cadence_uart.c 15.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Device model for Cadence UART
 *
 * Copyright (c) 2010 Xilinx Inc.
 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
 * Copyright (c) 2012 PetaLogix Pty Ltd.
 * Written by Haibing Ma
 *            M.Habib
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, see <http://www.gnu.org/licenses/>.
 */

P
Peter Maydell 已提交
19
#include "qemu/osdep.h"
20 21 22 23
#include "hw/sysbus.h"
#include "sysemu/char.h"
#include "qemu/timer.h"
#include "qemu/log.h"
24
#include "hw/char/cadence_uart.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

#ifdef CADENCE_UART_ERR_DEBUG
#define DB_PRINT(...) do { \
    fprintf(stderr,  ": %s: ", __func__); \
    fprintf(stderr, ## __VA_ARGS__); \
    } while (0);
#else
    #define DB_PRINT(...)
#endif

#define UART_SR_INTR_RTRIG     0x00000001
#define UART_SR_INTR_REMPTY    0x00000002
#define UART_SR_INTR_RFUL      0x00000004
#define UART_SR_INTR_TEMPTY    0x00000008
#define UART_SR_INTR_TFUL      0x00000010
40 41 42
/* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
#define UART_SR_TTRIG          0x00002000
#define UART_INTR_TTRIG        0x00000400
43 44 45 46 47 48 49 50 51
/* bits fields in CSR that correlate to CISR. If any of these bits are set in
 * SR, then the same bit in CISR is set high too */
#define UART_SR_TO_CISR_MASK   0x0000001F

#define UART_INTR_ROVR         0x00000020
#define UART_INTR_FRAME        0x00000040
#define UART_INTR_PARE         0x00000080
#define UART_INTR_TIMEOUT      0x00000100
#define UART_INTR_DMSI         0x00000200
52
#define UART_INTR_TOVR         0x00001000
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

#define UART_SR_RACTIVE    0x00000400
#define UART_SR_TACTIVE    0x00000800
#define UART_SR_FDELT      0x00001000

#define UART_CR_RXRST       0x00000001
#define UART_CR_TXRST       0x00000002
#define UART_CR_RX_EN       0x00000004
#define UART_CR_RX_DIS      0x00000008
#define UART_CR_TX_EN       0x00000010
#define UART_CR_TX_DIS      0x00000020
#define UART_CR_RST_TO      0x00000040
#define UART_CR_STARTBRK    0x00000080
#define UART_CR_STOPBRK     0x00000100

#define UART_MR_CLKS            0x00000001
#define UART_MR_CHRL            0x00000006
#define UART_MR_CHRL_SH         1
#define UART_MR_PAR             0x00000038
#define UART_MR_PAR_SH          3
#define UART_MR_NBSTOP          0x000000C0
#define UART_MR_NBSTOP_SH       6
#define UART_MR_CHMODE          0x00000300
#define UART_MR_CHMODE_SH       8
#define UART_MR_UCLKEN          0x00000400
#define UART_MR_IRMODE          0x00000800

#define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
#define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
#define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
#define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
#define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
#define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
#define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
#define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
#define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
#define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)

#define UART_INPUT_CLK         50000000

#define R_CR       (0x00/4)
#define R_MR       (0x04/4)
#define R_IER      (0x08/4)
#define R_IDR      (0x0C/4)
#define R_IMR      (0x10/4)
#define R_CISR     (0x14/4)
#define R_BRGR     (0x18/4)
#define R_RTOR     (0x1C/4)
#define R_RTRIG    (0x20/4)
#define R_MCR      (0x24/4)
#define R_MSR      (0x28/4)
#define R_SR       (0x2C/4)
#define R_TX_RX    (0x30/4)
#define R_BDIV     (0x34/4)
#define R_FDEL     (0x38/4)
#define R_PMIN     (0x3C/4)
#define R_PWID     (0x40/4)
#define R_TTRIG    (0x44/4)


