kvm64.c 27.6 KB
Newer Older
1 2 3 4
/*
 * ARM implementation of KVM hooks, 64 bit specific code
 *
 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5
 * Copyright Alex Bennée 2014, Linaro
6 7 8 9 10 11
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

P
Peter Maydell 已提交
12
#include "qemu/osdep.h"
13
#include <sys/ioctl.h>
14
#include <sys/ptrace.h>
15

16
#include <linux/elf.h>
17 18 19
#include <linux/kvm.h>

#include "qemu-common.h"
20
#include "cpu.h"
21
#include "qemu/timer.h"
22
#include "qemu/error-report.h"
23 24
#include "qemu/host-utils.h"
#include "exec/gdbstub.h"
25 26 27
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "kvm_arm.h"
28
#include "internals.h"
29 30
#include "hw/arm/arm.h"

31 32
static bool have_guest_debug;

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/*
 * Although the ARM implementation of hardware assisted debugging
 * allows for different breakpoints per-core, the current GDB
 * interface treats them as a global pool of registers (which seems to
 * be the case for x86, ppc and s390). As a result we store one copy
 * of registers which is used for all active cores.
 *
 * Write access is serialised by virtue of the GDB protocol which
 * updates things. Read access (i.e. when the values are copied to the
 * vCPU) is also gated by GDB's run control.
 *
 * This is not unreasonable as most of the time debugging kernels you
 * never know which core will eventually execute your function.
 */

typedef struct {
    uint64_t bcr;
    uint64_t bvr;
} HWBreakpoint;

/* The watchpoint registers can cover more area than the requested
 * watchpoint so we need to store the additional information
 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
 * when the watchpoint is hit.
 */
typedef struct {
    uint64_t wcr;
    uint64_t wvr;
    CPUWatchpoint details;
} HWWatchpoint;

/* Maximum and current break/watch point counts */
int max_hw_bps, max_hw_wps;
GArray *hw_breakpoints, *hw_watchpoints;

#define cur_hw_wps      (hw_watchpoints->len)
#define cur_hw_bps      (hw_breakpoints->len)
#define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
#define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))

73
/**
74
 * kvm_arm_init_debug() - check for guest debug capabilities
75 76
 * @cs: CPUState
 *
77 78
 * kvm_check_extension returns the number of debug registers we have
 * or 0 if we have none.
79 80 81 82 83 84
 *
 */
static void kvm_arm_init_debug(CPUState *cs)
{
    have_guest_debug = kvm_check_extension(cs->kvm_state,
                                           KVM_CAP_SET_GUEST_DEBUG);
85 86 87 88 89 90 91 92

    max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
    hw_watchpoints = g_array_sized_new(true, true,
                                       sizeof(HWWatchpoint), max_hw_wps);

    max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
    hw_breakpoints = g_array_sized_new(true, true,
                                       sizeof(HWBreakpoint), max_hw_bps);
93 94 95
    return;
}

96 97 98 99 100 101 102 103 104 105
/**
 * insert_hw_breakpoint()
 * @addr: address of breakpoint
 *
 * See ARM ARM D2.9.1 for details but here we are only going to create
 * simple un-linked breakpoints (i.e. we don't chain breakpoints
 * together to match address and context or vmid). The hardware is
 * capable of fancier matching but that will require exposing that
 * fanciness to GDB's interface
 *
106
 * DBGBCR<n>_EL1, Debug Breakpoint Control Registers
107 108 109 110 111 112 113 114 115 116 117
 *
 *  31  24 23  20 19   16 15 14  13  12   9 8   5 4    3 2   1  0
 * +------+------+-------+-----+----+------+-----+------+-----+---+
 * | RES0 |  BT  |  LBN  | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
 * +------+------+-------+-----+----+------+-----+------+-----+---+
 *
 * BT: Breakpoint type (0 = unlinked address match)
 * LBN: Linked BP number (0 = unused)
 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
 * BAS: Byte Address Select (RES1 for AArch64)
 * E: Enable bit
118 119 120 121 122 123 124 125 126 127 128 129
 *
 * DBGBVR<n>_EL1, Debug Breakpoint Value Registers
 *
 *  63  53 52       49 48       2  1 0
 * +------+-----------+----------+-----+
 * | RESS | VA[52:49] | VA[48:2] | 0 0 |
 * +------+-----------+----------+-----+
 *
 * Depending on the addressing mode bits the top bits of the register
 * are a sign extension of the highest applicable VA bit. Some
 * versions of GDB don't do it correctly so we ensure they are correct
 * here so future PC comparisons will work properly.
130
 */
131

