kvm.c 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/*
 * ARM implementation of KVM hooks
 *
 * Copyright Christoffer Dall 2009-2010
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include <stdio.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>

#include <linux/kvm.h>

#include "qemu-common.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "cpu.h"
#include "hw/arm-misc.h"

const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
    KVM_CAP_LAST_INFO
};

int kvm_arch_init(KVMState *s)
{
    /* For ARM interrupt delivery is always asynchronous,
     * whether we are using an in-kernel VGIC or not.
     */
    kvm_async_interrupts_allowed = true;
    return 0;
}

unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
    return cpu->cpu_index;
}

int kvm_arch_init_vcpu(CPUState *cs)
{
    struct kvm_vcpu_init init;
46 47 48
    int ret;
    uint64_t v;
    struct kvm_one_reg r;
49 50 51

    init.target = KVM_ARM_TARGET_CORTEX_A15;
    memset(init.features, 0, sizeof(init.features));
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    ret = kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
    if (ret) {
        return ret;
    }
    /* Query the kernel to make sure it supports 32 VFP
     * registers: QEMU's "cortex-a15" CPU is always a
     * VFP-D32 core. The simplest way to do this is just
     * to attempt to read register d31.
     */
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
    r.addr = (uintptr_t)(&v);
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
    if (ret == ENOENT) {
        return EINVAL;
    }
    return ret;
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
}

typedef struct Reg {
    uint64_t id;
    int offset;
} Reg;

#define COREREG(KERNELNAME, QEMUFIELD)                       \
    {                                                        \
        KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \
        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
        offsetof(CPUARMState, QEMUFIELD)                     \
    }

#define CP15REG(CRN, CRM, OPC1, OPC2, QEMUFIELD) \
    {                                            \
        KVM_REG_ARM | KVM_REG_SIZE_U32 |         \
        (15 << KVM_REG_ARM_COPROC_SHIFT) |       \
        ((CRN) << KVM_REG_ARM_32_CRN_SHIFT) |    \
        ((CRM) << KVM_REG_ARM_CRM_SHIFT) |       \
        ((OPC1) << KVM_REG_ARM_OPC1_SHIFT) |     \
        ((OPC2) << KVM_REG_ARM_32_OPC2_SHIFT),   \
        offsetof(CPUARMState, QEMUFIELD)         \
    }

93 94 95 96 97 98 99
#define VFPSYSREG(R)                                       \
    {                                                      \
        KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
        KVM_REG_ARM_VFP_##R,                               \
        offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R])      \
    }