113
static void uart_update_status(CadenceUARTState *s)
114
{
115 116
    s->r[R_SR] = 0;

117 118
    s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
                                                           : 0;
119 120 121
    s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
    s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;

122 123
    s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
                                                           : 0;
124 125 126
    s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
    s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;

127
    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
128
    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
129 130 131 132 133
    qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
}

static void fifo_trigger_update(void *opaque)
{
134
    CadenceUARTState *s = opaque;
135 136 137 138 139 140

    s->r[R_CISR] |= UART_INTR_TIMEOUT;

    uart_update_status(s);
}

141
static void uart_rx_reset(CadenceUARTState *s)
142 143 144
{
    s->rx_wpos = 0;
    s->rx_count = 0;
145
    if (s->chr.chr) {
146
        qemu_chr_fe_accept_input(s->chr.chr);
147
    }
148 149
}

150
static void uart_tx_reset(CadenceUARTState *s)
151
{
152
    s->tx_count = 0;
153 154
}

155
static void uart_send_breaks(CadenceUARTState *s)
156 157 158
{
    int break_enabled = 1;

159 160
    if (s->chr.chr) {
        qemu_chr_fe_ioctl(s->chr.chr, CHR_IOCTL_SERIAL_SET_BREAK,
161 162
                                   &break_enabled);
    }
163 164
}

165
static void uart_parameters_setup(CadenceUARTState *s)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
{
    QEMUSerialSetParams ssp;
    unsigned int baud_rate, packet_size;

    baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
            UART_INPUT_CLK / 8 : UART_INPUT_CLK;

    ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
    packet_size = 1;

    switch (s->r[R_MR] & UART_MR_PAR) {
    case UART_PARITY_EVEN:
        ssp.parity = 'E';
        packet_size++;
        break;
    case UART_PARITY_ODD:
        ssp.parity = 'O';
        packet_size++;
        break;
    default:
        ssp.parity = 'N';
        break;
    }

    switch (s->r[R_MR] & UART_MR_CHRL) {
    case UART_DATA_BITS_6:
        ssp.data_bits = 6;
        break;
    case UART_DATA_BITS_7:
        ssp.data_bits = 7;
        break;
    default:
        ssp.data_bits = 8;
        break;
    }

    switch (s->r[R_MR] & UART_MR_NBSTOP) {
    case UART_STOP_BITS_1:
        ssp.stop_bits = 1;
        break;
    default:
        ssp.stop_bits = 2;
        break;
    }

    packet_size += ssp.data_bits + ssp.stop_bits;
212
    s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
213 214
    if (s->chr.chr) {
        qemu_chr_fe_ioctl(s->chr.chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
215
    }
216 217 218 219
}

static int uart_can_receive(void *opaque)
{
220 221
    CadenceUARTState *s = opaque;
    int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
222
    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
223

224
    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
225
        ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
226 227
    }
    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
228
        ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
229 230
    }
    return ret;
231 232
}

233
static void uart_ctrl_update(CadenceUARTState *s)
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
{
    if (s->r[R_CR] & UART_CR_TXRST) {
        uart_tx_reset(s);
    }

    if (s->r[R_CR] & UART_CR_RXRST) {
        uart_rx_reset(s);
    }

    s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);

    if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
        uart_send_breaks(s);
    }
}

static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
{
252
    CadenceUARTState *s = opaque;
253
    uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
254 255 256 257 258 259
    int i;

    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
        return;
    }

260
    if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
261 262 263
        s->r[R_CISR] |= UART_INTR_ROVR;
    } else {
        for (i = 0; i < size; i++) {
264
            s->rx_fifo[s->rx_wpos] = buf[i];
265
            s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
266 267
            s->rx_count++;
        }
268
        timer_mod(s->fifo_trigger_handle, new_rx_time +
269 270 271 272 273
                                                (s->char_tx_time * 4));
    }
    uart_update_status(s);
}

274 275 276
static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
                                  void *opaque)
{
277
    CadenceUARTState *s = opaque;
278 279 280
    int ret;

