kvm.c 75.1 KB
Newer Older
A
aurel32 已提交
1 2 3 4
/*
 * PowerPC implementation of KVM hooks
 *
 * Copyright IBM Corp. 2007
S
Scott Wood 已提交
5
 * Copyright (C) 2011 Freescale Semiconductor, Inc.
A
aurel32 已提交
6 7 8 9 10 11 12 13 14 15 16
 *
 * Authors:
 *  Jerone Young <jyoung5@us.ibm.com>
 *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 *  Hollis Blanchard <hollisb@us.ibm.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

P
Peter Maydell 已提交
17
#include "qemu/osdep.h"
18
#include <dirent.h>
A
aurel32 已提交
19
#include <sys/ioctl.h>
20
#include <sys/vfs.h>
A
aurel32 已提交
21 22 23 24

#include <linux/kvm.h>

#include "qemu-common.h"
25
#include "qemu/error-report.h"
26
#include "cpu.h"
27
#include "cpu-models.h"
28
#include "qemu/timer.h"
29
#include "sysemu/sysemu.h"
30
#include "sysemu/hw_accel.h"
A
aurel32 已提交
31
#include "kvm_ppc.h"
32 33
#include "sysemu/cpus.h"
#include "sysemu/device_tree.h"
34
#include "mmu-hash64.h"
A
aurel32 已提交
35

36
#include "hw/sysbus.h"
P
Paolo Bonzini 已提交
37 38
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
39
#include "hw/ppc/spapr_cpu_core.h"
40
#include "hw/ppc/ppc.h"
B
Bharat Bhushan 已提交
41
#include "sysemu/watchdog.h"
42
#include "trace.h"
43
#include "exec/gdbstub.h"
44
#include "exec/memattrs.h"
45
#include "exec/ram_addr.h"
46
#include "sysemu/hostmem.h"
47
#include "qemu/cutils.h"
48
#include "qemu/mmap-alloc.h"
49 50 51
#if defined(TARGET_PPC64)
#include "hw/ppc/spapr_cpu_core.h"
#endif
52
#include "elf.h"
53
#include "sysemu/kvm_int.h"
54

A
aurel32 已提交
55 56 57
//#define DEBUG_KVM

#ifdef DEBUG_KVM
58
#define DPRINTF(fmt, ...) \
A
aurel32 已提交
59 60
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
61
#define DPRINTF(fmt, ...) \
A
aurel32 已提交
62 63 64
    do { } while (0)
#endif

65 66
#define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"

67 68 69 70
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
    KVM_CAP_LAST_INFO
};

71 72
static int cap_interrupt_unset = false;
static int cap_interrupt_level = false;
S
Scott Wood 已提交
73 74
static int cap_segstate;
static int cap_booke_sregs;
75
static int cap_ppc_smt;
76
static int cap_ppc_rma;
77
static int cap_spapr_tce;
78
static int cap_spapr_tce_64;
79
static int cap_spapr_multitce;
80
static int cap_spapr_vfio;
81
static int cap_hior;
82
static int cap_one_reg;
83
static int cap_epr;
B
Bharat Bhushan 已提交
84
static int cap_ppc_watchdog;
85
static int cap_papr;
86
static int cap_htab_fd;
87
static int cap_fixup_hcalls;
88
static int cap_htm;             /* Hardware transactional memory support */
89 90
static int cap_mmu_radix;
static int cap_mmu_hash_v3;
91

92 93
static uint32_t debug_inst_opcode;

A
Alexander Graf 已提交
94 95 96 97
/* XXX We have a race condition where we actually have a level triggered
 *     interrupt, but the infrastructure can't expose that yet, so the guest
 *     takes but ignores it, goes to sleep and never gets notified that there's
 *     still an interrupt pending.
A
Alexander Graf 已提交
98
 *
A
Alexander Graf 已提交
99 100 101
 *     As a quick workaround, let's just wake up again 20 ms after we injected
 *     an interrupt. That way we can assure that we're always reinjecting
 *     interrupts in case the guest swallowed them.
A
Alexander Graf 已提交
102 103 104
 */
static QEMUTimer *idle_timer;

105
static void kvm_kick_cpu(void *opaque)
A
Alexander Graf 已提交
106
{
107 108
    PowerPCCPU *cpu = opaque;

109
    qemu_cpu_kick(CPU(cpu));
A
Alexander Graf 已提交
110 111
}

112 113 114 115 116 117 118 119 120 121
/* Check whether we are running with KVM-PR (instead of KVM-HV).  This
 * should only be used for fallback tests - generally we should use
 * explicit capabilities for the features we want, rather than
 * assuming what is/isn't available depending on the KVM variant. */
static bool kvmppc_is_pr(KVMState *ks)
{
    /* Assume KVM-PR if the GET_PVINFO capability is available */
    return kvm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
}

122 123
static int kvm_ppc_register_host_cpu_type(void);

124
int kvm_arch_init(MachineState *ms, KVMState *s)
A
aurel32 已提交
125
{
126 127
    cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
    cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
S
Scott Wood 已提交
128 129
    cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
    cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
130
    cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT);
131
    cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA);
132
    cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
133
    cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
134
    cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
135
    cap_spapr_vfio = false;
136
    cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
137
    cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
138
    cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
B
Bharat Bhushan 已提交
139
    cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
140 141
    /* Note: we don't set cap_papr here, because this capability is
     * only activated after this by kvmppc_set_papr() */
142
    cap_htab_fd = kvm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
143
    cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
144
    cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
145 146
    cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
    cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
147 148 149 150 151 152

    if (!cap_interrupt_level) {
        fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
                        "VM to stall at times!\n");
    }

153 154
    kvm_ppc_register_host_cpu_type();

A
aurel32 已提交
155 156 157
    return 0;
}

P
Paolo Bonzini 已提交
158 159 160 161 162
int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
{
    return 0;
}

163
static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
A
aurel32 已提交
164
{
165 166
    CPUPPCState *cenv = &cpu->env;
    CPUState *cs = CPU(cpu);
A
Alexander Graf 已提交
167
    struct kvm_sregs sregs;
168 169 170
    int ret;

    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
A
Alexander Graf 已提交
171 172 173 174
        /* What we're really trying to say is "if we're on BookE, we use
           the native PVR for now". This is the only sane way to check
           it though, so we potentially confuse users that they can run
           BookE guests on BookS. Let's hope nobody dares enough :) */
175 176
        return 0;
    } else {
S
Scott Wood 已提交
177
        if (!cap_segstate) {
A
Alexander Graf 已提交
178 179
            fprintf(stderr, "kvm error: missing PVR setting capability\n");
            return -ENOSYS;
180 181 182
        }
    }

183
    ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
184 185 186
    if (ret) {
        return ret;
    }
A
Alexander Graf 已提交
187 188

    sregs.pvr = cenv->spr[SPR_PVR];
189
    return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
190 191
}

S
Scott Wood 已提交
192
/* Set up a shared TLB array with KVM */
193
static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
S
Scott Wood 已提交
194
{
195 196
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);
S
Scott Wood 已提交
197 198 199 200 201 202
    struct kvm_book3e_206_tlb_params params = {};
    struct kvm_config_tlb cfg = {};
    unsigned int entries = 0;
    int ret, i;

    if (!kvm_enabled() ||
203
        !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
S
Scott Wood 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        return 0;
    }

    assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);

    for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
        params.tlb_sizes[i] = booke206_tlb_size(env, i);
        params.tlb_ways[i] = booke206_tlb_ways(env, i);
        entries += params.tlb_sizes[i];
    }

    assert(entries == env->nb_tlb);
    assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));

    env->tlb_dirty = true;

    cfg.array = (uintptr_t)env->tlb.tlbm;
    cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
    cfg.params = (uintptr_t)&params;
    cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;

C
Cornelia Huck 已提交
225
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
S
Scott Wood 已提交
226 227 228 229 230 231 232 233 234 235
    if (ret < 0) {
        fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
                __func__, strerror(-ret));
        return ret;
    }

    env->kvm_sw_tlb = true;
    return 0;
}

236 237

#if defined(TARGET_PPC64)
238
static void kvm_get_fallback_smmu_info(PowerPCCPU *cpu,
239 240
                                       struct kvm_ppc_smmu_info *info)
{
241 242 243
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);

244 245 246 247 248 249 250
    memset(info, 0, sizeof(*info));

    /* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so
     * need to "guess" what the supported page sizes are.
     *
     * For that to work we make a few assumptions:
     *
251 252 253
     * - Check whether we are running "PR" KVM which only supports 4K
     *   and 16M pages, but supports them regardless of the backing
     *   store characteritics. We also don't support 1T segments.
254 255 256 257 258 259 260 261 262 263 264 265 266 267
     *
     *   This is safe as if HV KVM ever supports that capability or PR
     *   KVM grows supports for more page/segment sizes, those versions
     *   will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we
     *   will not hit this fallback
     *
     * - Else we are running HV KVM. This means we only support page
     *   sizes that fit in the backing store. Additionally we only
     *   advertize 64K pages if the processor is ARCH 2.06 and we assume
     *   P7 encodings for the SLB and hash table. Here too, we assume
     *   support for any newer processor will mean a kernel that
     *   implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit
     *   this fallback.
     */
268
    if (kvmppc_is_pr(cs->kvm_state)) {
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
        /* No flags */
        info->flags = 0;
        info->slb_size = 64;

