mmu-hash64.c 29.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
 *
 *  Copyright (c) 2003-2007 Jocelyn Mayer
 *  Copyright (c) 2013 David Gibson, IBM Corporation
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */
P
Peter Maydell 已提交
20
#include "qemu/osdep.h"
21
#include "qapi/error.h"
22
#include "cpu.h"
23
#include "exec/exec-all.h"
24
#include "exec/helper-proto.h"
25
#include "qemu/error-report.h"
26 27 28
#include "sysemu/kvm.h"
#include "kvm_ppc.h"
#include "mmu-hash64.h"
29
#include "exec/log.h"
30 31 32 33

//#define DEBUG_SLB

#ifdef DEBUG_SLB
P
Paolo Bonzini 已提交
34
#  define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
35 36 37 38
#else
#  define LOG_SLB(...) do { } while (0)
#endif

39
/*
40 41
 * Used to indicate that a CPU has its hash page table (HPT) managed
 * within the host kernel
42
 */
43 44
#define MMU_HASH64_KVM_MANAGED_HPT      ((void *)-1)

45 46 47 48
/*
 * SLB handling
 */

49
static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
50
{
51
    CPUPPCState *env = &cpu->env;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    uint64_t esid_256M, esid_1T;
    int n;

    LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);

    esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
    esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;

    for (n = 0; n < env->slb_nr; n++) {
        ppc_slb_t *slb = &env->slb[n];

        LOG_SLB("%s: slot %d %016" PRIx64 " %016"
                    PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
        /* We check for 1T matches on all MMUs here - if the MMU
         * doesn't have 1T segment support, we will have prevented 1T
         * entries from being inserted in the slbmte code. */
        if (((slb->esid == esid_256M) &&
             ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
            || ((slb->esid == esid_1T) &&
                ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
            return slb;
        }
    }

    return NULL;
}

79
void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
80
{
81
    CPUPPCState *env = &cpu->env;
82 83 84
    int i;
    uint64_t slbe, slbv;

85
    cpu_synchronize_state(CPU(cpu));
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

    cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
    for (i = 0; i < env->slb_nr; i++) {
        slbe = env->slb[i].esid;
        slbv = env->slb[i].vsid;
        if (slbe == 0 && slbv == 0) {
            continue;
        }
        cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
                    i, slbe, slbv);
    }
}

void helper_slbia(CPUPPCState *env)
{
101
    int n;
102 103 104 105 106 107 108 109 110 111 112

    /* XXX: Warning: slbia never invalidates the first segment */
    for (n = 1; n < env->slb_nr; n++) {
        ppc_slb_t *slb = &env->slb[n];

        if (slb->esid & SLB_ESID_V) {
            slb->esid &= ~SLB_ESID_V;
            /* XXX: given the fact that segment size is 256 MB or 1TB,
             *      and we still don't have a tlb_flush_mask(env, n, mask)
             *      in QEMU, we just invalidate all TLBs
             */
113
            env->tlb_need_flush = 1;
114 115 116 117 118 119
        }
    }
}

void helper_slbie(CPUPPCState *env, target_ulong addr)
{
120
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
121 122
    ppc_slb_t *slb;

123
    slb = slb_lookup(cpu, addr);
124 125 126 127 128 129 130 131 132 133 134
    if (!slb) {
        return;
    }

    if (slb->esid & SLB_ESID_V) {
        slb->esid &= ~SLB_ESID_V;

        /* XXX: given the fact that segment size is 256 MB or 1TB,
         *      and we still don't have a tlb_flush_mask(env, n, mask)
         *      in QEMU, we just invalidate all TLBs
         */
135
        env->tlb_need_flush = 1;
136 137 138
    }
}

D
David Gibson 已提交
139 140
int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
                  target_ulong esid, target_ulong vsid)
141
{
142
    CPUPPCState *env = &cpu->env;
143
    ppc_slb_t *slb = &env->slb[slot];
144 145
    const struct ppc_one_seg_page_size *sps = NULL;
    int i;
146

D
David Gibson 已提交
147 148 149 150 151
    if (slot >= env->slb_nr) {
        return -1; /* Bad slot number */
    }
    if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
        return -1; /* Reserved bits set */
152
    }
D
David Gibson 已提交
153
    if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
154 155
        return -1; /* Bad segment size */
    }
D
David Gibson 已提交
156
    if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
157 158 159
        return -1; /* 1T segment on MMU that doesn't support it */
    }