    /* instant drain the fifo when there's no back-end */
281
    if (!s->chr.chr) {
282
        s->tx_count = 0;
283
        return FALSE;
284 285 286 287 288 289
    }

    if (!s->tx_count) {
        return FALSE;
    }

290
    ret = qemu_chr_fe_write(s->chr.chr, s->tx_fifo, s->tx_count);
291 292 293 294 295

    if (ret >= 0) {
        s->tx_count -= ret;
        memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
    }
296 297

    if (s->tx_count) {
298
        guint r = qemu_chr_fe_add_watch(s->chr.chr, G_IO_OUT | G_IO_HUP,
299 300 301 302 303
                                        cadence_uart_xmit, s);
        if (!r) {
            s->tx_count = 0;
            return FALSE;
        }
304 305 306 307 308 309
    }

    uart_update_status(s);
    return FALSE;
}

310 311
static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
                               int size)
312 313 314 315 316
{
    if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
        return;
    }

317 318
    if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
        size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
319 320 321 322 323 324 325 326 327 328 329 330
        /*
         * This can only be a guest error via a bad tx fifo register push,
         * as can_receive() should stop remote loop and echo modes ever getting
         * us to here.
         */
        qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
        s->r[R_CISR] |= UART_INTR_ROVR;
    }

    memcpy(s->tx_fifo + s->tx_count, buf, size);
    s->tx_count += size;

331
    cadence_uart_xmit(NULL, G_IO_OUT, s);
332 333 334 335
}

static void uart_receive(void *opaque, const uint8_t *buf, int size)
{
336
    CadenceUARTState *s = opaque;
337 338 339 340 341 342 343 344 345 346 347 348
    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;

    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
        uart_write_rx_fifo(opaque, buf, size);
    }
    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
        uart_write_tx_fifo(s, buf, size);
    }
}

static void uart_event(void *opaque, int event)
{
349
    CadenceUARTState *s = opaque;
350 351 352 353 354 355 356 357 358
    uint8_t buf = '\0';

    if (event == CHR_EVENT_BREAK) {
        uart_write_rx_fifo(opaque, &buf, 1);
    }

    uart_update_status(s);
}

359
static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
360 361 362 363 364 365
{
    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
        return;
    }

    if (s->rx_count) {
366 367
        uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
                            s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
368
        *c = s->rx_fifo[rx_rpos];
369 370
        s->rx_count--;

371
        if (s->chr.chr) {
372
            qemu_chr_fe_accept_input(s->chr.chr);
373
        }
374 375 376 377 378 379 380
    } else {
        *c = 0;
    }

    uart_update_status(s);
}

A
Avi Kivity 已提交
381
static void uart_write(void *opaque, hwaddr offset,
382 383
                          uint64_t value, unsigned size)
{
384
    CadenceUARTState *s = opaque;
385

386
    DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
387
    offset >>= 2;
388 389 390
    if (offset >= CADENCE_UART_R_MAX) {
        return;
    }
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    switch (offset) {
    case R_IER: /* ier (wts imr) */
        s->r[R_IMR] |= value;
        break;
    case R_IDR: /* idr (wtc imr) */
        s->r[R_IMR] &= ~value;
        break;
    case R_IMR: /* imr (read only) */
        break;
    case R_CISR: /* cisr (wtc) */
        s->r[R_CISR] &= ~value;
        break;
    case R_TX_RX: /* UARTDR */
        switch (s->r[R_MR] & UART_MR_CHMODE) {
        case NORMAL_MODE:
            uart_write_tx_fifo(s, (uint8_t *) &value, 1);
            break;
        case LOCAL_LOOPBACK:
            uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
            break;
        }
        break;
    default:
        s->r[offset] = value;
    }

    switch (offset) {
    case R_CR:
        uart_ctrl_update(s);
        break;
    case R_MR:
        uart_parameters_setup(s);
        break;
    }
425
    uart_update_status(s);
426 427
}