        /* Standard 4k base page size segment */
        info->sps[0].page_shift = 12;
        info->sps[0].slb_enc = 0;
        info->sps[0].enc[0].page_shift = 12;
        info->sps[0].enc[0].pte_enc = 0;

        /* Standard 16M large page size segment */
        info->sps[1].page_shift = 24;
        info->sps[1].slb_enc = SLB_VSID_L;
        info->sps[1].enc[0].page_shift = 24;
        info->sps[1].enc[0].pte_enc = 0;
    } else {
        int i = 0;

        /* HV KVM has backing store size restrictions */
        info->flags = KVM_PPC_PAGE_SIZES_REAL;

        if (env->mmu_model & POWERPC_MMU_1TSEG) {
            info->flags |= KVM_PPC_1T_SEGMENTS;
        }

294 295
        if (POWERPC_MMU_VER(env->mmu_model) == POWERPC_MMU_VER_2_06 ||
           POWERPC_MMU_VER(env->mmu_model) == POWERPC_MMU_VER_2_07) {
296 297 298 299 300 301 302 303 304 305 306 307
            info->slb_size = 32;
        } else {
            info->slb_size = 64;
        }

        /* Standard 4k base page size segment */
        info->sps[i].page_shift = 12;
        info->sps[i].slb_enc = 0;
        info->sps[i].enc[0].page_shift = 12;
        info->sps[i].enc[0].pte_enc = 0;
        i++;

308
        /* 64K on MMU 2.06 and later */
309 310
        if (POWERPC_MMU_VER(env->mmu_model) == POWERPC_MMU_VER_2_06 ||
            POWERPC_MMU_VER(env->mmu_model) == POWERPC_MMU_VER_2_07) {
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
            info->sps[i].page_shift = 16;
            info->sps[i].slb_enc = 0x110;
            info->sps[i].enc[0].page_shift = 16;
            info->sps[i].enc[0].pte_enc = 1;
            i++;
        }

        /* Standard 16M large page size segment */
        info->sps[i].page_shift = 24;
        info->sps[i].slb_enc = SLB_VSID_L;
        info->sps[i].enc[0].page_shift = 24;
        info->sps[i].enc[0].pte_enc = 0;
    }
}

326
static void kvm_get_smmu_info(PowerPCCPU *cpu, struct kvm_ppc_smmu_info *info)
327
{
328
    CPUState *cs = CPU(cpu);
329 330
    int ret;

331 332
    if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
        ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_SMMU_INFO, info);
333 334 335 336 337
        if (ret == 0) {
            return;
        }
    }

338
    kvm_get_fallback_smmu_info(cpu, info);
339 340
}

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
struct ppc_radix_page_info *kvm_get_radix_page_info(void)
{
    KVMState *s = KVM_STATE(current_machine->accelerator);
    struct ppc_radix_page_info *radix_page_info;
    struct kvm_ppc_rmmu_info rmmu_info;
    int i;

    if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
        return NULL;
    }
    if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
        return NULL;
    }
    radix_page_info = g_malloc0(sizeof(*radix_page_info));
    radix_page_info->count = 0;
    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        if (rmmu_info.ap_encodings[i]) {
            radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
            radix_page_info->count++;
        }
    }
    return radix_page_info;
}

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
                                     bool radix, bool gtse,
                                     uint64_t proc_tbl)
{
    CPUState *cs = CPU(cpu);
    int ret;
    uint64_t flags = 0;
    struct kvm_ppc_mmuv3_cfg cfg = {
        .process_table = proc_tbl,
    };

    if (radix) {
        flags |= KVM_PPC_MMUV3_RADIX;
    }
    if (gtse) {
        flags |= KVM_PPC_MMUV3_GTSE;
    }
    cfg.flags = flags;
    ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
    switch (ret) {
    case 0:
        return H_SUCCESS;
    case -EINVAL:
        return H_PARAMETER;
    case -ENODEV:
        return H_NOT_AVAILABLE;
    default:
        return H_HARDWARE;
    }
}

396 397 398 399 400 401 402 403 404
static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift)
{
    if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) {
        return true;
    }

    return (1ul << shift) <= rampgsize;
}

405 406
static long max_cpu_page_size;

407
static void kvm_fixup_page_sizes(PowerPCCPU *cpu)
408 409 410
{
    static struct kvm_ppc_smmu_info smmu_info;
    static bool has_smmu_info;
411
    CPUPPCState *env = &cpu->env;
412
    int iq, ik, jq, jk;
413
    bool has_64k_pages = false;
414 415 416 417 418 419 420 421

    /* We only handle page sizes for 64-bit server guests for now */
    if (!(env->mmu_model & POWERPC_MMU_64)) {
        return;
    }

    /* Collect MMU info from kernel if not already */
    if (!has_smmu_info) {
422
        kvm_get_smmu_info(cpu, &smmu_info);
423 424 425
        has_smmu_info = true;
    }

426
    if (!max_cpu_page_size) {
427
        max_cpu_page_size = qemu_getrampagesize();
428
    }
429 430 431 432

    /* Convert to QEMU form */
    memset(&env->sps, 0, sizeof(env->sps));

433 434 435 436 437 438 439
    /* If we have HV KVM, we need to forbid CI large pages if our
     * host page size is smaller than 64K.
     */
    if (smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL) {
        env->ci_large_pages = getpagesize() >= 0x10000;
    }

440 441 442 443
    /*
     * XXX This loop should be an entry wide AND of the capabilities that
     *     the selected CPU has with the capabilities that KVM supports.
     */
444 445 446 447
    for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) {
        struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq];
        struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik];

448
        if (!kvm_valid_page_size(smmu_info.flags, max_cpu_page_size,
449 450 451 452 453 454
                                 ksps->page_shift)) {
            continue;
        }
        qsps->page_shift = ksps->page_shift;
        qsps->slb_enc = ksps->slb_enc;
        for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) {
455
            if (!kvm_valid_page_size(smmu_info.flags, max_cpu_page_size,
456 457 458
                                     ksps->enc[jk].page_shift)) {
                continue;
            }
459 460 461
            if (ksps->enc[jk].page_shift == 16) {
                has_64k_pages = true;
            }
462 463 464 465 466 467 468 469 470 471 472
            qsps->enc[jq].page_shift = ksps->enc[jk].page_shift;
            qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc;
            if (++jq >= PPC_PAGE_SIZES_MAX_SZ) {
                break;
            }
        }
        if (++iq >= PPC_PAGE_SIZES_MAX_SZ) {
            break;
        }
    }
    env->slb_nr = smmu_info.slb_size;
473
    if (!(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
474 475
        env->mmu_model &= ~POWERPC_MMU_1TSEG;
    }
476 477 478
    if (!has_64k_pages) {
        env->mmu_model &= ~POWERPC_MMU_64K;
    }
479
}
480

481
bool kvmppc_is_mem_backend_page_size_ok(const char *obj_path)
482 483 484 485 486 487
{
    Object *mem_obj = object_resolve_path(obj_path, NULL);
    char *mempath = object_property_get_str(mem_obj, "mem-path", NULL);
    long pagesize;

    if (mempath) {
488
        pagesize = qemu_mempath_getpagesize(mempath);
489
        g_free(mempath);
490 491 492 493 494 495 496
    } else {
        pagesize = getpagesize();
    }

    return pagesize >= max_cpu_page_size;
}

497 498
#else /* defined (TARGET_PPC64) */

499
static inline void kvm_fixup_page_sizes(PowerPCCPU *cpu)
500 501 502
{
}

503
bool kvmppc_is_mem_backend_page_size_ok(const char *obj_path)
504 505 506 507
{
    return true;
}

508 509
#endif /* !defined (TARGET_PPC64) */

510 511
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
512
    return ppc_get_vcpu_dt_id(POWERPC_CPU(cpu));
513 514
}

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
/* e500 supports 2 h/w breakpoint and 2 watchpoint.
 * book3s supports only 1 watchpoint, so array size
 * of 4 is sufficient for now.
 */
#define MAX_HW_BKPTS 4

static struct HWBreakpoint {
    target_ulong addr;
    int type;
} hw_debug_points[MAX_HW_BKPTS];

static CPUWatchpoint hw_watchpoint;

/* Default there is no breakpoint and watchpoint supported */
static int max_hw_breakpoint;
static int max_hw_watchpoint;
static int nb_hw_breakpoint;
static int nb_hw_watchpoint;

static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
{
    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
        max_hw_breakpoint = 2;
        max_hw_watchpoint = 2;
    }

    if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
        fprintf(stderr, "Error initializing h/w breakpoints\n");
        return;
    }
}

A
Andreas Färber 已提交
547
int kvm_arch_init_vcpu(CPUState *cs)
548
{
A
Andreas Färber 已提交
549 550
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *cenv = &cpu->env;
551 552
    int ret;

553
    /* Gather server mmu info from KVM and update the CPU state */
554
    kvm_fixup_page_sizes(cpu);
555 556