132 133 134 135
static int insert_hw_breakpoint(target_ulong addr)
{
    HWBreakpoint brk = {
        .bcr = 0x1,                             /* BCR E=1, enable */
136
        .bvr = sextract64(addr, 0, 53)
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    };

    if (cur_hw_bps >= max_hw_bps) {
        return -ENOBUFS;
    }

    brk.bcr = deposit32(brk.bcr, 1, 2, 0x3);   /* PMC = 11 */
    brk.bcr = deposit32(brk.bcr, 5, 4, 0xf);   /* BAS = RES1 */

    g_array_append_val(hw_breakpoints, brk);

    return 0;
}

/**
 * delete_hw_breakpoint()
 * @pc: address of breakpoint
 *
 * Delete a breakpoint and shuffle any above down
 */

static int delete_hw_breakpoint(target_ulong pc)
{
    int i;
    for (i = 0; i < hw_breakpoints->len; i++) {
        HWBreakpoint *brk = get_hw_bp(i);
        if (brk->bvr == pc) {
            g_array_remove_index(hw_breakpoints, i);
            return 0;
        }
    }
    return -ENOENT;
}

/**
 * insert_hw_watchpoint()
 * @addr: address of watch point
 * @len: size of area
 * @type: type of watch point
 *
 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
 * stuff if we want to. The watch points can be linked with the break
 * points above to make them context aware. However for simplicity
 * currently we only deal with simple read/write watch points.
 *
 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
 *
 *  31  29 28   24 23  21  20  19 16 15 14  13   12  5 4   3 2   1  0
 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
 * | RES0 |  MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
 *
 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
 * WT: 0 - unlinked, 1 - linked (not currently used)
 * LBN: Linked BP number (not currently used)
 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
 * BAS: Byte Address Select
 * LSC: Load/Store control (01: load, 10: store, 11: both)
 * E: Enable
 *
 * The bottom 2 bits of the value register are masked. Therefore to
 * break on any sizes smaller than an unaligned word you need to set
 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
 * need to ensure you mask the address as required and set BAS=0xff
 */

static int insert_hw_watchpoint(target_ulong addr,
                                target_ulong len, int type)
{
    HWWatchpoint wp = {
        .wcr = 1, /* E=1, enable */
        .wvr = addr & (~0x7ULL),
        .details = { .vaddr = addr, .len = len }
    };

    if (cur_hw_wps >= max_hw_wps) {
        return -ENOBUFS;
    }

    /*
     * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
     * valid whether EL3 is implemented or not
     */
    wp.wcr = deposit32(wp.wcr, 1, 2, 3);

    switch (type) {
    case GDB_WATCHPOINT_READ:
        wp.wcr = deposit32(wp.wcr, 3, 2, 1);
        wp.details.flags = BP_MEM_READ;
        break;
    case GDB_WATCHPOINT_WRITE:
        wp.wcr = deposit32(wp.wcr, 3, 2, 2);
        wp.details.flags = BP_MEM_WRITE;
        break;
    case GDB_WATCHPOINT_ACCESS:
        wp.wcr = deposit32(wp.wcr, 3, 2, 3);
        wp.details.flags = BP_MEM_ACCESS;
        break;
    default:
        g_assert_not_reached();
        break;
    }
    if (len <= 8) {
        /* we align the address and set the bits in BAS */
        int off = addr & 0x7;
        int bas = (1 << len) - 1;

        wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
    } else {
        /* For ranges above 8 bytes we need to be a power of 2 */
        if (is_power_of_2(len)) {
            int bits = ctz64(len);

            wp.wvr &= ~((1 << bits) - 1);
            wp.wcr = deposit32(wp.wcr, 24, 4, bits);
            wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
        } else {
            return -ENOBUFS;
        }
    }

    g_array_append_val(hw_watchpoints, wp);
    return 0;
}


static bool check_watchpoint_in_range(int i, target_ulong addr)
{
    HWWatchpoint *wp = get_hw_wp(i);
    uint64_t addr_top, addr_bottom = wp->wvr;
    int bas = extract32(wp->wcr, 5, 8);
    int mask = extract32(wp->wcr, 24, 4);

    if (mask) {
        addr_top = addr_bottom + (1 << mask);
    } else {
        /* BAS must be contiguous but can offset against the base
         * address in DBGWVR */
        addr_bottom = addr_bottom + ctz32(bas);
        addr_top = addr_bottom + clo32(bas);
    }

    if (addr >= addr_bottom && addr <= addr_top) {
        return true;
    }

    return false;
}

/**
 * delete_hw_watchpoint()
 * @addr: address of breakpoint
 *
 * Delete a breakpoint and shuffle any above down
 */

static int delete_hw_watchpoint(target_ulong addr,
                                target_ulong len, int type)
{
    int i;
    for (i = 0; i < cur_hw_wps; i++) {
        if (check_watchpoint_in_range(i, addr)) {
            g_array_remove_index(hw_watchpoints, i);
            return 0;
        }
    }
    return -ENOENT;
}


int kvm_arch_insert_hw_breakpoint(target_ulong addr,
                                  target_ulong len, int type)
{
    switch (type) {
    case GDB_BREAKPOINT_HW:
        return insert_hw_breakpoint(addr);
        break;
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_ACCESS:
        return insert_hw_watchpoint(addr, len, type);
    default:
        return -ENOSYS;
    }
}

int kvm_arch_remove_hw_breakpoint(target_ulong addr,
                                  target_ulong len, int type)
{
    switch (type) {
    case GDB_BREAKPOINT_HW:
        return delete_hw_breakpoint(addr);
        break;
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_ACCESS:
        return delete_hw_watchpoint(addr, len, type);
    default:
        return -ENOSYS;
    }
}


void kvm_arch_remove_all_hw_breakpoints(void)
{
    if (cur_hw_wps > 0) {
        g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
    }
    if (cur_hw_bps > 0) {
        g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
    }
}

void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
{
    int i;
    memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));

    for (i = 0; i < max_hw_wps; i++) {
        HWWatchpoint *wp = get_hw_wp(i);
        ptr->dbg_wcr[i] = wp->wcr;
        ptr->dbg_wvr[i] = wp->wvr;
    }
    for (i = 0; i < max_hw_bps; i++) {
        HWBreakpoint *bp = get_hw_bp(i);
        ptr->dbg_bcr[i] = bp->bcr;
        ptr->dbg_bvr[i] = bp->bvr;
    }
}

bool kvm_arm_hw_debug_active(CPUState *cs)
{
    return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
}

static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
{
    int i;

    for (i = 0; i < cur_hw_bps; i++) {
        HWBreakpoint *bp = get_hw_bp(i);
        if (bp->bvr == pc) {
            return true;
        }
    }
    return false;
}

static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
{
    int i;

    for (i = 0; i < cur_hw_wps; i++) {
        if (check_watchpoint_in_range(i, addr)) {
            return &get_hw_wp(i)->details;
        }
    }
    return NULL;
}

397
static bool kvm_arm_pmu_set_attr(CPUState *cs, struct kvm_device_attr *attr)
398 399 400
{
    int err;

401 402
    err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
    if (err != 0) {
403
        error_report("PMU: KVM_HAS_DEVICE_ATTR: %s", strerror(-err));
404
        return false;
405 406
    }