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];

        if (!sps1->page_shift) {
            break;
        }

        if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
            sps = sps1;
            break;
        }
    }

    if (!sps) {
        error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
                     " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
                     slot, esid, vsid);
        return -1;
    }

D
David Gibson 已提交
180 181
    slb->esid = esid;
    slb->vsid = vsid;
182
    slb->sps = sps;
183 184

    LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64
D
David Gibson 已提交
185
            " %016" PRIx64 "\n", __func__, slot, esid, vsid,
186 187 188 189 190
            slb->esid, slb->vsid);

    return 0;
}

191
static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
192 193
                             target_ulong *rt)
{
194
    CPUPPCState *env = &cpu->env;
195 196 197 198 199 200 201 202 203 204 205
    int slot = rb & 0xfff;
    ppc_slb_t *slb = &env->slb[slot];

    if (slot >= env->slb_nr) {
        return -1;
    }

    *rt = slb->esid;
    return 0;
}

206
static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
207 208
                             target_ulong *rt)
{
209
    CPUPPCState *env = &cpu->env;
210 211 212 213 214 215 216 217 218 219 220
    int slot = rb & 0xfff;
    ppc_slb_t *slb = &env->slb[slot];

    if (slot >= env->slb_nr) {
        return -1;
    }

    *rt = slb->vsid;
    return 0;
}

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
                             target_ulong *rt)
{
    CPUPPCState *env = &cpu->env;
    ppc_slb_t *slb;

    if (!msr_is_64bit(env, env->msr)) {
        rb &= 0xffffffff;
    }
    slb = slb_lookup(cpu, rb);
    if (slb == NULL) {
        *rt = (target_ulong)-1ul;
    } else {
        *rt = slb->vsid;
    }
    return 0;
}

239 240
void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
{
241 242
    PowerPCCPU *cpu = ppc_env_get_cpu(env);

D
David Gibson 已提交
243
    if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
244 245
        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
                               POWERPC_EXCP_INVAL, GETPC());
246 247 248 249 250
    }
}

target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
{
251
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
252 253
    target_ulong rt = 0;

254
    if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
255 256
        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
                               POWERPC_EXCP_INVAL, GETPC());
257 258 259 260
    }
    return rt;
}

261 262 263 264 265 266
target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
    target_ulong rt = 0;

    if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
267 268
        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
                               POWERPC_EXCP_INVAL, GETPC());
269 270 271 272
    }
    return rt;
}

273 274
target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
{
275
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
276 277
    target_ulong rt = 0;

278
    if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
279 280
        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
                               POWERPC_EXCP_INVAL, GETPC());
281 282 283
    }
    return rt;
}
284 285 286 287

/*
 * 64-bit hash table MMU handling
 */
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
void ppc_hash64_set_sdr1(PowerPCCPU *cpu, target_ulong value,
                         Error **errp)
{
    CPUPPCState *env = &cpu->env;
    target_ulong htabsize = value & SDR_64_HTABSIZE;

    env->spr[SPR_SDR1] = value;
    if (htabsize > 28) {
        error_setg(errp,
                   "Invalid HTABSIZE 0x" TARGET_FMT_lx" stored in SDR1",
                   htabsize);
        htabsize = 28;
    }
    env->htab_mask = (1ULL << (htabsize + 18 - 7)) - 1;
    env->htab_base = value & SDR_64_HTABORG;
}

void ppc_hash64_set_external_hpt(PowerPCCPU *cpu, void *hpt, int shift,
                                 Error **errp)
{
    CPUPPCState *env = &cpu->env;
    Error *local_err = NULL;

311 312 313 314 315
    if (hpt) {
        env->external_htab = hpt;
    } else {
        env->external_htab = MMU_HASH64_KVM_MANAGED_HPT;
    }
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    ppc_hash64_set_sdr1(cpu, (target_ulong)(uintptr_t)hpt | (shift - 18),
                        &local_err);
    if (local_err) {
        error_propagate(errp, local_err);
        return;
    }