    /* Synchronize sregs with kvm */
557
    ret = kvm_arch_sync_sregs(cpu);
558
    if (ret) {
559 560 561 562
        if (ret == -EINVAL) {
            error_report("Register sync failed... If you're using kvm-hv.ko,"
                         " only \"-cpu host\" is possible");
        }
563 564
        return ret;
    }
A
Alexander Graf 已提交
565

566
    idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu);
A
Alexander Graf 已提交
567

S
Scott Wood 已提交
568 569
    switch (cenv->mmu_model) {
    case POWERPC_MMU_BOOKE206:
570
        /* This target supports access to KVM's guest TLB */
571
        ret = kvm_booke206_tlb_init(cpu);
S
Scott Wood 已提交
572
        break;
573 574 575
    case POWERPC_MMU_2_07:
        if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
            /* KVM-HV has transactional memory on POWER8 also without the
576 577 578 579 580
             * KVM_CAP_PPC_HTM extension, so enable it here instead as
             * long as it's availble to userspace on the host. */
            if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
                cap_htm = true;
            }
581 582
        }
        break;
S
Scott Wood 已提交
583 584 585 586
    default:
        break;
    }

587
    kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
588
    kvmppc_hw_debug_points_init(cenv);
589

A
Alexander Graf 已提交
590
    return ret;
A
aurel32 已提交
591 592
}

593
static void kvm_sw_tlb_put(PowerPCCPU *cpu)
S
Scott Wood 已提交
594
{
595 596
    CPUPPCState *env = &cpu->env;
    CPUState *cs = CPU(cpu);
S
Scott Wood 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610
    struct kvm_dirty_tlb dirty_tlb;
    unsigned char *bitmap;
    int ret;

    if (!env->kvm_sw_tlb) {
        return;
    }

    bitmap = g_malloc((env->nb_tlb + 7) / 8);
    memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);

    dirty_tlb.bitmap = (uintptr_t)bitmap;
    dirty_tlb.num_dirty = env->nb_tlb;

611
    ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
S
Scott Wood 已提交
612 613 614 615 616 617 618 619
    if (ret) {
        fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
                __func__, strerror(-ret));
    }

    g_free(bitmap);
}

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    union {
        uint32_t u32;
        uint64_t u64;
    } val;
    struct kvm_one_reg reg = {
        .id = id,
        .addr = (uintptr_t) &val,
    };
    int ret;

    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret != 0) {
636
        trace_kvm_failed_spr_get(spr, strerror(errno));
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
    } else {
        switch (id & KVM_REG_SIZE_MASK) {
        case KVM_REG_SIZE_U32:
            env->spr[spr] = val.u32;
            break;

        case KVM_REG_SIZE_U64:
            env->spr[spr] = val.u64;
            break;

        default:
            /* Don't handle this size yet */
            abort();
        }
    }
}

static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    union {
        uint32_t u32;
        uint64_t u64;
    } val;
    struct kvm_one_reg reg = {
        .id = id,
        .addr = (uintptr_t) &val,
    };
    int ret;

    switch (id & KVM_REG_SIZE_MASK) {
    case KVM_REG_SIZE_U32:
        val.u32 = env->spr[spr];
        break;

    case KVM_REG_SIZE_U64:
        val.u64 = env->spr[spr];
        break;

    default:
        /* Don't handle this size yet */
        abort();
    }

    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret != 0) {
684
        trace_kvm_failed_spr_set(spr, strerror(errno));
685 686 687
    }
}

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
static int kvm_put_fp(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int i;
    int ret;

    if (env->insns_flags & PPC_FLOAT) {
        uint64_t fpscr = env->fpscr;
        bool vsx = !!(env->insns_flags2 & PPC2_VSX);

        reg.id = KVM_REG_PPC_FPSCR;
        reg.addr = (uintptr_t)&fpscr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
704
            DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno));
705 706 707 708 709 710
            return ret;
        }

        for (i = 0; i < 32; i++) {
            uint64_t vsr[2];

711
#ifdef HOST_WORDS_BIGENDIAN
712 713
            vsr[0] = float64_val(env->fpr[i]);
            vsr[1] = env->vsr[i];
714 715 716 717
#else
            vsr[0] = env->vsr[i];
            vsr[1] = float64_val(env->fpr[i]);
#endif
718 719 720 721 722
            reg.addr = (uintptr_t) &vsr;
            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);

            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
            if (ret < 0) {
723
                DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR",
724 725 726 727 728 729 730 731 732 733 734
                        i, strerror(errno));
                return ret;
            }
        }
    }

    if (env->insns_flags & PPC_ALTIVEC) {
        reg.id = KVM_REG_PPC_VSCR;
        reg.addr = (uintptr_t)&env->vscr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
735
            DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno));
736 737 738 739 740 741 742 743
            return ret;
        }

        for (i = 0; i < 32; i++) {
            reg.id = KVM_REG_PPC_VR(i);
            reg.addr = (uintptr_t)&env->avr[i];
            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
            if (ret < 0) {
744
                DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno));
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
                return ret;
            }
        }
    }

    return 0;
}

static int kvm_get_fp(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int i;
    int ret;

    if (env->insns_flags & PPC_FLOAT) {
        uint64_t fpscr;
        bool vsx = !!(env->insns_flags2 & PPC2_VSX);

        reg.id = KVM_REG_PPC_FPSCR;
        reg.addr = (uintptr_t)&fpscr;
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret < 0) {
769
            DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno));
770 771 772 773 774 775 776 777 778 779 780 781 782
            return ret;
        } else {
            env->fpscr = fpscr;
        }

        for (i = 0; i < 32; i++) {
            uint64_t vsr[2];

            reg.addr = (uintptr_t) &vsr;
            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);

            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
            if (ret < 0) {
783
                DPRINTF("Unable to get %s%d from KVM: %s\n",
784 785 786
                        vsx ? "VSR" : "FPR", i, strerror(errno));
                return ret;
            } else {
787
#ifdef HOST_WORDS_BIGENDIAN
788 789 790 791
                env->fpr[i] = vsr[0];
                if (vsx) {
                    env->vsr[i] = vsr[1];
                }
792 793 794 795 796 797
#else
                env->fpr[i] = vsr[1];
                if (vsx) {
                    env->vsr[i] = vsr[0];
                }
#endif
798 799 800 801 802 803 804 805 806
            }
        }
    }

    if (env->insns_flags & PPC_ALTIVEC) {
        reg.id = KVM_REG_PPC_VSCR;
        reg.addr = (uintptr_t)&env->vscr;
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret < 0) {
807
            DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno));
808 809 810 811 812 813 814 815
            return ret;
        }

        for (i = 0; i < 32; i++) {
            reg.id = KVM_REG_PPC_VR(i);
            reg.addr = (uintptr_t)&env->avr[i];
            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
            if (ret < 0) {
816
                DPRINTF("Unable to get VR%d from KVM: %s\n",
817 818 819 820 821 822 823 824 825
                        i, strerror(errno));
                return ret;
            }
        }
    }

    return 0;
}

826 827 828 829 830 831 832 833 834 835 836 837
#if defined(TARGET_PPC64)
static int kvm_get_vpa(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int ret;

    reg.id = KVM_REG_PPC_VPA_ADDR;
    reg.addr = (uintptr_t)&env->vpa_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
838
        DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno));
839 840 841 842 843 844 845 846 847
        return ret;
    }

    assert((uintptr_t)&env->slb_shadow_size
           == ((uintptr_t)&env->slb_shadow_addr + 8));
    reg.id = KVM_REG_PPC_VPA_SLB;
    reg.addr = (uintptr_t)&env->slb_shadow_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
848
        DPRINTF("Unable to get SLB shadow state from KVM: %s\n",
849 850 851 852 853 854 855 856 857
                strerror(errno));
        return ret;
    }

    assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
    reg.id = KVM_REG_PPC_VPA_DTL;
    reg.addr = (uintptr_t)&env->dtl_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret < 0) {
858
        DPRINTF("Unable to get dispatch trace log state from KVM: %s\n",
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
                strerror(errno));
        return ret;
    }

    return 0;
}

static int kvm_put_vpa(CPUState *cs)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    struct kvm_one_reg reg;
    int ret;

    /* SLB shadow or DTL can't be registered unless a master VPA is
     * registered.  That means when restoring state, if a VPA *is*
     * registered, we need to set that up first.  If not, we need to
     * deregister the others before deregistering the master VPA */
    assert(env->vpa_addr || !(env->slb_shadow_addr || env->dtl_addr));

    if (env->vpa_addr) {
        reg.id = KVM_REG_PPC_VPA_ADDR;
        reg.addr = (uintptr_t)&env->vpa_addr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
884
            DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
885 886 887 888 889 890 891 892 893 894
            return ret;
        }
    }

    assert((uintptr_t)&env->slb_shadow_size
           == ((uintptr_t)&env->slb_shadow_addr + 8));
    reg.id = KVM_REG_PPC_VPA_SLB;
    reg.addr = (uintptr_t)&env->slb_shadow_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret < 0) {
895
        DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno));
896 897 898 899 900 901 902 903
        return ret;
    }

    assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
    reg.id = KVM_REG_PPC_VPA_DTL;
    reg.addr = (uintptr_t)&env->dtl_addr;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret < 0) {
904
        DPRINTF("Unable to set dispatch trace log state to KVM: %s\n",
905 906 907 908 909 910 911 912 913
                strerror(errno));
        return ret;
    }

    if (!env->vpa_addr) {
        reg.id = KVM_REG_PPC_VPA_ADDR;
        reg.addr = (uintptr_t)&env->vpa_addr;
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret < 0) {
914
            DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
915 916 917 918 919 920 921 922
            return ret;
        }
    }

    return 0;
}
#endif /* TARGET_PPC64 */

923
int kvmppc_put_books_sregs(PowerPCCPU *cpu)
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
{
    CPUPPCState *env = &cpu->env;
    struct kvm_sregs sregs;
    int i;

    sregs.pvr = env->spr[SPR_PVR];

    sregs.u.s.sdr1 = env->spr[SPR_SDR1];

