeof(interrupt_server_ranges_prop))));

    _FDT((fdt_end_node(fdt)));

209 210 211 212 213 214 215
    /* vdevice */
    _FDT((fdt_begin_node(fdt, "vdevice")));

    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
216 217
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
218 219 220

    _FDT((fdt_end_node(fdt)));

221 222 223
    _FDT((fdt_end_node(fdt))); /* close root node */
    _FDT((fdt_finish(fdt)));

224 225 226 227 228 229 230 231 232
    /* re-expand to allow for further tweaks */
    _FDT((fdt_open_into(fdt, fdt, FDT_MAX_SIZE)));

    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
    if (ret < 0) {
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
        exit(1);
    }

233 234 235 236 237 238
    /* RTAS */
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
    if (ret < 0) {
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
    }

239 240
    _FDT((fdt_pack(fdt)));

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    *fdt_size = fdt_totalsize(fdt);

    return fdt;
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

static void emulate_spapr_hypercall(CPUState *env)
{
    env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
}

/* pSeries LPAR / sPAPR hardware init */
static void ppc_spapr_init(ram_addr_t ram_size,
                           const char *boot_device,
                           const char *kernel_filename,
                           const char *kernel_cmdline,
                           const char *initrd_filename,
                           const char *cpu_model)
{
    CPUState *envs[MAX_CPUS];
265
    void *fdt, *htab;
266 267
    int i;
    ram_addr_t ram_offset;
268
    target_phys_addr_t fdt_addr, rtas_addr;
269
    uint32_t kernel_base, initrd_base;
270
    long kernel_size, initrd_size, htab_size, rtas_size, fw_size;
271
    long pteg_shift = 17;
272
    int fdt_size;
273
    char *filename;
274
    int irq = 16;
275 276 277 278 279 280 281 282

    spapr = qemu_malloc(sizeof(*spapr));
    cpu_ppc_hypercall = emulate_spapr_hypercall;

    /* We place the device tree just below either the top of RAM, or
     * 2GB, so that it can be processed with 32-bit code if
     * necessary */
    fdt_addr = MIN(ram_size, 0x80000000) - FDT_MAX_SIZE;
283 284
    /* RTAS goes just below that */
    rtas_addr = fdt_addr - RTAS_MAX_SIZE;
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

    /* init CPUs */
    if (cpu_model == NULL) {
        cpu_model = "POWER7";
    }
    for (i = 0; i < smp_cpus; i++) {
        CPUState *env = cpu_init(cpu_model);

        if (!env) {
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
            exit(1);
        }
        /* Set time-base frequency to 512 MHz */
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
        qemu_register_reset((QEMUResetHandler *)&cpu_reset, env);

        env->hreset_vector = 0x60;
        env->hreset_excp_prefix = 0;
        env->gpr[3] = i;

        envs[i] = env;
    }

    /* allocate RAM */
    ram_offset = qemu_ram_alloc(NULL, "ppc_spapr.ram", ram_size);
    cpu_register_physical_memory(0, ram_size, ram_offset);

312 313 314 315 316 317 318 319 320 321 322 323
    /* allocate hash page table.  For now we always make this 16mb,
     * later we should probably make it scale to the size of guest
     * RAM */
    htab_size = 1ULL << (pteg_shift + 7);
    htab = qemu_mallocz(htab_size);

    for (i = 0; i < smp_cpus; i++) {
        envs[i]->external_htab = htab;
        envs[i]->htab_base = -1;
        envs[i]->htab_mask = htab_size - 1;
    }

324 325 326 327 328 329 330 331
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
    rtas_size = load_image_targphys(filename, rtas_addr, ram_size - rtas_addr);
    if (rtas_size < 0) {
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
        exit(1);
    }
    qemu_free(filename);

332 333 334 335
    /* Set up Interrupt Controller */
    spapr->icp = xics_system_init(smp_cpus, envs, XICS_IRQS);

    /* Set up VIO bus */
336 337
    spapr->vio_bus = spapr_vio_bus_init();

338
    for (i = 0; i < MAX_SERIAL_PORTS; i++, irq++) {
339
        if (serial_hds[i]) {
340 341
            spapr_vty_create(spapr->vio_bus, i, serial_hds[i],
                             xics_find_qirq(spapr->icp, irq), irq);
342 343
        }
    }
344

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    for (i = 0; i < nb_nics; i++, irq++) {
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
            nd->model = qemu_strdup("ibmveth");
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
            spapr_vlan_create(spapr->vio_bus, 0x1000 + i, nd,
                              xics_find_qirq(spapr->icp, irq), irq);
        } else {
            fprintf(stderr, "pSeries (sPAPR) platform does not support "
                    "NIC model '%s' (only ibmveth is supported)\n",
                    nd->model);
            exit(1);
        }
    }

363 364 365 366 367 368
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
        spapr_vscsi_create(spapr->vio_bus, 0x2000 + i,
                           xics_find_qirq(spapr->icp, irq), irq);
        irq++;
    }

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
    if (kernel_filename) {
        uint64_t lowaddr = 0;

        kernel_base = KERNEL_LOAD_ADDR;

        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
        if (kernel_size < 0) {
            kernel_size = load_image_targphys(kernel_filename, kernel_base,
                                              ram_size - kernel_base);
        }
        if (kernel_size < 0) {
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
                    kernel_filename);
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
            initrd_base = INITRD_LOAD_ADDR;
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
                                              ram_size - initrd_base);
            if (initrd_size < 0) {
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
                        initrd_filename);
                exit(1);
            }
        } else {
            initrd_base = 0;
            initrd_size = 0;
        }
    } else {
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
        if (ram_size < (MIN_RAM_SLOF << 20)) {
            fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
                    "%ldM guest RAM\n", MIN_RAM_SLOF);
            exit(1);
        }
        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "slof.bin");
        fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
        if (fw_size < 0) {
            hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
            exit(1);
        }
        qemu_free(filename);
        kernel_base = 0x100;
        initrd_base = 0;
        initrd_size = 0;

        /* SLOF will startup the secondary CPUs using RTAS,
           rather than expecting a kexec() style entry */
        for (i = 0; i < smp_cpus; i++) {
            envs[i]->halted = 1;
        }
422 423 424 425
    }

    /* Prepare the device tree */
    fdt = spapr_create_fdt(&fdt_size, ram_size, cpu_model, envs, spapr,
426 427
                           initrd_base, initrd_size,
                           boot_device, kernel_cmdline,
428
                           rtas_addr, rtas_size, pteg_shift + 7);
429 430 431 432 433 434 435 436 437
    assert(fdt != NULL);

    cpu_physical_memory_write(fdt_addr, fdt, fdt_size);

    qemu_free(fdt);

    envs[0]->gpr[3] = fdt_addr;
    envs[0]->gpr[5] = 0;
    envs[0]->hreset_vector = kernel_base;
438
    envs[0]->halted = 0;
439 440 441 442 443 444 445 446 447
}

static QEMUMachine spapr_machine = {
    .name = "pseries",
    .desc = "pSeries Logical Partition (PAPR compliant)",
    .init = ppc_spapr_init,
    .max_cpus = MAX_CPUS,
    .no_vga = 1,
    .no_parallel = 1,
448
    .use_scsi = 1,
449 450 451 452 453 454 455 456
};

static void spapr_machine_init(void)
{
    qemu_register_machine(&spapr_machine);
}

machine_init(spapr_machine_init);