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
static const Reg regs[] = {
    /* R0_usr .. R14_usr */
    COREREG(usr_regs.uregs[0], regs[0]),
    COREREG(usr_regs.uregs[1], regs[1]),
    COREREG(usr_regs.uregs[2], regs[2]),
    COREREG(usr_regs.uregs[3], regs[3]),
    COREREG(usr_regs.uregs[4], regs[4]),
    COREREG(usr_regs.uregs[5], regs[5]),
    COREREG(usr_regs.uregs[6], regs[6]),
    COREREG(usr_regs.uregs[7], regs[7]),
    COREREG(usr_regs.uregs[8], usr_regs[0]),
    COREREG(usr_regs.uregs[9], usr_regs[1]),
    COREREG(usr_regs.uregs[10], usr_regs[2]),
    COREREG(usr_regs.uregs[11], usr_regs[3]),
    COREREG(usr_regs.uregs[12], usr_regs[4]),
    COREREG(usr_regs.uregs[13], banked_r13[0]),
    COREREG(usr_regs.uregs[14], banked_r14[0]),
    /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
    COREREG(svc_regs[0], banked_r13[1]),
    COREREG(svc_regs[1], banked_r14[1]),
    COREREG(svc_regs[2], banked_spsr[1]),
    COREREG(abt_regs[0], banked_r13[2]),
    COREREG(abt_regs[1], banked_r14[2]),
    COREREG(abt_regs[2], banked_spsr[2]),
    COREREG(und_regs[0], banked_r13[3]),
    COREREG(und_regs[1], banked_r14[3]),
    COREREG(und_regs[2], banked_spsr[3]),
    COREREG(irq_regs[0], banked_r13[4]),
    COREREG(irq_regs[1], banked_r14[4]),
    COREREG(irq_regs[2], banked_spsr[4]),
    /* R8_fiq .. R14_fiq and SPSR_fiq */
    COREREG(fiq_regs[0], fiq_regs[0]),
    COREREG(fiq_regs[1], fiq_regs[1]),
    COREREG(fiq_regs[2], fiq_regs[2]),
    COREREG(fiq_regs[3], fiq_regs[3]),
    COREREG(fiq_regs[4], fiq_regs[4]),
    COREREG(fiq_regs[5], banked_r13[5]),
    COREREG(fiq_regs[6], banked_r14[5]),
    COREREG(fiq_regs[7], banked_spsr[5]),
    /* R15 */
    COREREG(usr_regs.uregs[15], regs[15]),
    /* A non-comprehensive set of cp15 registers.
     * TODO: drive this from the cp_regs hashtable instead.
     */
    CP15REG(1, 0, 0, 0, cp15.c1_sys), /* SCTLR */
    CP15REG(2, 0, 0, 2, cp15.c2_control), /* TTBCR */
    CP15REG(3, 0, 0, 0, cp15.c3), /* DACR */
147 148 149 150 151 152 153
    /* VFP system registers */
    VFPSYSREG(FPSID),
    VFPSYSREG(MVFR1),
    VFPSYSREG(MVFR0),
    VFPSYSREG(FPEXC),
    VFPSYSREG(FPINST),
    VFPSYSREG(FPINST2),
154 155 156 157 158 159 160 161 162
};

int kvm_arch_put_registers(CPUState *cs, int level)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    struct kvm_one_reg r;
    int mode, bn;
    int ret, i;
163
    uint32_t cpsr, fpscr;
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    uint64_t ttbr;

    /* Make sure the banked regs are properly set */
    mode = env->uncached_cpsr & CPSR_M;
    bn = bank_number(mode);
    if (mode == ARM_CPU_MODE_FIQ) {
        memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
    } else {
        memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
    }
    env->banked_r13[bn] = env->regs[13];
    env->banked_r14[bn] = env->regs[14];
    env->banked_spsr[bn] = env->spsr;

    /* Now we can safely copy stuff down to the kernel */
    for (i = 0; i < ARRAY_SIZE(regs); i++) {
        r.id = regs[i].id;
        r.addr = (uintptr_t)(env) + regs[i].offset;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
        if (ret) {
            return ret;
        }
    }

    /* Special cases which aren't a single CPUARMState field */
    cpsr = cpsr_read(env);
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
    r.addr = (uintptr_t)(&cpsr);
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
    if (ret) {
        return ret;
    }

    /* TTBR0: cp15 crm=2 opc1=0 */
    ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
        (2 << KVM_REG_ARM_CRM_SHIFT) | (0 << KVM_REG_ARM_OPC1_SHIFT);
    r.addr = (uintptr_t)(&ttbr);
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
    if (ret) {
        return ret;
    }

    /* TTBR1: cp15 crm=2 opc1=1 */
    ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
        (2 << KVM_REG_ARM_CRM_SHIFT) | (1 << KVM_REG_ARM_OPC1_SHIFT);
    r.addr = (uintptr_t)(&ttbr);
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    if (ret) {
        return ret;
    }

    /* VFP registers */
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
    for (i = 0; i < 32; i++) {
        r.addr = (uintptr_t)(&env->vfp.regs[i]);
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
        if (ret) {
            return ret;
        }
        r.id++;
    }