    /* Sync SLB */
#ifdef TARGET_PPC64
    for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
        sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
        if (env->slb[i].esid & SLB_ESID_V) {
            sregs.u.s.ppc64.slb[i].slbe |= i;
        }
        sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
    }
#endif

    /* Sync SRs */
    for (i = 0; i < 16; i++) {
        sregs.u.s.ppc32.sr[i] = env->sr[i];
    }

    /* Sync BATs */
    for (i = 0; i < 8; i++) {
        /* Beware. We have to swap upper and lower bits here */
        sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
            | env->DBAT[1][i];
        sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
            | env->IBAT[1][i];
    }

    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
}

A
Andreas Färber 已提交
961
int kvm_arch_put_registers(CPUState *cs, int level)
A
aurel32 已提交
962
{
A
Andreas Färber 已提交
963 964
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
A
aurel32 已提交
965 966 967 968
    struct kvm_regs regs;
    int ret;
    int i;

969 970
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
    if (ret < 0) {
A
aurel32 已提交
971
        return ret;
972
    }
A
aurel32 已提交
973 974 975

    regs.ctr = env->ctr;
    regs.lr  = env->lr;
976
    regs.xer = cpu_read_xer(env);
A
aurel32 已提交
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
    regs.msr = env->msr;
    regs.pc = env->nip;

    regs.srr0 = env->spr[SPR_SRR0];
    regs.srr1 = env->spr[SPR_SRR1];

    regs.sprg0 = env->spr[SPR_SPRG0];
    regs.sprg1 = env->spr[SPR_SPRG1];
    regs.sprg2 = env->spr[SPR_SPRG2];
    regs.sprg3 = env->spr[SPR_SPRG3];
    regs.sprg4 = env->spr[SPR_SPRG4];
    regs.sprg5 = env->spr[SPR_SPRG5];
    regs.sprg6 = env->spr[SPR_SPRG6];
    regs.sprg7 = env->spr[SPR_SPRG7];

S
Scott Wood 已提交
992 993
    regs.pid = env->spr[SPR_BOOKE_PID];

A
aurel32 已提交
994 995 996
    for (i = 0;i < 32; i++)
        regs.gpr[i] = env->gpr[i];

997 998 999 1000 1001
    regs.cr = 0;
    for (i = 0; i < 8; i++) {
        regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
    }

1002
    ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
A
aurel32 已提交
1003 1004 1005
    if (ret < 0)
        return ret;

1006 1007
    kvm_put_fp(cs);

S
Scott Wood 已提交
1008
    if (env->tlb_dirty) {
1009
        kvm_sw_tlb_put(cpu);
S
Scott Wood 已提交
1010 1011 1012
        env->tlb_dirty = false;
    }

1013
    if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
1014 1015
        ret = kvmppc_put_books_sregs(cpu);
        if (ret < 0) {
1016 1017 1018 1019 1020
            return ret;
        }
    }

    if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
1021 1022
        kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
    }
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
    if (cap_one_reg) {
        int i;

        /* We deliberately ignore errors here, for kernels which have
         * the ONE_REG calls, but don't support the specific
         * registers, there's a reasonable chance things will still
         * work, at least until we try to migrate. */
        for (i = 0; i < 1024; i++) {
            uint64_t id = env->spr_cb[i].one_reg_id;

            if (id != 0) {
                kvm_put_one_spr(cs, id, i);
            }
1037
        }
1038 1039

#ifdef TARGET_PPC64
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
        if (msr_ts) {
            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
                kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
            }
            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
                kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
            }
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
            kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
        }

1059 1060
        if (cap_papr) {
            if (kvm_put_vpa(cs) < 0) {
1061
                DPRINTF("Warning: Unable to set VPA information to KVM\n");
1062 1063
            }
        }
1064 1065

        kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1066
#endif /* TARGET_PPC64 */
1067 1068
    }

A
aurel32 已提交
1069 1070 1071
    return ret;
}

1072 1073 1074 1075 1076
static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
{
     env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
{
    CPUPPCState *env = &cpu->env;
    struct kvm_sregs sregs;
    int ret;

    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
    if (ret < 0) {
        return ret;
    }

    if (sregs.u.e.features & KVM_SREGS_E_BASE) {
        env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
        env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
        env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
        env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
        env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
        env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
        env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
        env->spr[SPR_DECR] = sregs.u.e.dec;
        env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
        env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
        env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
    }

    if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
        env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
        env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
        env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
        env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
        env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
    }

    if (sregs.u.e.features & KVM_SREGS_E_64) {
        env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
    }

    if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
        env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
    }

    if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
        env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
        kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
        env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
        kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
        env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
        kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
        env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
        kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
        env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
        kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
        env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
        kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
        env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
        kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
        env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
        kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
        env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
        kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
        env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
        kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
        env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
        kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
        env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
        kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
        env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
        kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
        env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
        kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
        env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
        kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
        env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
        kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);

        if (sregs.u.e.features & KVM_SREGS_E_SPE) {
            env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
            kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
            env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
            kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
            env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
            kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
        }

        if (sregs.u.e.features & KVM_SREGS_E_PM) {
            env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
            kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
        }

        if (sregs.u.e.features & KVM_SREGS_E_PC) {
            env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
            kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
            env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
            kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
        }
    }

    if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
        env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
        env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
        env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
        env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
        env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
        env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
        env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
        env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
        env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
        env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
    }

    if (sregs.u.e.features & KVM_SREGS_EXP) {
        env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
    }

    if (sregs.u.e.features & KVM_SREGS_E_PD) {
        env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
        env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
    }

    if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
        env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
        env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
        env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;

        if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
            env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
            env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
        }
    }

    return 0;
}

static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
{
    CPUPPCState *env = &cpu->env;
    struct kvm_sregs sregs;
    int ret;
    int i;

    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
    if (ret < 0) {
        return ret;
    }

1222
    if (!cpu->vhyp) {
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
        ppc_store_sdr1(env, sregs.u.s.sdr1);
    }

    /* Sync SLB */
#ifdef TARGET_PPC64
    /*
     * The packed SLB array we get from KVM_GET_SREGS only contains
     * information about valid entries. So we flush our internal copy
     * to get rid of stale ones, then put all valid SLB entries back
     * in.
     */
    memset(env->slb, 0, sizeof(env->slb));
    for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
        target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
        target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
        /*
         * Only restore valid entries
         */
        if (rb & SLB_ESID_V) {
            ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
        }
    }
#endif

    /* Sync SRs */
    for (i = 0; i < 16; i++) {
        env->sr[i] = sregs.u.s.ppc32.sr[i];
    }

    /* Sync BATs */
    for (i = 0; i < 8; i++) {
        env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
        env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
        env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
        env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
    }

    return 0;
}

A
Andreas Färber 已提交
1263
int kvm_arch_get_registers(CPUState *cs)
A
aurel32 已提交
1264
{
A
Andreas Färber 已提交
1265 1266
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
A
aurel32 已提交
1267
    struct kvm_regs regs;
S
Scott Wood 已提交
1268
    uint32_t cr;
A
Alexander Graf 已提交
1269
    int i, ret;
A
aurel32 已提交
1270

1271
    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
A
aurel32 已提交
1272 1273 1274
    if (ret < 0)
        return ret;

S
Scott Wood 已提交
1275 1276 1277 1278 1279
    cr = regs.cr;
    for (i = 7; i >= 0; i--) {
        env->crf[i] = cr & 15;
        cr >>= 4;
    }
1280

A
aurel32 已提交
1281 1282
    env->ctr = regs.ctr;
    env->lr = regs.lr;
1283
    cpu_write_xer(env, regs.xer);
A
aurel32 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
    env->msr = regs.msr;
    env->nip = regs.pc;

    env->spr[SPR_SRR0] = regs.srr0;
    env->spr[SPR_SRR1] = regs.srr1;

    env->spr[SPR_SPRG0] = regs.sprg0;
    env->spr[SPR_SPRG1] = regs.sprg1;
    env->spr[SPR_SPRG2] = regs.sprg2;
    env->spr[SPR_SPRG3] = regs.sprg3;
    env->spr[SPR_SPRG4] = regs.sprg4;
    env->spr[SPR_SPRG5] = regs.sprg5;
    env->spr[SPR_SPRG6] = regs.sprg6;
    env->spr[SPR_SPRG7] = regs.sprg7;