407
    err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
408 409 410
    if (err != 0) {
        error_report("PMU: KVM_SET_DEVICE_ATTR: %s", strerror(-err));
        return false;
411 412
    }

413 414
    return true;
}
415

416
void kvm_arm_pmu_init(CPUState *cs)
417 418 419 420 421 422
{
    struct kvm_device_attr attr = {
        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
        .attr = KVM_ARM_VCPU_PMU_V3_INIT,
    };

423 424 425 426 427 428 429
    if (!ARM_CPU(cs)->has_pmu) {
        return;
    }
    if (!kvm_arm_pmu_set_attr(cs, &attr)) {
        error_report("failed to init PMU");
        abort();
    }
430 431
}

432
void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
433 434 435 436 437 438
{
    struct kvm_device_attr attr = {
        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
        .addr = (intptr_t)&irq,
        .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
    };
439

440 441 442 443 444 445 446
    if (!ARM_CPU(cs)->has_pmu) {
        return;
    }
    if (!kvm_arm_pmu_set_attr(cs, &attr)) {
        error_report("failed to set irq for PMU");
        abort();
    }
447
}
448

449 450 451 452 453
static inline void set_feature(uint64_t *features, int feature)
{
    *features |= 1ULL << feature;
}

454 455 456 457 458
static inline void unset_feature(uint64_t *features, int feature)
{
    *features &= ~(1ULL << feature);
}

459
bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
{
    /* Identify the feature bits corresponding to the host CPU, and
     * fill out the ARMHostCPUClass fields accordingly. To do this
     * we have to create a scratch VM, create a single CPU inside it,
     * and then query that CPU for the relevant ID registers.
     * For AArch64 we currently don't care about ID registers at
     * all; we just want to know the CPU type.
     */
    int fdarray[3];
    uint64_t features = 0;
    /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
     * we know these will only support creating one kind of guest CPU,
     * which is its preferred CPU type. Fortunately these old kernels
     * support only a very limited number of CPUs.
     */
    static const uint32_t cpus_to_try[] = {
        KVM_ARM_TARGET_AEM_V8,
        KVM_ARM_TARGET_FOUNDATION_V8,
        KVM_ARM_TARGET_CORTEX_A57,
        QEMU_KVM_ARM_TARGET_NONE
    };
    struct kvm_vcpu_init init;

    if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
        return false;
    }

487 488
    ahcf->target = init.target;
    ahcf->dtb_compatible = "arm,arm-v8";
489 490 491 492 493 494 495 496 497 498 499

    kvm_arm_destroy_scratch_host_vcpu(fdarray);

   /* We can assume any KVM supporting CPU is at least a v8
     * with VFPv4+Neon; this in turn implies most of the other
     * feature bits.
     */
    set_feature(&features, ARM_FEATURE_V8);
    set_feature(&features, ARM_FEATURE_VFP4);
    set_feature(&features, ARM_FEATURE_NEON);
    set_feature(&features, ARM_FEATURE_AARCH64);
500
    set_feature(&features, ARM_FEATURE_PMU);
501

502
    ahcf->features = features;
503 504 505 506

    return true;
}

507 508
#define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5

509 510 511
int kvm_arch_init_vcpu(CPUState *cs)
{
    int ret;
512
    uint64_t mpidr;
513
    ARMCPU *cpu = ARM_CPU(cs);
514
    CPUARMState *env = &cpu->env;
515 516

    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
517
        !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
518 519 520 521
        fprintf(stderr, "KVM is not supported for this guest CPU type\n");
        return -EINVAL;
    }

522 523
    /* Determine init features for this CPU */
    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
524
    if (cpu->start_powered_off) {
525 526
        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
    }
527
    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
528
        cpu->psci_version = 2;
529 530
        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
    }
531 532 533
    if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
    }
534
    if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
535 536 537
            cpu->has_pmu = false;
    }
    if (cpu->has_pmu) {
538
        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
539 540
    } else {
        unset_feature(&env->features, ARM_FEATURE_PMU);
541
    }
542 543 544 545 546