    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
        KVM_REG_ARM_VFP_FPSCR;
    fpscr = vfp_get_fpscr(env);
    r.addr = (uintptr_t)&fpscr;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
234 235 236 237 238 239 240 241 242 243 244

    return ret;
}

int kvm_arch_get_registers(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    struct kvm_one_reg r;
    int mode, bn;
    int ret, i;
245
    uint32_t cpsr, fpscr;
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    uint64_t ttbr;

    for (i = 0; i < ARRAY_SIZE(regs); i++) {
        r.id = regs[i].id;
        r.addr = (uintptr_t)(env) + regs[i].offset;
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
        if (ret) {
            return ret;
        }
    }

    /* Special cases which aren't a single CPUARMState field */
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
    r.addr = (uintptr_t)(&cpsr);
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
    if (ret) {
        return ret;
    }
    cpsr_write(env, cpsr, 0xffffffff);

    /* TTBR0: cp15 crm=2 opc1=0 */
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
        (2 << KVM_REG_ARM_CRM_SHIFT) | (0 << KVM_REG_ARM_OPC1_SHIFT);
    r.addr = (uintptr_t)(&ttbr);
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
    if (ret) {
        return ret;
    }
    env->cp15.c2_base0_hi = ttbr >> 32;
    env->cp15.c2_base0 = ttbr;

    /* TTBR1: cp15 crm=2 opc1=1 */
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
        (2 << KVM_REG_ARM_CRM_SHIFT) | (1 << KVM_REG_ARM_OPC1_SHIFT);
    r.addr = (uintptr_t)(&ttbr);
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
    if (ret) {
        return ret;
    }
    env->cp15.c2_base1_hi = ttbr >> 32;
    env->cp15.c2_base1 = ttbr;

    /* Make sure the current mode regs are properly set */
    mode = env->uncached_cpsr & CPSR_M;
    bn = bank_number(mode);
    if (mode == ARM_CPU_MODE_FIQ) {
        memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
    } else {
        memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
    }
    env->regs[13] = env->banked_r13[bn];
    env->regs[14] = env->banked_r14[bn];
    env->spsr = env->banked_spsr[bn];

    /* The main GET_ONE_REG loop above set c2_control, but we need to
     * update some extra cached precomputed values too.
     * When this is driven from the cp_regs hashtable then this ugliness
     * can disappear because we'll use the access function which sets
     * these values automatically.
     */
    env->cp15.c2_mask = ~(0xffffffffu >> env->cp15.c2_control);
    env->cp15.c2_base_mask = ~(0x3fffu >> env->cp15.c2_control);

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    /* VFP registers */
    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
    for (i = 0; i < 32; i++) {
        r.addr = (uintptr_t)(&env->vfp.regs[i]);
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
        if (ret) {
            return ret;
        }
        r.id++;
    }

    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
        KVM_REG_ARM_VFP_FPSCR;
    r.addr = (uintptr_t)&fpscr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
    if (ret) {
        return ret;
    }
    vfp_set_fpscr(env, fpscr);

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    return 0;
}

void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
{
}

void kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
{
}

int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
    return 0;
}

void kvm_arch_reset_vcpu(CPUState *cs)
{
}

bool kvm_arch_stop_on_emulation_error(CPUState *cs)
{
    return true;
}

int kvm_arch_process_async_events(CPUState *cs)
{
    return 0;
}

int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr)
{
    return 1;
}

int kvm_arch_on_sigbus(int code, void *addr)
{
    return 1;
}

void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
{
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
}

int kvm_arch_insert_sw_breakpoint(CPUState *cs,
                                  struct kvm_sw_breakpoint *bp)
{
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
    return -EINVAL;
}

int kvm_arch_insert_hw_breakpoint(target_ulong addr,
                                  target_ulong len, int type)
{
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
    return -EINVAL;
}

int kvm_arch_remove_hw_breakpoint(target_ulong addr,
                                  target_ulong len, int type)
{
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
    return -EINVAL;
}

int kvm_arch_remove_sw_breakpoint(CPUState *cs,
                                  struct kvm_sw_breakpoint *bp)
{
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
    return -EINVAL;
}

void kvm_arch_remove_all_hw_breakpoints(void)
{
    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
}