S
Scott Wood 已提交
1299 1300
    env->spr[SPR_BOOKE_PID] = regs.pid;

A
aurel32 已提交
1301 1302 1303
    for (i = 0;i < 32; i++)
        env->gpr[i] = regs.gpr[i];

1304 1305
    kvm_get_fp(cs);

S
Scott Wood 已提交
1306
    if (cap_booke_sregs) {
1307
        ret = kvmppc_get_booke_sregs(cpu);
S
Scott Wood 已提交
1308 1309 1310
        if (ret < 0) {
            return ret;
        }
A
Alexander Graf 已提交
1311
    }
S
Scott Wood 已提交
1312 1313

    if (cap_segstate) {
1314
        ret = kvmppc_get_books_sregs(cpu);
S
Scott Wood 已提交
1315 1316 1317
        if (ret < 0) {
            return ret;
        }
A
Alexander Graf 已提交
1318
    }
1319

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
    if (cap_hior) {
        kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
    }

    if (cap_one_reg) {
        int i;

        /* We deliberately ignore errors here, for kernels which have
         * the ONE_REG calls, but don't support the specific
         * registers, there's a reasonable chance things will still
         * work, at least until we try to migrate. */
        for (i = 0; i < 1024; i++) {
            uint64_t id = env->spr_cb[i].one_reg_id;

            if (id != 0) {
                kvm_get_one_spr(cs, id, i);
            }
        }
1338 1339

#ifdef TARGET_PPC64
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
        if (msr_ts) {
            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
                kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
            }
            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
                kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
            }
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
            kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
        }

1359 1360
        if (cap_papr) {
            if (kvm_get_vpa(cs) < 0) {
1361
                DPRINTF("Warning: Unable to get VPA information from KVM\n");
1362 1363
            }
        }
1364 1365

        kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1366
#endif
1367 1368
    }

A
aurel32 已提交
1369 1370 1371
    return 0;
}

1372
int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
{
    unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;

    if (irq != PPC_INTERRUPT_EXT) {
        return 0;
    }

    if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
        return 0;
    }

1384
    kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1385 1386 1387 1388

    return 0;
}

A
Alexander Graf 已提交
1389 1390 1391 1392 1393 1394 1395 1396
#if defined(TARGET_PPCEMB)
#define PPC_INPUT_INT PPC40x_INPUT_INT
#elif defined(TARGET_PPC64)
#define PPC_INPUT_INT PPC970_INPUT_INT
#else
#define PPC_INPUT_INT PPC6xx_INPUT_INT
#endif

A
Andreas Färber 已提交
1397
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
A
aurel32 已提交
1398
{
A
Andreas Färber 已提交
1399 1400
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
A
aurel32 已提交
1401 1402 1403
    int r;
    unsigned irq;

1404 1405
    qemu_mutex_lock_iothread();

S
Stefan Weil 已提交
1406
    /* PowerPC QEMU tracks the various core input pins (interrupt, critical
A
aurel32 已提交
1407
     * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
1408 1409
    if (!cap_interrupt_level &&
        run->ready_for_interrupt_injection &&
1410
        (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
A
Alexander Graf 已提交
1411
        (env->irq_input_state & (1<<PPC_INPUT_INT)))
A
aurel32 已提交
1412 1413 1414 1415 1416
    {
        /* For now KVM disregards the 'irq' argument. However, in the
         * future KVM could cache it in-kernel to avoid a heavyweight exit
         * when reading the UIC.
         */
1417
        irq = KVM_INTERRUPT_SET;
A
aurel32 已提交
1418

1419
        DPRINTF("injected interrupt %d\n", irq);
1420
        r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq);
1421 1422 1423
        if (r < 0) {
            printf("cpu %d fail inject %x\n", cs->cpu_index, irq);
        }
A
Alexander Graf 已提交
1424 1425

        /* Always wake up soon in case the interrupt was level based */
1426
        timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1427
                       (NANOSECONDS_PER_SECOND / 50));
A
aurel32 已提交
1428 1429 1430 1431 1432
    }

    /* We don't know if there are more interrupts pending after this. However,
     * the guest will return to userspace in the course of handling this one
     * anyways, so we will get a chance to deliver the rest. */
1433 1434

    qemu_mutex_unlock_iothread();
A
aurel32 已提交
1435 1436
}

1437
MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
A
aurel32 已提交
1438
{
1439
    return MEMTXATTRS_UNSPECIFIED;
A
aurel32 已提交
1440 1441
}

A
Andreas Färber 已提交
1442
int kvm_arch_process_async_events(CPUState *cs)
M
Marcelo Tosatti 已提交
1443
{
1444
    return cs->halted;
M
Marcelo Tosatti 已提交
1445 1446
}

1447
static int kvmppc_handle_halt(PowerPCCPU *cpu)
A
aurel32 已提交
1448
{
1449 1450 1451 1452 1453
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;

    if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
        cs->halted = 1;
1454
        cs->exception_index = EXCP_HLT;
A
aurel32 已提交
1455 1456
    }

1457
    return 0;
A
aurel32 已提交
1458 1459 1460
}

/* map dcr access to existing qemu dcr emulation */
1461
static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data)
A
aurel32 已提交
1462 1463 1464 1465
{
    if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
        fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);

1466
    return 0;
A
aurel32 已提交
1467 1468
}

1469
static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data)
A
aurel32 已提交
1470 1471 1472 1473
{
    if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
        fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);

1474
    return 0;
A
aurel32 已提交
1475 1476
}

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
    /* Mixed endian case is not handled */
    uint32_t sc = debug_inst_opcode;

    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
                            sizeof(sc), 0) ||
        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
        return -EINVAL;
    }

    return 0;
}

int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
    uint32_t sc;

    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
        sc != debug_inst_opcode ||
        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
                            sizeof(sc), 1)) {
        return -EINVAL;
    }

    return 0;
}

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
static int find_hw_breakpoint(target_ulong addr, int type)
{
    int n;

    assert((nb_hw_breakpoint + nb_hw_watchpoint)
           <= ARRAY_SIZE(hw_debug_points));

    for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
        if (hw_debug_points[n].addr == addr &&
             hw_debug_points[n].type == type) {
            return n;
        }
    }

    return -1;
}

static int find_hw_watchpoint(target_ulong addr, int *flag)
{
    int n;

    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
    if (n >= 0) {
        *flag = BP_MEM_ACCESS;
        return n;
    }

    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
    if (n >= 0) {
        *flag = BP_MEM_WRITE;
        return n;
    }

    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
    if (n >= 0) {
        *flag = BP_MEM_READ;
        return n;
    }

    return -1;
}

int kvm_arch_insert_hw_breakpoint(target_ulong addr,
                                  target_ulong len, int type)
{
    if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
        return -ENOBUFS;
    }

    hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
    hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;

    switch (type) {
    case GDB_BREAKPOINT_HW:
        if (nb_hw_breakpoint >= max_hw_breakpoint) {
            return -ENOBUFS;
        }

        if (find_hw_breakpoint(addr, type) >= 0) {
            return -EEXIST;
        }

        nb_hw_breakpoint++;
        break;

    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
        if (nb_hw_watchpoint >= max_hw_watchpoint) {
            return -ENOBUFS;
        }

        if (find_hw_breakpoint(addr, type) >= 0) {
            return -EEXIST;
        }

        nb_hw_watchpoint++;
        break;

    default:
        return -ENOSYS;
    }

    return 0;
}

int kvm_arch_remove_hw_breakpoint(target_ulong addr,
                                  target_ulong len, int type)
{
    int n;

    n = find_hw_breakpoint(addr, type);
    if (n < 0) {
        return -ENOENT;
    }

    switch (type) {
    case GDB_BREAKPOINT_HW:
        nb_hw_breakpoint--;
        break;

    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_ACCESS:
        nb_hw_watchpoint--;
        break;

    default:
        return -ENOSYS;
    }
    hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];

    return 0;
}

void kvm_arch_remove_all_hw_breakpoints(void)
{
    nb_hw_breakpoint = nb_hw_watchpoint = 0;
}

1625 1626
void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
{
1627 1628
    int n;

1629 1630 1631 1632
    /* Software Breakpoint updates */
    if (kvm_sw_breakpoints_active(cs)) {
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
    }
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

    assert((nb_hw_breakpoint + nb_hw_watchpoint)
           <= ARRAY_SIZE(hw_debug_points));
    assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));

    if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
        memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
        for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
            switch (hw_debug_points[n].type) {
            case GDB_BREAKPOINT_HW:
                dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
                break;
            case GDB_WATCHPOINT_WRITE:
                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
                break;
            case GDB_WATCHPOINT_READ:
                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
                break;
            case GDB_WATCHPOINT_ACCESS:
                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
                                        KVMPPC_DEBUG_WATCH_READ;
                break;
            default:
                cpu_abort(cs, "Unsupported breakpoint type\n");
            }
            dbg->arch.bp[n].addr = hw_debug_points[n].addr;
        }
    }
1662 1663 1664 1665 1666 1667 1668 1669
}

static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;
    struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
    int handle = 0;
1670 1671
    int n;
    int flag = 0;
1672