    /* Do KVM_ARM_VCPU_INIT ioctl */
    ret = kvm_arm_vcpu_init(cs);
    if (ret) {
        return ret;
547 548
    }

549 550 551 552 553 554 555 556 557
    /*
     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
     * Currently KVM has its own idea about MPIDR assignment, so we
     * override our defaults with what we get from KVM.
     */
    ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
    if (ret) {
        return ret;
    }
558
    cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
559

560 561
    kvm_arm_init_debug(cs);

562 563 564
    /* Check whether user space can specify guest syndrome value */
    kvm_arm_init_serror_injection(cs);

565 566
    return kvm_arm_init_cpreg_list(cpu);
}
567

568 569 570 571 572 573 574 575 576 577 578 579
bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
{
    /* Return true if the regidx is a register we should synchronize
     * via the cpreg_tuples array (ie is not a core reg we sync by
     * hand in kvm_arch_get/put_registers())
     */
    switch (regidx & KVM_REG_ARM_COPROC_MASK) {
    case KVM_REG_ARM_CORE:
        return false;
    default:
        return true;
    }
580 581
}

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
typedef struct CPRegStateLevel {
    uint64_t regidx;
    int level;
} CPRegStateLevel;

/* All system registers not listed in the following table are assumed to be
 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
 * often, you must add it to this table with a state of either
 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
 */
static const CPRegStateLevel non_runtime_cpregs[] = {
    { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
};

int kvm_arm_cpreg_level(uint64_t regidx)
{
    int i;

    for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
        const CPRegStateLevel *l = &non_runtime_cpregs[i];
        if (l->regidx == regidx) {
            return l->level;
        }
    }

    return KVM_PUT_RUNTIME_STATE;
}

610 611 612
#define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))

613 614 615 616 617 618
#define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))

#define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))

619 620 621
int kvm_arch_put_registers(CPUState *cs, int level)
{
    struct kvm_one_reg reg;
622
    uint32_t fpr;
623 624 625
    uint64_t val;
    int i;
    int ret;
626
    unsigned int el;
627 628 629 630

    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

631 632 633 634 635 636 637
    /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
     * AArch64 registers before pushing them out to 64-bit KVM.
     */
    if (!is_a64(env)) {
        aarch64_sync_32_to_64(env);
    }

638 639 640 641 642 643 644 645 646
    for (i = 0; i < 31; i++) {
        reg.id = AARCH64_CORE_REG(regs.regs[i]);
        reg.addr = (uintptr_t) &env->xregs[i];
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret) {
            return ret;
        }
    }

647 648 649
    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
     * QEMU side we keep the current SP in xregs[31] as well.
     */
650
    aarch64_save_sp(env, 1);
651

652
    reg.id = AARCH64_CORE_REG(regs.sp);
653 654 655 656 657 658 659 660
    reg.addr = (uintptr_t) &env->sp_el[0];
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    reg.id = AARCH64_CORE_REG(sp_el1);
    reg.addr = (uintptr_t) &env->sp_el[1];
661 662 663 664 665 666
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
667 668 669 670 671
    if (is_a64(env)) {
        val = pstate_read(env);
    } else {
        val = cpsr_read(env);
    }
672 673 674 675 676 677 678 679 680 681 682 683 684 685
    reg.id = AARCH64_CORE_REG(regs.pstate);
    reg.addr = (uintptr_t) &val;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    reg.id = AARCH64_CORE_REG(regs.pc);
    reg.addr = (uintptr_t) &env->pc;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

686
    reg.id = AARCH64_CORE_REG(elr_el1);
687
    reg.addr = (uintptr_t) &env->elr_el[1];
688 689 690 691 692
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

693 694 695 696 697 698 699 700 701 702 703 704 705
    /* Saved Program State Registers
     *
     * Before we restore from the banked_spsr[] array we need to
     * ensure that any modifications to env->spsr are correctly
     * reflected in the banks.
     */
    el = arm_current_el(env);
    if (el > 0 && !is_a64(env)) {
        i = bank_number(env->uncached_cpsr & CPSR_M);
        env->banked_spsr[i] = env->spsr;
    }