    /* Not strictly necessary, but makes it clearer that an external
     * htab is in use when debugging */
    env->htab_base = -1;

    if (kvm_enabled()) {
        if (kvmppc_put_books_sregs(cpu) < 0) {
            error_setg(errp, "Unable to update SDR1 in KVM");
        }
    }
}
333

334
static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
335
                               ppc_slb_t *slb, ppc_hash_pte64_t pte)
336
{
337
    CPUPPCState *env = &cpu->env;
338 339 340 341 342 343 344 345
    unsigned pp, key;
    /* Some pp bit combinations have undefined behaviour, so default
     * to no access in those cases */
    int prot = 0;

    key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
             : (slb->vsid & SLB_VSID_KS));
    pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
346 347 348 349 350 351

    if (key == 0) {
        switch (pp) {
        case 0x0:
        case 0x1:
        case 0x2:
352 353 354
            prot = PAGE_READ | PAGE_WRITE;
            break;

355 356
        case 0x3:
        case 0x6:
357
            prot = PAGE_READ;
358 359 360 361 362 363
            break;
        }
    } else {
        switch (pp) {
        case 0x0:
        case 0x6:
364
            prot = 0;
365
            break;
366

367 368
        case 0x1:
        case 0x3:
369
            prot = PAGE_READ;
370
            break;
371

372
        case 0x2:
373
            prot = PAGE_READ | PAGE_WRITE;
374 375 376 377
            break;
        }
    }

378
    /* No execute if either noexec or guarded bits set */
379 380
    if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G)
        || (slb->vsid & SLB_VSID_N)) {
381
        prot |= PAGE_EXEC;
382 383
    }

384
    return prot;
385 386
}

387
static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
388
{
389
    CPUPPCState *env = &cpu->env;
390
    int key, amrbits;
391
    int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
392 393 394

    /* Only recent MMUs implement Virtual Page Class Key Protection */
    if (!(env->mmu_model & POWERPC_MMU_AMR)) {
395
        return prot;
396 397 398 399 400 401 402 403
    }

    key = HPTE64_R_KEY(pte.pte1);
    amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;

    /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
    /*         env->spr[SPR_AMR]); */

404 405 406 407
    /*
     * A store is permitted if the AMR bit is 0. Remove write
     * protection if it is set.
     */
408
    if (amrbits & 0x2) {
409
        prot &= ~PAGE_WRITE;
410
    }
411 412 413 414
    /*
     * A load is permitted if the AMR bit is 0. Remove read
     * protection if it is set.
     */
415
    if (amrbits & 0x1) {
416
        prot &= ~PAGE_READ;
417 418 419 420 421
    }

    return prot;
}

422 423 424 425 426 427
uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index)
{
    uint64_t token = 0;
    hwaddr pte_offset;

    pte_offset = pte_index * HASH_PTE_SIZE_64;
428
    if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
429 430 431 432
        /*
         * HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
         */
        token = kvmppc_hash64_read_pteg(cpu, pte_index);
433
    } else if (cpu->env.external_htab) {
434
        /*
435 436
         * HTAB is controlled by QEMU. Just point to the internally
         * accessible PTEG.
437 438 439 440 441 442 443 444
         */
        token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset;
    } else if (cpu->env.htab_base) {
        token = cpu->env.htab_base + pte_offset;
    }
    return token;
}

445
void ppc_hash64_stop_access(PowerPCCPU *cpu, uint64_t token)
446
{
447
    if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
448
        kvmppc_hash64_free_pteg(token);
449 450 451
    }
}

452 453
static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps,
    uint64_t pte0, uint64_t pte1)
454
{
455 456 457 458 459 460 461 462
    int i;

    if (!(pte0 & HPTE64_V_LARGE)) {
        if (sps->page_shift != 12) {
            /* 4kiB page in a non 4kiB segment */
            return 0;
        }
        /* Normal 4kiB page */
463
        return 12;
464 465 466 467 468 469 470 471
    }

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        const struct ppc_one_page_size *ps = &sps->enc[i];
        uint64_t mask;

        if (!ps->page_shift) {
            break;
472
        }
473 474 475 476 477 478 479 480

        if (ps->page_shift == 12) {
            /* L bit is set so this can't be a 4kiB page */
            continue;
        }

        mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;