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
    if (cs->singlestep_enabled) {
        handle = 1;
    } else if (arch_info->status) {
        if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
            if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
                n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
                if (n >= 0) {
                    handle = 1;
                }
            } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
                                            KVMPPC_DEBUG_WATCH_WRITE)) {
                n = find_hw_watchpoint(arch_info->address,  &flag);
                if (n >= 0) {
                    handle = 1;
                    cs->watchpoint_hit = &hw_watchpoint;
                    hw_watchpoint.vaddr = hw_debug_points[n].addr;
                    hw_watchpoint.flags = flag;
                }
            }
        }
    } else if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1694 1695 1696 1697 1698
        handle = 1;
    } else {
        /* QEMU is not able to handle debug exception, so inject
         * program exception to guest;
         * Yes program exception NOT debug exception !!
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
         * When QEMU is using debug resources then debug exception must
         * be always set. To achieve this we set MSR_DE and also set
         * MSRP_DEP so guest cannot change MSR_DE.
         * When emulating debug resource for guest we want guest
         * to control MSR_DE (enable/disable debug interrupt on need).
         * Supporting both configurations are NOT possible.
         * So the result is that we cannot share debug resources
         * between QEMU and Guest on BOOKE architecture.
         * In the current design QEMU gets the priority over guest,
         * this means that if QEMU is using debug resources then guest
         * cannot use them;
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
         * For software breakpoint QEMU uses a privileged instruction;
         * So there cannot be any reason that we are here for guest
         * set debug exception, only possibility is guest executed a
         * privileged / illegal instruction and that's why we are
         * injecting a program interrupt.
         */

        cpu_synchronize_state(cs);
        /* env->nip is PC, so increment this by 4 to use
         * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
         */
        env->nip += 4;
        cs->exception_index = POWERPC_EXCP_PROGRAM;
        env->error_code = POWERPC_EXCP_INVAL;
        ppc_cpu_do_interrupt(cs);
    }

    return handle;
}

A
Andreas Färber 已提交
1730
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
A
aurel32 已提交
1731
{
A
Andreas Färber 已提交
1732 1733
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
1734
    int ret;
A
aurel32 已提交
1735

1736 1737
    qemu_mutex_lock_iothread();

A
aurel32 已提交
1738 1739 1740
    switch (run->exit_reason) {
    case KVM_EXIT_DCR:
        if (run->dcr.is_write) {
1741
            DPRINTF("handle dcr write\n");
A
aurel32 已提交
1742 1743
            ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
        } else {
1744
            DPRINTF("handle dcr read\n");
A
aurel32 已提交
1745 1746 1747 1748
            ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
        }
        break;
    case KVM_EXIT_HLT:
1749
        DPRINTF("handle halt\n");
1750
        ret = kvmppc_handle_halt(cpu);
A
aurel32 已提交
1751
        break;
1752
#if defined(TARGET_PPC64)
1753
    case KVM_EXIT_PAPR_HCALL:
1754
        DPRINTF("handle PAPR hypercall\n");
A
Andreas Färber 已提交
1755
        run->papr_hcall.ret = spapr_hypercall(cpu,
1756
                                              run->papr_hcall.nr,
1757
                                              run->papr_hcall.args);
1758
        ret = 0;
1759 1760
        break;
#endif
1761
    case KVM_EXIT_EPR:
1762
        DPRINTF("handle epr\n");
1763
        run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1764 1765
        ret = 0;
        break;
B
Bharat Bhushan 已提交
1766
    case KVM_EXIT_WATCHDOG:
1767
        DPRINTF("handle watchdog expiry\n");
B
Bharat Bhushan 已提交
1768 1769 1770 1771
        watchdog_perform_action();
        ret = 0;
        break;

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
    case KVM_EXIT_DEBUG:
        DPRINTF("handle debug exception\n");
        if (kvm_handle_debug(cpu, run)) {
            ret = EXCP_DEBUG;
            break;
        }
        /* re-enter, this exception was guest-internal */
        ret = 0;
        break;

J
Jan Kiszka 已提交
1782 1783 1784 1785
    default:
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
        ret = -1;
        break;
A
aurel32 已提交
1786 1787
    }

1788
    qemu_mutex_unlock_iothread();
A
aurel32 已提交
1789 1790 1791
    return ret;
}

B
Bharat Bhushan 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{
    CPUState *cs = CPU(cpu);
    uint32_t bits = tsr_bits;
    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_OR_TSR,
        .addr = (uintptr_t) &bits,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
{

    CPUState *cs = CPU(cpu);
    uint32_t bits = tsr_bits;
    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_CLEAR_TSR,
        .addr = (uintptr_t) &bits,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_set_tcr(PowerPCCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;
    uint32_t tcr = env->spr[SPR_BOOKE_TCR];

    struct kvm_one_reg reg = {
        .id = KVM_REG_PPC_TCR,
        .addr = (uintptr_t) &tcr,
    };

    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}

int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    int ret;

    if (!kvm_enabled()) {
        return -1;
    }

    if (!cap_ppc_watchdog) {
        printf("warning: KVM does not support watchdog");
        return -1;
    }

C
Cornelia Huck 已提交
1845
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
B
Bharat Bhushan 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854
    if (ret < 0) {
        fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
                __func__, strerror(-ret));
        return ret;
    }

    return ret;
}

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
static int read_cpuinfo(const char *field, char *value, int len)
{
    FILE *f;
    int ret = -1;
    int field_len = strlen(field);
    char line[512];

    f = fopen("/proc/cpuinfo", "r");
    if (!f) {
        return -1;
    }

    do {
1868
        if (!fgets(line, sizeof(line), f)) {
1869 1870 1871
            break;
        }
        if (!strncmp(line, field, field_len)) {
1872
            pstrcpy(value, len, line);
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
            ret = 0;
            break;
        }
    } while(*line);

    fclose(f);

    return ret;
}

uint32_t kvmppc_get_tbfreq(void)
{
    char line[512];
    char *ns;
1887
    uint32_t retval = NANOSECONDS_PER_SECOND;
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898

    if (read_cpuinfo("timebase", line, sizeof(line))) {
        return retval;
    }

    if (!(ns = strchr(line, ':'))) {
        return retval;
    }

    ns++;

1899
    return atoi(ns);
1900
}
1901

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
bool kvmppc_get_host_serial(char **value)
{
    return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
                               NULL);
}

bool kvmppc_get_host_model(char **value)
{
    return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
}

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
/* Try to find a device tree node for a CPU with clock-frequency property */
static int kvmppc_find_cpu_dt(char *buf, int buf_len)
{
    struct dirent *dirp;
    DIR *dp;

    if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
        printf("Can't open directory " PROC_DEVTREE_CPU "\n");
        return -1;
    }

    buf[0] = '\0';
    while ((dirp = readdir(dp)) != NULL) {
        FILE *f;
        snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
                 dirp->d_name);
        f = fopen(buf, "r");
        if (f) {
            snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
            fclose(f);
            break;
        }
        buf[0] = '\0';
    }
    closedir(dp);
    if (buf[0] == '\0') {
        printf("Unknown host!\n");
        return -1;
    }

    return 0;
}

1946
static uint64_t kvmppc_read_int_dt(const char *filename)
1947
{
1948 1949 1950 1951
    union {
        uint32_t v32;
        uint64_t v64;
    } u;
1952 1953 1954
    FILE *f;
    int len;

1955
    f = fopen(filename, "rb");
1956 1957 1958 1959
    if (!f) {
        return -1;
    }

1960
    len = fread(&u, 1, sizeof(u), f);
1961 1962
    fclose(f);
    switch (len) {
1963 1964 1965 1966 1967
    case 4:
        /* property is a 32-bit quantity */
        return be32_to_cpu(u.v32);
    case 8:
        return be64_to_cpu(u.v64);
1968 1969 1970 1971 1972
    }

    return 0;
}

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
/* Read a CPU node property from the host device tree that's a single
 * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
 * (can't find or open the property, or doesn't understand the
 * format) */
static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
{
    char buf[PATH_MAX], *tmp;
    uint64_t val;

    if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
        return -1;
    }

    tmp = g_strdup_printf("%s/%s", buf, propname);
    val = kvmppc_read_int_dt(tmp);
    g_free(tmp);

    return val;
}

1993 1994 1995 1996 1997
uint64_t kvmppc_get_clockfreq(void)
{
    return kvmppc_read_int_cpu_dt("clock-frequency");
}

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
uint32_t kvmppc_get_vmx(void)
{
    return kvmppc_read_int_cpu_dt("ibm,vmx");
}

uint32_t kvmppc_get_dfp(void)
{
    return kvmppc_read_int_cpu_dt("ibm,dfp");
}

2008 2009 2010 2011 2012
static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
 {
     PowerPCCPU *cpu = ppc_env_get_cpu(env);
     CPUState *cs = CPU(cpu);

2013
    if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
        !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
        return 0;
    }

    return 1;
}

int kvmppc_get_hasidle(CPUPPCState *env)
{
    struct kvm_ppc_pvinfo pvinfo;

    if (!kvmppc_get_pvinfo(env, &pvinfo) &&
        (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
        return 1;
    }

    return 0;
}

2033
int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
2034 2035 2036 2037
{
    uint32_t *hc = (uint32_t*)buf;
    struct kvm_ppc_pvinfo pvinfo;