    /* KVM 0-4 map to QEMU banks 1-5 */
706 707
    for (i = 0; i < KVM_NR_SPSR; i++) {
        reg.id = AARCH64_CORE_REG(spsr[i]);
708
        reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
709 710 711 712 713 714
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret) {
            return ret;
        }
    }

715
    /* Advanced SIMD and FP registers. */
716
    for (i = 0; i < 32; i++) {
717
        uint64_t *q = aa64_vfp_qreg(env, i);
718
#ifdef HOST_WORDS_BIGENDIAN
719 720
        uint64_t fp_val[2] = { q[1], q[0] };
        reg.addr = (uintptr_t)fp_val;
721
#else
722
        reg.addr = (uintptr_t)q;
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
#endif
        reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret) {
            return ret;
        }
    }

    reg.addr = (uintptr_t)(&fpr);
    fpr = vfp_get_fpsr(env);
    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    fpr = vfp_get_fpcr(env);
    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

746 747 748 749 750
    ret = kvm_put_vcpu_events(cpu);
    if (ret) {
        return ret;
    }

751
    if (!write_list_to_kvmstate(cpu, level)) {
752 753 754
        return EINVAL;
    }

755 756
    kvm_arm_sync_mpstate_to_kvm(cpu);

757 758 759 760 761 762 763
    return ret;
}

int kvm_arch_get_registers(CPUState *cs)
{
    struct kvm_one_reg reg;
    uint64_t val;
764
    uint32_t fpr;
765
    unsigned int el;
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
    int i;
    int ret;

    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    for (i = 0; i < 31; i++) {
        reg.id = AARCH64_CORE_REG(regs.regs[i]);
        reg.addr = (uintptr_t) &env->xregs[i];
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret) {
            return ret;
        }
    }

    reg.id = AARCH64_CORE_REG(regs.sp);
782 783 784 785 786 787 788 789
    reg.addr = (uintptr_t) &env->sp_el[0];
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    reg.id = AARCH64_CORE_REG(sp_el1);
    reg.addr = (uintptr_t) &env->sp_el[1];
790 791 792 793 794 795 796 797 798 799 800
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    reg.id = AARCH64_CORE_REG(regs.pstate);
    reg.addr = (uintptr_t) &val;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }
801 802 803 804 805

    env->aarch64 = ((val & PSTATE_nRW) == 0);
    if (is_a64(env)) {
        pstate_write(env, val);
    } else {
806
        cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
807
    }
808

809 810 811
    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
     * QEMU side we keep the current SP in xregs[31] as well.
     */
812
    aarch64_restore_sp(env, 1);
813

814 815 816 817 818 819 820
    reg.id = AARCH64_CORE_REG(regs.pc);
    reg.addr = (uintptr_t) &env->pc;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

821 822 823 824 825 826 827 828 829
    /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
     * incoming AArch64 regs received from 64-bit KVM.
     * We must perform this after all of the registers have been acquired from
     * the kernel.
     */
    if (!is_a64(env)) {
        aarch64_sync_64_to_32(env);
    }

830
    reg.id = AARCH64_CORE_REG(elr_el1);
831
    reg.addr = (uintptr_t) &env->elr_el[1];
832 833 834 835 836
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

837 838 839 840
    /* Fetch the SPSR registers
     *
     * KVM SPSRs 0-4 map to QEMU banks 1-5
     */
841 842
    for (i = 0; i < KVM_NR_SPSR; i++) {
        reg.id = AARCH64_CORE_REG(spsr[i]);
843
        reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
844 845 846 847 848 849
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret) {
            return ret;
        }
    }

850 851 852 853 854 855
    el = arm_current_el(env);
    if (el > 0 && !is_a64(env)) {
        i = bank_number(env->uncached_cpsr & CPSR_M);
        env->spsr = env->banked_spsr[i];
    }