481
        if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
482
            return ps->page_shift;
483 484
        }
    }
485 486

    return 0; /* Bad page size encoding */
487 488
}

489
static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
490 491
                                     const struct ppc_one_seg_page_size *sps,
                                     target_ulong ptem,
492
                                     ppc_hash_pte64_t *pte, unsigned *pshift)
493
{
494
    CPUPPCState *env = &cpu->env;
495
    int i;
496 497 498
    uint64_t token;
    target_ulong pte0, pte1;
    target_ulong pte_index;
499

500
    pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP;
501
    token = ppc_hash64_start_access(cpu, pte_index);
502 503 504
    if (!token) {
        return -1;
    }
505
    for (i = 0; i < HPTES_PER_GROUP; i++) {
506 507
        pte0 = ppc_hash64_load_hpte0(cpu, token, i);
        pte1 = ppc_hash64_load_hpte1(cpu, token, i);
508

509 510
        /* This compares V, B, H (secondary) and the AVPN */
        if (HPTE64_V_COMPARE(pte0, ptem)) {
511
            *pshift = hpte_page_shift(sps, pte0, pte1);
512 513 514 515 516 517 518
            /*
             * If there is no match, ignore the PTE, it could simply
             * be for a different segment size encoding and the
             * architecture specifies we should not match. Linux will
             * potentially leave behind PTEs for the wrong base page
             * size when demoting segments.
             */
519
            if (*pshift == 0) {
520 521 522 523 524
                continue;
            }
            /* We don't do anything with pshift yet as qemu TLB only deals
             * with 4K pages anyway
             */
525 526
            pte->pte0 = pte0;
            pte->pte1 = pte1;
527
            ppc_hash64_stop_access(cpu, token);
528
            return (pte_index + i) * HASH_PTE_SIZE_64;
529 530
        }
    }
531
    ppc_hash64_stop_access(cpu, token);
532 533 534
    /*
     * We didn't find a valid entry.
     */
535 536 537
    return -1;
}

538
static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
539
                                     ppc_slb_t *slb, target_ulong eaddr,
540
                                     ppc_hash_pte64_t *pte, unsigned *pshift)
541
{
542
    CPUPPCState *env = &cpu->env;
543
    hwaddr pte_offset;
544
    hwaddr hash;
545
    uint64_t vsid, epnmask, epn, ptem;
546
    const struct ppc_one_seg_page_size *sps = slb->sps;
547 548 549

    /* The SLB store path should prevent any bad page size encodings
     * getting in there, so: */
550
    assert(sps);
551

552 553 554 555 556 557 558 559
    /* If ISL is set in LPCR we need to clamp the page size to 4K */
    if (env->spr[SPR_LPCR] & LPCR_ISL) {
        /* We assume that when using TCG, 4k is first entry of SPS */
        sps = &env->sps.sps[0];
        assert(sps->page_shift == 12);
    }

    epnmask = ~((1ULL << sps->page_shift) - 1);
560 561

    if (slb->vsid & SLB_VSID_B) {
562 563 564
        /* 1TB segment */
        vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
        epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
565
        hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
566
    } else {
567 568 569
        /* 256M segment */
        vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
        epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
570
        hash = vsid ^ (epn >> sps->page_shift);
571
    }
572
    ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
573
    ptem |= HPTE64_V_VALID;
574 575

    /* Page address translation */
576 577
    qemu_log_mask(CPU_LOG_MMU,
            "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
578 579 580 581
            " hash " TARGET_FMT_plx "\n",
            env->htab_base, env->htab_mask, hash);

    /* Primary PTEG lookup */
582 583
    qemu_log_mask(CPU_LOG_MMU,
            "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
584 585 586
            " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
            " hash=" TARGET_FMT_plx "\n",
            env->htab_base, env->htab_mask, vsid, ptem,  hash);
587
    pte_offset = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
588

589 590
    if (pte_offset == -1) {
        /* Secondary PTEG lookup */
591
        ptem |= HPTE64_V_SECONDARY;
592 593
        qemu_log_mask(CPU_LOG_MMU,
                "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
594 595 596 597
                " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
                " hash=" TARGET_FMT_plx "\n", env->htab_base,
                env->htab_mask, vsid, ptem, ~hash);

598
        pte_offset = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
599 600
    }