2038
    if (!kvmppc_get_pvinfo(env, &pvinfo)) {
2039 2040 2041 2042 2043
        memcpy(buf, pvinfo.hcall, buf_len);
        return 0;
    }

    /*
2044
     * Fallback to always fail hypercalls regardless of endianness:
2045
     *
2046
     *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
2047
     *     li r3, -1
2048 2049
     *     b .+8       (becomes nop in wrong endian)
     *     bswap32(li r3, -1)
2050 2051
     */

2052 2053 2054 2055
    hc[0] = cpu_to_be32(0x08000048);
    hc[1] = cpu_to_be32(0x3860ffff);
    hc[2] = cpu_to_be32(0x48000008);
    hc[3] = cpu_to_be32(bswap32(0x3860ffff));
2056

2057
    return 1;
2058 2059
}

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
{
    return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
}

void kvmppc_enable_logical_ci_hcalls(void)
{
    /*
     * FIXME: it would be nice if we could detect the cases where
     * we're using a device which requires the in kernel
     * implementation of these hcalls, but the kernel lacks them and
     * produce a warning.
     */
    kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
    kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
}

2077 2078 2079 2080 2081
void kvmppc_enable_set_mode_hcall(void)
{
    kvmppc_enable_hcall(kvm_state, H_SET_MODE);
}

2082 2083 2084 2085 2086 2087
void kvmppc_enable_clear_ref_mod_hcalls(void)
{
    kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
    kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
}

2088
void kvmppc_set_papr(PowerPCCPU *cpu)
2089
{
2090
    CPUState *cs = CPU(cpu);
2091 2092
    int ret;

C
Cornelia Huck 已提交
2093
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2094
    if (ret) {
2095 2096
        error_report("This vCPU type or KVM version does not support PAPR");
        exit(1);
2097
    }
2098 2099 2100 2101

    /* Update the capability flag so we sync the right information
     * with kvm */
    cap_papr = 1;
2102 2103
}

2104
int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2105
{
2106
    return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2107 2108
}

2109 2110 2111 2112 2113
void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
{
    CPUState *cs = CPU(cpu);
    int ret;

C
Cornelia Huck 已提交
2114
    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2115
    if (ret && mpic_proxy) {
2116 2117
        error_report("This KVM version does not support EPR");
        exit(1);
2118 2119 2120
    }
}

2121 2122 2123 2124 2125
int kvmppc_smt_threads(void)
{
    return cap_ppc_smt ? cap_ppc_smt : 1;
}

2126
#ifdef TARGET_PPC64
2127
off_t kvmppc_alloc_rma(void **rma)
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
{
    off_t size;
    int fd;
    struct kvm_allocate_rma ret;

    /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported
     * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but
     *                      not necessary on this hardware
     * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware
     *
     * FIXME: We should allow the user to force contiguous RMA
     * allocation in the cap_ppc_rma==1 case.
     */
    if (cap_ppc_rma < 2) {
        return 0;
    }

    fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret);
    if (fd < 0) {
        fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n",
                strerror(errno));
        return -1;
    }

    size = MIN(ret.rma_size, 256ul << 20);

2154 2155
    *rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
    if (*rma == MAP_FAILED) {
2156 2157 2158 2159 2160 2161 2162
        fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno));
        return -1;
    };

    return size;
}

2163 2164
uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
{
2165 2166 2167 2168
    struct kvm_ppc_smmu_info info;
    long rampagesize, best_page_shift;
    int i;

2169 2170 2171
    if (cap_ppc_rma >= 2) {
        return current_size;
    }
2172 2173 2174

    /* Find the largest hardware supported page size that's less than
     * or equal to the (logical) backing page size of guest RAM */
2175
    kvm_get_smmu_info(POWERPC_CPU(first_cpu), &info);
2176
    rampagesize = qemu_getrampagesize();
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
    best_page_shift = 0;

    for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
        struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];

        if (!sps->page_shift) {
            continue;
        }

        if ((sps->page_shift > best_page_shift)
            && ((1UL << sps->page_shift) <= rampagesize)) {
            best_page_shift = sps->page_shift;
        }
    }

2192
    return MIN(current_size,
2193
               1ULL << (best_page_shift + hash_shift - 7));
2194 2195 2196
}
#endif

2197 2198 2199 2200 2201
bool kvmppc_spapr_use_multitce(void)
{
    return cap_spapr_multitce;
}

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
int kvmppc_spapr_enable_inkernel_multitce(void)
{
    int ret;

    ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
                            H_PUT_TCE_INDIRECT, 1);
    if (!ret) {
        ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
                                H_STUFF_TCE, 1);
    }

    return ret;
}

2216 2217 2218
void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
                              uint64_t bus_offset, uint32_t nb_table,
                              int *pfd, bool need_vfio)
2219 2220 2221 2222 2223
{
    long len;
    int fd;
    void *table;

2224 2225 2226 2227
    /* Must set fd to -1 so we don't try to munmap when called for
     * destroying the table, which the upper layers -will- do
     */
    *pfd = -1;
2228
    if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2229 2230 2231
        return NULL;
    }

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
    if (cap_spapr_tce_64) {
        struct kvm_create_spapr_tce_64 args = {
            .liobn = liobn,
            .page_shift = page_shift,
            .offset = bus_offset >> page_shift,
            .size = nb_table,
            .flags = 0
        };
        fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
        if (fd < 0) {
            fprintf(stderr,
                    "KVM: Failed to create TCE64 table for liobn 0x%x\n",
                    liobn);
            return NULL;
        }
    } else if (cap_spapr_tce) {
        uint64_t window_size = (uint64_t) nb_table << page_shift;
        struct kvm_create_spapr_tce args = {
            .liobn = liobn,
            .window_size = window_size,
        };
        if ((window_size != args.window_size) || bus_offset) {
            return NULL;
        }
        fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
        if (fd < 0) {
            fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
                    liobn);
            return NULL;
        }
    } else {
2263 2264 2265
        return NULL;
    }

2266
    len = nb_table * sizeof(uint64_t);
2267 2268
    /* FIXME: round this up to page size */

2269
    table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
2270
    if (table == MAP_FAILED) {
2271 2272
        fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
                liobn);
2273 2274 2275 2276 2277 2278 2279 2280
        close(fd);
        return NULL;
    }

    *pfd = fd;
    return table;
}

2281
int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2282 2283 2284 2285 2286 2287 2288
{
    long len;

    if (fd < 0) {
        return -1;
    }

2289
    len = nb_table * sizeof(uint64_t);
2290 2291
    if ((munmap(table, len) < 0) ||
        (close(fd) < 0)) {
2292 2293
        fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
                strerror(errno));
2294 2295 2296 2297 2298 2299
        /* Leak the table */
    }

    return 0;
}

2300 2301 2302 2303
int kvmppc_reset_htab(int shift_hint)
{
    uint32_t shift = shift_hint;

2304 2305 2306 2307 2308
    if (!kvm_enabled()) {
        /* Full emulation, tell caller to allocate htab itself */
        return 0;
    }
    if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2309 2310
        int ret;
        ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2311 2312 2313 2314 2315 2316 2317
        if (ret == -ENOTTY) {
            /* At least some versions of PR KVM advertise the
             * capability, but don't implement the ioctl().  Oops.
             * Return 0 so that we allocate the htab in qemu, as is
             * correct for PR. */
            return 0;
        } else if (ret < 0) {
2318 2319 2320 2321 2322
            return ret;
        }
        return shift;
    }

2323 2324
    /* We have a kernel that predates the htab reset calls.  For PR
     * KVM, we need to allocate the htab ourselves, for an HV KVM of
2325 2326
     * this era, it has allocated a 16MB fixed size hash table already. */
    if (kvmppc_is_pr(kvm_state)) {
2327 2328 2329 2330 2331 2332
        /* PR - tell caller to allocate htab */
        return 0;
    } else {
        /* HV - assume 16MB kernel allocated htab */
        return 24;
    }
2333 2334
}

2335 2336 2337 2338 2339 2340 2341 2342 2343
static inline uint32_t mfpvr(void)
{
    uint32_t pvr;

    asm ("mfpvr %0"
         : "=r"(pvr));
    return pvr;
}

2344 2345 2346 2347 2348 2349 2350 2351 2352
static void alter_insns(uint64_t *word, uint64_t flags, bool on)
{
    if (on) {
        *word |= flags;
    } else {
        *word &= ~flags;
    }
}

2353 2354 2355
static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
{
    PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2356 2357
    uint32_t vmx = kvmppc_get_vmx();
    uint32_t dfp = kvmppc_get_dfp();
2358 2359
    uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
    uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2360

2361
    /* Now fix up the class with information we can query from the host */
2362
    pcc->pvr = mfpvr();
2363