856
    /* Advanced SIMD and FP registers */
857
    for (i = 0; i < 32; i++) {
858
        uint64_t *q = aa64_vfp_qreg(env, i);
859
        reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
860
        reg.addr = (uintptr_t)q;
861 862 863 864 865
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret) {
            return ret;
        } else {
#ifdef HOST_WORDS_BIGENDIAN
866 867
            uint64_t t;
            t = q[0], q[0] = q[1], q[1] = t;
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
#endif
        }
    }

    reg.addr = (uintptr_t)(&fpr);
    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }
    vfp_set_fpsr(env, fpr);

    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }
    vfp_set_fpcr(env, fpr);

887 888 889 890 891
    ret = kvm_get_vcpu_events(cpu);
    if (ret) {
        return ret;
    }

892 893 894 895 896 897 898 899
    if (!write_kvmstate_to_list(cpu)) {
        return EINVAL;
    }
    /* Note that it's OK to have registers which aren't in CPUState,
     * so we can ignore a failure return here.
     */
    write_list_to_cpustate(cpu);

900 901
    kvm_arm_sync_mpstate_to_qemu(cpu);

902 903 904
    /* TODO: other registers */
    return ret;
}
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948

/* C6.6.29 BRK instruction */
static const uint32_t brk_insn = 0xd4200000;

int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
    if (have_guest_debug) {
        if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
            cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
            return -EINVAL;
        }
        return 0;
    } else {
        error_report("guest debug not supported on this kernel");
        return -EINVAL;
    }
}

int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
    static uint32_t brk;

    if (have_guest_debug) {
        if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
            brk != brk_insn ||
            cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
            return -EINVAL;
        }
        return 0;
    } else {
        error_report("guest debug not supported on this kernel");
        return -EINVAL;
    }
}

/* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
 *
 * To minimise translating between kernel and user-space the kernel
 * ABI just provides user-space with the full exception syndrome
 * register value to be decoded in QEMU.
 */

bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
{
949
    int hsr_ec = syn_get_ec(debug_exit->hsr);
950
    ARMCPU *cpu = ARM_CPU(cs);
951
    CPUClass *cc = CPU_GET_CLASS(cs);
952 953 954 955 956 957
    CPUARMState *env = &cpu->env;

    /* Ensure PC is synchronised */
    kvm_cpu_synchronize_state(cs);

    switch (hsr_ec) {
958 959 960 961
    case EC_SOFTWARESTEP:
        if (cs->singlestep_enabled) {
            return true;
        } else {
962 963 964 965 966
            /*
             * The kernel should have suppressed the guest's ability to
             * single step at this point so something has gone wrong.
             */
            error_report("%s: guest single-step while debugging unsupported"
967
                         " (%"PRIx64", %"PRIx32")",
968 969
                         __func__, env->pc, debug_exit->hsr);
            return false;
970 971
        }
        break;
972 973 974 975 976
    case EC_AA64_BKPT:
        if (kvm_find_sw_breakpoint(cs, env->pc)) {
            return true;
        }
        break;
977 978 979 980 981 982 983 984 985 986 987 988 989 990
    case EC_BREAKPOINT:
        if (find_hw_breakpoint(cs, env->pc)) {
            return true;
        }
        break;
    case EC_WATCHPOINT:
    {
        CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
        if (wp) {
            cs->watchpoint_hit = wp;
            return true;
        }
        break;
    }
991
    default:
992
        error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
993 994 995
                     __func__, debug_exit->hsr, env->pc);
    }

996 997 998 999 1000 1001 1002
    /* If we are not handling the debug exception it must belong to
     * the guest. Let's re-use the existing TCG interrupt code to set
     * everything up properly.
     */
    cs->exception_index = EXCP_BKPT;
    env->exception.syndrome = debug_exit->hsr;
    env->exception.vaddress = debug_exit->far;
1003
    env->exception.target_el = 1;
1004
    qemu_mutex_lock_iothread();
1005
    cc->do_interrupt(cs);
1006
    qemu_mutex_unlock_iothread();
1007 1008 1009

    return false;
}