601
    return pte_offset;
602
}
603

604
unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
605
                                          uint64_t pte0, uint64_t pte1)
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
{
    CPUPPCState *env = &cpu->env;
    int i;

    if (!(pte0 & HPTE64_V_LARGE)) {
        return 12;
    }

    /*
     * The encodings in env->sps need to be carefully chosen so that
     * this gives an unambiguous result.
     */
    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        const struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
        unsigned shift;

        if (!sps->page_shift) {
            break;
        }

        shift = hpte_page_shift(sps, pte0, pte1);
        if (shift) {
            return shift;
        }
    }

    return 0;
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
static void ppc_hash64_set_isi(CPUState *cs, CPUPPCState *env,
                               uint64_t error_code)
{
    bool vpm;

    if (msr_ir) {
        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
    } else {
        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
    }
    if (vpm && !msr_hv) {
        cs->exception_index = POWERPC_EXCP_HISI;
    } else {
        cs->exception_index = POWERPC_EXCP_ISI;
    }
    env->error_code = error_code;
}

static void ppc_hash64_set_dsi(CPUState *cs, CPUPPCState *env, uint64_t dar,
                               uint64_t dsisr)
{
    bool vpm;

    if (msr_dr) {
        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
    } else {
        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
    }
    if (vpm && !msr_hv) {
        cs->exception_index = POWERPC_EXCP_HDSI;
        env->spr[SPR_HDAR] = dar;
        env->spr[SPR_HDSISR] = dsisr;
    } else {
        cs->exception_index = POWERPC_EXCP_DSI;
        env->spr[SPR_DAR] = dar;
        env->spr[SPR_DSISR] = dsisr;
   }
    env->error_code = 0;
}


676
int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
677
                                int rwx, int mmu_idx)
678
{
679 680
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;
681
    ppc_slb_t *slb;
682
    unsigned apshift;
683 684
    hwaddr pte_offset;
    ppc_hash_pte64_t pte;
685
    int pp_prot, amr_prot, prot;
686
    uint64_t new_pte1, dsisr;
687
    const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
688
    hwaddr raddr;
689

690 691
    assert((rwx == 0) || (rwx == 1) || (rwx == 2));

692 693 694 695 696 697 698
    /* Note on LPCR usage: 970 uses HID4, but our special variant
     * of store_spr copies relevant fields into env->spr[SPR_LPCR].
     * Similarily we filter unimplemented bits when storing into
     * LPCR depending on the MMU version. This code can thus just
     * use the LPCR "as-is".
     */

699 700
    /* 1. Handle real mode accesses */
    if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
701 702
        /* Translation is supposedly "off"  */
        /* In real mode the top 4 effective address bits are (mostly) ignored */
703
        raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

        /* In HV mode, add HRMOR if top EA bit is clear */
        if (msr_hv || !env->has_hv_mode) {
            if (!(eaddr >> 63)) {
                raddr |= env->spr[SPR_HRMOR];
            }
        } else {
            /* Otherwise, check VPM for RMA vs VRMA */
            if (env->spr[SPR_LPCR] & LPCR_VPM0) {
                slb = &env->vrma_slb;
                if (slb->sps) {
                    goto skip_slb_search;
                }
                /* Not much else to do here */
                cs->exception_index = POWERPC_EXCP_MCHECK;
                env->error_code = 0;
                return 1;
            } else if (raddr < env->rmls) {
                /* RMA. Check bounds in RMLS */
                raddr |= env->spr[SPR_RMOR];
            } else {
                /* The access failed, generate the approriate interrupt */
                if (rwx == 2) {
                    ppc_hash64_set_isi(cs, env, 0x08000000);
                } else {
                    dsisr = 0x08000000;
                    if (rwx == 1) {
                        dsisr |= 0x02000000;
                    }
                    ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
                }
                return 1;
            }
        }
738
        tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
739 740
                     PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
                     TARGET_PAGE_SIZE);
741 742 743
        return 0;
    }

744
    /* 2. Translation is on, so look up the SLB */
745
    slb = slb_lookup(cpu, eaddr);
746
    if (!slb) {
747
        if (rwx == 2) {
748
            cs->exception_index = POWERPC_EXCP_ISEG;
749 750
            env->error_code = 0;
        } else {
751
            cs->exception_index = POWERPC_EXCP_DSEG;
752 753 754 755
            env->error_code = 0;
            env->spr[SPR_DAR] = eaddr;
        }
        return 1;
756 757
    }