A
Avi Kivity 已提交
428
static uint64_t uart_read(void *opaque, hwaddr offset,
429 430
        unsigned size)
{
431
    CadenceUARTState *s = opaque;
432 433 434
    uint32_t c = 0;

    offset >>= 2;
435
    if (offset >= CADENCE_UART_R_MAX) {
436
        c = 0;
437 438
    } else if (offset == R_TX_RX) {
        uart_read_rx_fifo(s, &c);
439 440
    } else {
       c = s->r[offset];
441
    }
442 443 444

    DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
    return c;
445 446 447 448 449 450 451 452
}

static const MemoryRegionOps uart_ops = {
    .read = uart_read,
    .write = uart_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

453
static void cadence_uart_reset(DeviceState *dev)
454
{
455
    CadenceUARTState *s = CADENCE_UART(dev);
456

457 458 459 460 461 462 463 464 465 466
    s->r[R_CR] = 0x00000128;
    s->r[R_IMR] = 0;
    s->r[R_CISR] = 0;
    s->r[R_RTRIG] = 0x00000020;
    s->r[R_BRGR] = 0x0000000F;
    s->r[R_TTRIG] = 0x00000020;

    uart_rx_reset(s);
    uart_tx_reset(s);

467
    uart_update_status(s);
468 469
}

470
static void cadence_uart_realize(DeviceState *dev, Error **errp)
471
{
472
    CadenceUARTState *s = CADENCE_UART(dev);
473

474
    s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
475
                                          fifo_trigger_update, s);
476

477 478
    if (s->chr.chr) {
        qemu_chr_add_handlers(s->chr.chr, uart_can_receive, uart_receive,
479 480
                              uart_event, s);
    }
481
}
482

483 484 485
static void cadence_uart_init(Object *obj)
{
    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
486
    CadenceUARTState *s = CADENCE_UART(obj);
487 488 489 490 491

    memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
    sysbus_init_mmio(sbd, &s->iomem);
    sysbus_init_irq(sbd, &s->irq);

492
    s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
493 494 495 496
}

static int cadence_uart_post_load(void *opaque, int version_id)
{
497
    CadenceUARTState *s = opaque;
498 499 500 501 502 503 504 505

    uart_parameters_setup(s);
    uart_update_status(s);
    return 0;
}

static const VMStateDescription vmstate_cadence_uart = {
    .name = "cadence_uart",
506 507
    .version_id = 2,
    .minimum_version_id = 2,
508 509
    .post_load = cadence_uart_post_load,
    .fields = (VMStateField[]) {
510 511 512 513 514 515 516 517 518
        VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
        VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
                            CADENCE_UART_RX_FIFO_SIZE),
        VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
                            CADENCE_UART_TX_FIFO_SIZE),
        VMSTATE_UINT32(rx_count, CadenceUARTState),
        VMSTATE_UINT32(tx_count, CadenceUARTState),
        VMSTATE_UINT32(rx_wpos, CadenceUARTState),
        VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
519 520 521 522
        VMSTATE_END_OF_LIST()
    }
};

523 524 525 526 527
static Property cadence_uart_properties[] = {
    DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
    DEFINE_PROP_END_OF_LIST(),
};

528 529 530 531
static void cadence_uart_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

532
    dc->realize = cadence_uart_realize;
533
    dc->vmsd = &vmstate_cadence_uart;
534
    dc->reset = cadence_uart_reset;
535 536
    dc->props = cadence_uart_properties;
  }
537

538
static const TypeInfo cadence_uart_info = {
A
Andreas Färber 已提交
539
    .name          = TYPE_CADENCE_UART,
540
    .parent        = TYPE_SYS_BUS_DEVICE,
541
    .instance_size = sizeof(CadenceUARTState),
542
    .instance_init = cadence_uart_init,
543 544 545 546 547 548 549 550 551
    .class_init    = cadence_uart_class_init,
};

static void cadence_uart_register_types(void)
{
    type_register_static(&cadence_uart_info);
}

type_init(cadence_uart_register_types)