2364 2365
    if (vmx != -1) {
        /* Only override when we know what the host supports */
2366 2367
        alter_insns(&pcc->insns_flags, PPC_ALTIVEC, vmx > 0);
        alter_insns(&pcc->insns_flags2, PPC2_VSX, vmx > 1);
2368 2369 2370
    }
    if (dfp != -1) {
        /* Only override when we know what the host supports */
2371
        alter_insns(&pcc->insns_flags2, PPC2_DFP, dfp);
2372
    }
2373 2374 2375 2376 2377 2378 2379 2380

    if (dcache_size != -1) {
        pcc->l1_dcache_size = dcache_size;
    }

    if (icache_size != -1) {
        pcc->l1_icache_size = icache_size;
    }
2381 2382 2383

#if defined(TARGET_PPC64)
    pcc->radix_page_info = kvm_get_radix_page_info();
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394

    if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
        /*
         * POWER9 DD1 has some bugs which make it not really ISA 3.00
         * compliant.  More importantly, advertising ISA 3.00
         * architected mode may prevent guests from activating
         * necessary DD1 workarounds.
         */
        pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
                                | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
    }
2395
#endif /* defined(TARGET_PPC64) */
2396 2397
}

2398 2399 2400 2401 2402
bool kvmppc_has_cap_epr(void)
{
    return cap_epr;
}

2403 2404 2405 2406 2407
bool kvmppc_has_cap_htab_fd(void)
{
    return cap_htab_fd;
}

2408 2409 2410 2411 2412
bool kvmppc_has_cap_fixup_hcalls(void)
{
    return cap_fixup_hcalls;
}

2413 2414 2415 2416 2417
bool kvmppc_has_cap_htm(void)
{
    return cap_htm;
}

2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
bool kvmppc_has_cap_mmu_radix(void)
{
    return cap_mmu_radix;
}

bool kvmppc_has_cap_mmu_hash_v3(void)
{
    return cap_mmu_hash_v3;
}

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
{
    uint32_t host_pvr = mfpvr();
    PowerPCCPUClass *pvr_pcc;

    pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
    if (pvr_pcc == NULL) {
        pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
    }

    return pvr_pcc;
}

2441 2442 2443 2444 2445 2446 2447
static int kvm_ppc_register_host_cpu_type(void)
{
    TypeInfo type_info = {
        .name = TYPE_HOST_POWERPC_CPU,
        .class_init = kvmppc_host_cpu_class_init,
    };
    PowerPCCPUClass *pvr_pcc;
2448
    DeviceClass *dc;
2449
    int i;
2450

2451
    pvr_pcc = kvm_ppc_get_host_cpu_class();
2452 2453 2454 2455 2456
    if (pvr_pcc == NULL) {
        return -1;
    }
    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
    type_register(&type_info);
2457

2458 2459 2460
#if defined(TARGET_PPC64)
    type_info.name = g_strdup_printf("%s-"TYPE_SPAPR_CPU_CORE, "host");
    type_info.parent = TYPE_SPAPR_CPU_CORE,
2461 2462 2463 2464
    type_info.instance_size = sizeof(sPAPRCPUCore);
    type_info.instance_init = NULL;
    type_info.class_init = spapr_cpu_core_class_init;
    type_info.class_data = (void *) "host";
2465 2466 2467 2468
    type_register(&type_info);
    g_free((void *)type_info.name);
#endif

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
    /*
     * Update generic CPU family class alias (e.g. on a POWER8NVL host,
     * we want "POWER8" to be a "family" alias that points to the current
     * host CPU type, too)
     */
    dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
    for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
        if (strcmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
            ObjectClass *oc = OBJECT_CLASS(pvr_pcc);
            char *suffix;

            ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
            suffix = strstr(ppc_cpu_aliases[i].model, "-"TYPE_POWERPC_CPU);
            if (suffix) {
                *suffix = 0;
            }
            ppc_cpu_aliases[i].oc = oc;
            break;
        }
    }

2490 2491 2492
    return 0;
}

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
{
    struct kvm_rtas_token_args args = {
        .token = token,
    };

    if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
        return -ENOENT;
    }

    strncpy(args.name, function, sizeof(args.name));

    return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
}
2507

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
int kvmppc_get_htab_fd(bool write)
{
    struct kvm_get_htab_fd s = {
        .flags = write ? KVM_GET_HTAB_WRITE : 0,
        .start_index = 0,
    };

    if (!cap_htab_fd) {
        fprintf(stderr, "KVM version doesn't support saving the hash table\n");
        return -1;
    }

    return kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
}

int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
{
2525
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
    uint8_t buf[bufsize];
    ssize_t rc;

    do {
        rc = read(fd, buf, bufsize);
        if (rc < 0) {
            fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
                    strerror(errno));
            return rc;
        } else if (rc) {
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
            uint8_t *buffer = buf;
            ssize_t n = rc;
            while (n) {
                struct kvm_get_htab_header *head =
                    (struct kvm_get_htab_header *) buffer;
                size_t chunksize = sizeof(*head) +
                     HASH_PTE_SIZE_64 * head->n_valid;

                qemu_put_be32(f, head->index);
                qemu_put_be16(f, head->n_valid);
                qemu_put_be16(f, head->n_invalid);
                qemu_put_buffer(f, (void *)(head + 1),
                                HASH_PTE_SIZE_64 * head->n_valid);

                buffer += chunksize;
                n -= chunksize;
            }
2553 2554 2555
        }
    } while ((rc != 0)
             && ((max_ns < 0)
2556
                 || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588

    return (rc == 0) ? 1 : 0;
}

int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
                           uint16_t n_valid, uint16_t n_invalid)
{
    struct kvm_get_htab_header *buf;
    size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64;
    ssize_t rc;

    buf = alloca(chunksize);
    buf->index = index;
    buf->n_valid = n_valid;
    buf->n_invalid = n_invalid;

    qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid);

    rc = write(fd, buf, chunksize);
    if (rc < 0) {
        fprintf(stderr, "Error writing KVM hash table: %s\n",
                strerror(errno));
        return rc;
    }
    if (rc != chunksize) {
        /* We should never get a short write on a single chunk */
        fprintf(stderr, "Short write, restoring KVM hash table\n");
        return -1;
    }
    return 0;
}

A
Andreas Färber 已提交
2589
bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2590 2591 2592
{
    return true;
}
2593

2594 2595 2596
void kvm_arch_init_irq_routing(KVMState *s)
{
}
2597

2598
void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2599
{
2600 2601 2602 2603 2604 2605
    struct kvm_get_htab_fd ghf = {
        .flags = 0,
        .start_index = ptex,
    };
    int fd, rc;
    int i;
2606

2607 2608 2609
    fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
    if (fd < 0) {
        hw_error("kvmppc_read_hptes: Unable to open HPT fd");
2610 2611
    }

2612 2613 2614 2615 2616
    i = 0;
    while (i < n) {
        struct kvm_get_htab_header *hdr;
        int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
        char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
2617

2618 2619 2620 2621
        rc = read(fd, buf, sizeof(buf));
        if (rc < 0) {
            hw_error("kvmppc_read_hptes: Unable to read HPTEs");
        }
2622

2623 2624 2625
        hdr = (struct kvm_get_htab_header *)buf;
        while ((i < n) && ((char *)hdr < (buf + rc))) {
            int invalid = hdr->n_invalid;
2626

2627 2628 2629 2630 2631 2632 2633
            if (hdr->index != (ptex + i)) {
                hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
                         " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
            }

            memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * hdr->n_valid);
            i += hdr->n_valid;
2634

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
            if ((n - i) < invalid) {
                invalid = n - i;
            }
            memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
            i += hdr->n_invalid;

            hdr = (struct kvm_get_htab_header *)
                ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
        }
    }

    close(fd);
2647
}
2648

2649
void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2650
{
2651
    int fd, rc;
2652
    struct kvm_get_htab_fd ghf;
2653 2654 2655 2656 2657
    struct {
        struct kvm_get_htab_header hdr;
        uint64_t pte0;
        uint64_t pte1;
    } buf;
2658 2659 2660

    ghf.flags = 0;
    ghf.start_index = 0;     /* Ignored */
2661 2662 2663
    fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf);
    if (fd < 0) {
        hw_error("kvmppc_write_hpte: Unable to open HPT fd");
2664 2665
    }

2666 2667 2668 2669 2670
    buf.hdr.n_valid = 1;
    buf.hdr.n_invalid = 0;
    buf.hdr.index = ptex;
    buf.pte0 = cpu_to_be64(pte0);
    buf.pte1 = cpu_to_be64(pte1);
2671

2672 2673 2674 2675 2676
    rc = write(fd, &buf, sizeof(buf));
    if (rc != sizeof(buf)) {
        hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
    }
    close(fd);
2677
}
2678 2679

int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2680
                             uint64_t address, uint32_t data, PCIDevice *dev)
2681 2682 2683
{
    return 0;
}
2684

2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
                                int vector, PCIDevice *dev)
{
    return 0;
}

int kvm_arch_release_virq_post(int virq)
{
    return 0;
}

2696 2697 2698 2699
int kvm_arch_msi_data_to_gsi(uint32_t data)
{
    return data & 0xffff;
}
2700 2701 2702 2703 2704 2705 2706 2707 2708

int kvmppc_enable_hwrng(void)
{
    if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
        return -1;
    }

    return kvmppc_enable_hcall(kvm_state, H_RANDOM);
}