758 759
skip_slb_search:

760 761
    /* 3. Check for segment level no-execute violation */
    if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
762
        ppc_hash64_set_isi(cs, env, 0x10000000);
763
        return 1;
764 765
    }

766
    /* 4. Locate the PTE in the hash table */
767
    pte_offset = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
768
    if (pte_offset == -1) {
769
        dsisr = 0x40000000;
770
        if (rwx == 2) {
771
            ppc_hash64_set_isi(cs, env, dsisr);
772 773
        } else {
            if (rwx == 1) {
774
                dsisr |= 0x02000000;
775
            }
776
            ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
777 778
        }
        return 1;
779
    }
780 781
    qemu_log_mask(CPU_LOG_MMU,
                "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
782 783 784

    /* 5. Check access permissions */

785 786
    pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
    amr_prot = ppc_hash64_amr_prot(cpu, pte);
787
    prot = pp_prot & amr_prot;
788

789
    if ((need_prot[rwx] & ~prot) != 0) {
790
        /* Access right violation */
791
        qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
792
        if (rwx == 2) {
793
            ppc_hash64_set_isi(cs, env, 0x08000000);
794
        } else {
795
            dsisr = 0;
796 797 798
            if (need_prot[rwx] & ~pp_prot) {
                dsisr |= 0x08000000;
            }
799
            if (rwx == 1) {
800 801 802 803
                dsisr |= 0x02000000;
            }
            if (need_prot[rwx] & ~amr_prot) {
                dsisr |= 0x00200000;
804
            }
805
            ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
806 807
        }
        return 1;
808 809
    }

810
    qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
811 812 813

    /* 6. Update PTE referenced and changed bits if necessary */

814 815 816 817 818 819
    new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
    if (rwx == 1) {
        new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
    } else {
        /* Treat the page as read-only for now, so that a later write
         * will pass through this function again to set the C bit */
820
        prot &= ~PAGE_WRITE;
821 822 823
    }

    if (new_pte1 != pte.pte1) {
824
        ppc_hash64_store_hpte(cpu, pte_offset / HASH_PTE_SIZE_64,
825
                              pte.pte0, new_pte1);
826
    }
827

828 829
    /* 7. Determine the real address from the PTE */

830
    raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
831

832
    tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
833
                 prot, mmu_idx, 1ULL << apshift);
834 835

    return 0;
836
}
837

838
hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
839
{
840
    CPUPPCState *env = &cpu->env;
841
    ppc_slb_t *slb;
842
    hwaddr pte_offset, raddr;
843
    ppc_hash_pte64_t pte;
844
    unsigned apshift;
845

846
    /* Handle real mode */
847 848
    if (msr_dr == 0) {
        /* In real mode the top 4 effective address bits are ignored */
849
        raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
850

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
        /* In HV mode, add HRMOR if top EA bit is clear */
        if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
            return raddr | env->spr[SPR_HRMOR];
        }

        /* Otherwise, check VPM for RMA vs VRMA */
        if (env->spr[SPR_LPCR] & LPCR_VPM0) {
            slb = &env->vrma_slb;
            if (!slb->sps) {
                return -1;
            }
        } else if (raddr < env->rmls) {
            /* RMA. Check bounds in RMLS */
            return raddr | env->spr[SPR_RMOR];
        } else {
            return -1;
        }
    } else {
        slb = slb_lookup(cpu, addr);
        if (!slb) {
            return -1;
        }
873 874
    }

875
    pte_offset = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
876
    if (pte_offset == -1) {
877 878 879
        return -1;
    }

880
    return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
881
        & TARGET_PAGE_MASK;
882
}
883

884
void ppc_hash64_store_hpte(PowerPCCPU *cpu,
885 886 887
                           target_ulong pte_index,
                           target_ulong pte0, target_ulong pte1)
{
888
    CPUPPCState *env = &cpu->env;
889

890
    if (env->external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
891 892
        kvmppc_hash64_write_pte(env, pte_index, pte0, pte1);
        return;
893 894 895 896 897
    }

    pte_index *= HASH_PTE_SIZE_64;
    if (env->external_htab) {
        stq_p(env->external_htab + pte_index, pte0);
898
        stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
899
    } else {
900 901 902
        stq_phys(CPU(cpu)->as, env->htab_base + pte_index, pte0);
        stq_phys(CPU(cpu)->as,
                 env->htab_base + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
903 904
    }
}
905 906 907 908 909 910 911 912 913 914 915 916

void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu,
                               target_ulong pte_index,
                               target_ulong pte0, target_ulong pte1)
{
    /*
     * XXX: given the fact that there are too many segments to
     * invalidate, and we still don't have a tlb_flush_mask(env, n,
     * mask) in QEMU, we just invalidate all TLBs
     */
    tlb_flush(CPU(cpu), 1);
}
917

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
void ppc_hash64_update_rmls(CPUPPCState *env)
{
    uint64_t lpcr = env->spr[SPR_LPCR];

    /*
     * This is the full 4 bits encoding of POWER8. Previous
     * CPUs only support a subset of these but the filtering
     * is done when writing LPCR
     */
    switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
    case 0x8: /* 32MB */
        env->rmls = 0x2000000ull;
        break;
    case 0x3: /* 64MB */
        env->rmls = 0x4000000ull;
        break;
    case 0x7: /* 128MB */
        env->rmls = 0x8000000ull;
        break;
    case 0x4: /* 256MB */
        env->rmls = 0x10000000ull;
        break;
    case 0x2: /* 1GB */
        env->rmls = 0x40000000ull;
        break;
    case 0x1: /* 16GB */
        env->rmls = 0x400000000ull;
        break;
    default:
        /* What to do here ??? */
        env->rmls = 0;
    }
}

void ppc_hash64_update_vrma(CPUPPCState *env)
{
    const struct ppc_one_seg_page_size *sps = NULL;
    target_ulong esid, vsid, lpcr;
    ppc_slb_t *slb = &env->vrma_slb;
    uint32_t vrmasd;
    int i;

    /* First clear it */
    slb->esid = slb->vsid = 0;
    slb->sps = NULL;

    /* Is VRMA enabled ? */
    lpcr = env->spr[SPR_LPCR];
    if (!(lpcr & LPCR_VPM0)) {
        return;
    }

    /* Make one up. Mostly ignore the ESID which will not be
     * needed for translation
     */
    vsid = SLB_VSID_VRMA;
    vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
    vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
    esid = SLB_ESID_V;

   for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];

        if (!sps1->page_shift) {
            break;
        }

        if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
            sps = sps1;
            break;
        }
    }

    if (!sps) {
        error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
                     " vsid 0x"TARGET_FMT_lx, esid, vsid);
        return;
    }

    slb->vsid = vsid;
    slb->esid = esid;
    slb->sps = sps;
}

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
void helper_store_lpcr(CPUPPCState *env, target_ulong val)
{
    uint64_t lpcr = 0;

    /* Filter out bits */
    switch (env->mmu_model) {
    case POWERPC_MMU_64B: /* 970 */
        if (val & 0x40) {
            lpcr |= LPCR_LPES0;
        }
        if (val & 0x8000000000000000ull) {
            lpcr |= LPCR_LPES1;
        }
        if (val & 0x20) {
            lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
        }
        if (val & 0x4000000000000000ull) {
            lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
        }
        if (val & 0x2000000000000000ull) {
            lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
        }
        env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;

        /* XXX We could also write LPID from HID4 here
         * but since we don't tag any translation on it
         * it doesn't actually matter
         */
        /* XXX For proper emulation of 970 we also need
         * to dig HRMOR out of HID5
         */
        break;
    case POWERPC_MMU_2_03: /* P5p */
        lpcr = val & (LPCR_RMLS | LPCR_ILE |
                      LPCR_LPES0 | LPCR_LPES1 |
                      LPCR_RMI | LPCR_HDICE);
        break;
    case POWERPC_MMU_2_06: /* P7 */
        lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
                      LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
                      LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
                      LPCR_MER | LPCR_TC |
                      LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
        break;
    case POWERPC_MMU_2_07: /* P8 */
        lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
                      LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
                      LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
                      LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
                      LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
        break;
    default:
        ;
    }
    env->spr[SPR_LPCR] = lpcr;
1057 1058
    ppc_hash64_update_rmls(env);
    ppc_hash64_update_vrma(env);
1059
}